CN114748686A - 一种个性化锌合金骨植入物及其制备方法与应用 - Google Patents
一种个性化锌合金骨植入物及其制备方法与应用 Download PDFInfo
- Publication number
- CN114748686A CN114748686A CN202210406924.6A CN202210406924A CN114748686A CN 114748686 A CN114748686 A CN 114748686A CN 202210406924 A CN202210406924 A CN 202210406924A CN 114748686 A CN114748686 A CN 114748686A
- Authority
- CN
- China
- Prior art keywords
- bone
- zinc alloy
- personalized
- implant
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/68—Cleaning or washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/102—Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/102—Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
- A61L2300/104—Silver, e.g. silver sulfadiazine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Prostheses (AREA)
Abstract
本发明公开了一种个性化锌合金骨植入物及其制备方法与应用,先采用氩气雾化法获得LiZn4、LiZn2或Li2Zn3和AgZn3金属间化合物粉末;然后通过三维建模重建出待植骨区域骨缺损的形态;再用增材制造工艺制备得到梯度三维多孔结构植入物或均质实心结构的个性化植入物。本发明的个性化锌合金骨植入物用于骨肿瘤切除术后的骨缺损处,具有促进新骨生成、抗肿瘤及长效杀菌等生物学效应。
Description
技术领域
本发明属于医用金属材料领域,具体涉及一种个性化锌合金骨植入物及其制备方法与应用。
背景技术
骨肿瘤严重影响着患者的生存质量和心理健康,是临床治疗中面临的难题。临床上往往采用外科手术将肿瘤切除,但是,切除肿瘤会造成大范围骨缺损并可能残留部分肿瘤细胞。大范围骨缺损无法通过自身的成骨作用而恢复,同时,骨缺损的形态各异,常规的骨充填材料难以完全匹配骨缺损的轮廓。此外,残留的肿瘤细胞容易引起肿瘤的复发。如何精准的恢复骨肿瘤切除手术后大范围骨缺损的同时杀灭残留的肿瘤细胞是临床骨肿瘤切除术后所面临的难题。开发一种兼具促成骨及抗肿瘤的个性化骨植入材料迫在眉睫。
同时,骨肿瘤患者由于免疫环境紊乱,在骨重建术后早期或早中期,一旦有细菌入侵,很难通过自身免疫清除,而细菌通过免疫逃逸,很容易在体内潜伏,待机会出现最终爆发。这类患者一旦发生植入物感染,治疗极其困难且耗时、耗财巨大,感染控制失败导致的肢体畸形、截肢、甚至死亡比其他人群高出许多,给患者带来巨大的身心痛苦和经济负担。由于低免疫力状态患者所处的基础疾病的状态和治疗阶段不同,很难有统一的临床指南用于指导该类患者骨重建围手术期和术后的持续抗感染抗骨溶解治疗。因此,赋予骨肿瘤切除术后植入物抗菌性,有望将植入物从细菌粘附增殖的载体变成主动抗菌的骨植入物,有望解决此类患者骨肿瘤切除术后植入物感染的问题。
发明内容
本发明的目的在于克服现有技术中存在的缺点,提供一种个性化锌合金骨植入物及其制备方法与应用,能够显著提升骨缺损区域的促成骨效果,并具有抗肿瘤和抗菌的性能。
本发明的目的通过下述技术方案实现:
一种个性化锌合金骨植入物,为Zn-Li-Ag三元锌合金植入物;其中,锌占锌合金的质量百分比为≥96%且<100%,锂占锌合金的质量百分比为>0%且≤1%,银占锌合金的质量百分比为>0%且≤3%。
优选的,锂占锌合金的质量百分比为0.1~0.8%;银占锌合金的质量百分比为0.5~3%。
所述个性化锌合金骨植入物,优选下述(1)-(15)中的任一种成分,以质量百分比计:
(1)由98.7%的锌、0.8%的锂和0.5%的银组成;
(2)由98.2%的锌、0.8%的锂和1.0%的银组成;
(3)由97.95%的锌、0.8%的锂和1.25%的银组成;
(4)由97.2%的锌、0.8%的锂和2.0%的银组成;
(5)由96.2%的锌、0.8%的锂和3.0%的银组成。
(6)由99.0%的锌、0.5%的锂和0.5%的银组成;
(7)由98.5%的锌、0.5%的锂和1.0%的银组成;
(8)由98.75%的锌、0.5%的锂和1.25%的银组成;
(9)由97.5%的锌、0.5%的锂和2.0%的银组成;
(10)由96.5%的锌、0.5%的锂和3.0%的银组成。
(11)由99.4%的锌、0.1%的锂和0.5%的银组成;
(12)由98.9%的锌、0.1%的锂和1.0%的银组成;
(13)由98.65%的锌、0.1%的锂和1.25%的银组成;
(14)由97.5%的锌、0.5%的锂和2.0%的银组成;
(15)由96.9%的锌、0.1%的锂和3.0%的银组成。
所述个性化锌合金骨植入物的制备方法,先采用氩气雾化法获得LiZn4、LiZn2或Li2Zn3和AgZn3金属间化合物粉末;然后通过三维建模重建出待植骨区域骨缺损的形态;再用增材制造工艺制备得到梯度三维多孔结构植入物或均质实心结构的个性化植入物。
所述个性化锌合金骨植入物的制备过程中,保护气流为氩气,其中氧含量<50ppm。
所述LiZn4、LiZn2或Li2Zn3和AgZn3金属间化合物粉末的平均直径为>0且≤50微米。
所述梯度三维多孔结构植入物为外部小孔径、内部大孔径结构;其外层孔径为0~300微米,杆宽为400微米,内部的孔径逐级增加,骨支架的中心处孔径为300~600微米,中心处孔径最大。
所述增材制造工艺为激光粉末床熔融技术,采用的工艺参数为:激光功率50~400W,光斑直径50~100μm,层厚10~40μm,开口间距50~100μm,扫描速率200~1000mm/s。
增材制造成型后的个性化锌合金骨植入物,进行后处理;所述后处理工艺为:先采用酸清洗其内部,然后通过喷砂来处理植入物的外表面,再分别在无水乙醇、去离子水中进行超声清洗10~20min,采用Co60γ射线辐照灭菌。
所述个性化锌合金骨植入物的应用,是作为骨肿瘤切除术、感染清除术等引起的大面积骨缺损的骨植入物。
更具体的,所述个性化锌合金骨植入物的应用,是根据不同患者的骨缺损的个性化修复需求,制作出与患者骨缺损部位精准吻合的个性化锌合金骨植入物,所述植入物为外表面小孔径、内部大孔径的梯度三维多孔结构或均质实心结构。
本发明与现有技术相比具有如下优点和效果:
(1)本发明制备的金属间化合物粉末由强化相LiZn4、LiZn2或Li2Zn3和塑化相AgZn3等组成,且粉末平均直径≤50微米;经过激光熔化快速成型并冷却后,成形致密度>99.5%,组织均匀致密,晶粒细小,具有优异综合力学性能。
(2)本发明的个性化锌合金骨植入物具有优异的综合力学性能:与传统挤压态Zn-Ag二元合金材料(抗拉强度170-230MPa,专利号ZL201610387443.X)相比,个性化锌合金骨植入物具有亚微米至纳米级间距的层状强化组织与纳米级析出强化相,显著提高强度(抗拉强度350-530MPa);与传统挤压态Zn-Li二元合金相比(延伸率<28%,专利号ZL201610387456.7),个性化锌合金骨植入物的塑性得到显著改善(延伸率35-95%)。
(3)本发明的个性化锌合金骨植入物用于骨肿瘤切除术后的骨缺损处,具有促进新骨生成、抗肿瘤及长效杀菌等生物学效应:(a)锌基体逐渐被体液降解释放锌离子、锂离子和银离子,锌离子发挥杀灭残留肿瘤细胞的作用;此外,锌通过激活tRNA合成酶和刺激基因表达来促进蛋白质的合成,同时增加细胞内DNA数量,从而促进成骨细胞新骨生成和矿化;锌还通过调控钙离子信号通路,促进破骨细胞的的凋亡,即锌通过促成骨和抑制骨吸收使骨量增加;(b)锂作为主要力学强化作用,使得该锌合金植入物被应用于承力部位;锂可以通过激活Wnt通路来刺激小鼠体内的新骨形成并增加骨量,并通过调节Wnt/β连环素通路来抑制破骨细胞形成,从而抑制骨吸收;Li能够调节人间充质干细胞(hMSC)的成骨向分化;(c)银作为兼具抗菌和塑化效应的功能元素,既在体内降解缓释,可实现长效抗菌,杀灭包括耐甲氧西林金黄色葡萄球菌(MASA)在内的超级耐药菌,又可以使锌合金得到明显塑化,提升其加工变形能力;因此,本发明可以同时发挥促成骨、抗肿瘤和抗菌的效果,适用于骨肿瘤切除术、感染清除术等引起的大面积骨缺损的充填修复。
(4)本发明的个性化锌合金骨植入物可以满足临床应用个性化结构需求;可以根据不同患者的骨缺损的个性化修复需求,制作出与患者骨缺损部位精准吻合的个性化锌合金骨植入物,该植入物既可以为均质实心结构,也可以为疏松多孔状(外层的孔径为0~300微米,内部的孔径逐级增加,骨支架的中心处孔径为300~600微米);外层支架可以起到支撑作用,其小孔径可以阻止肿瘤的扩散,内部特定的逐级增加的大孔径有助于血管化并促进新生骨组织的生长,从而形成一个既能维持骨缺损部位的形态,同时还能发挥支撑作用的骨缺损修复支架。
附图说明
图1本发明制备的金属间化合物粉末及锌合金骨植入物的金相图谱。
图2本发明锌合金骨植入物的X射线衍射图。
图3本发明锌合金骨植入物的拉伸性能。
图4本发明制备的两种不同结构的锌合金骨多孔支架的扫描电镜图。(左图为三重周期最小曲面结构,右图为体心立方结构)
图5本发明锌合金骨植入物的体外抑菌环实验结果。
图6本发明锌合金骨植入物的体内抗菌效果的X射线结果。
图7本发明锌合金骨植入物的体内骨保留效果的MicroCT分析结果。
图8本发明锌合金骨植入物的表面细菌粘附分析。
具体实施方式
为了便于理解本发明,下面将结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但是,不以任何形式限制本发明。应该指出的是,对本领域的技术人员来说,在不脱离本发明构思的前提下,本发明还可以做出若干变形和改进,这些都属于本发明的保护范围。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。下述实施例中所用的百分含量,如无特别说明,均为质量百分含量。
实施例1
将锌、锂、银原料按照比例混合制备LiZn4、LiZn2或Li2Zn3和AgZn3金属间化合物块体,然后通过氩气雾化法将上述块体制备成平均粒径20μm(粒径分布在15-40μm之间)的金属间化合物粉末。通过激光粉末床融合法(L-PBF)制备厚度2mm的圆片样品,将厚度2mm的圆片样本研磨至7000目,以0.1μm金刚石研磨膏抛光后去离子水清洗。然后,将所有样本置于4%HNO3/乙醇溶液中浸蚀5-10s。用光学金相显微镜对样本的微观结构进行观测分析,金相图谱结果见图1,可见对照组的Zn0.8Li的金相组织主要呈枝晶状,含银的Zn-0.8Li-xAg合金金相组织形态发生变化,且随银质量分数的增加,第二相组织增加。采用CuKα辐射的X射线衍射仪对材料的组分进行分析,操作电压40kV,电流为100mA,扫描范围10-90°,扫描速度为2°/min,步进0.02°,其分析结果表明,合金中的第二相组织主要为LiZn4和AgZn3(图2)。
实施例2
按照ASTM-E8/E8M-09拉伸测试标准制备拉伸样品。在丙酮、无水乙醇和去离子水中分别超声清洗15min后,采用万能材料力学试验机在室温下进行拉伸压缩试验,拉伸速度为0.05mm/mm·min。图3为锌合金骨植入物样品的拉伸性能,与Zn-Ag合金挤压棒材相比,锌合金骨植入物的强度得到显著提升;与Zn-Li合金挤压棒材相比,锌合金骨植入物的塑性得到明显改善,所以本发明锌合金骨植入物具备显著优化的综合力学性能。
实施例3
选取雾化法制备得到的平均粒径20μm(粒径分布在15-40μm之间)的Zn-0.8Li-0.5Ag合金粉末,采用激光粉末床融合法(L-PBF),在激光功率60W,光斑直径60μm,层厚30μm,开口间距60μm,扫描速率600mm/s条件下,可获得Gyroid(图4左)、Diomand(图4右)等结构的多孔样品。
实施例4
将100μL耐甲氧西林金黄色葡萄球菌(MASA)悬浮液(1×107CFU/mL)均匀涂布在胰蛋白胨大豆琼脂平板上后,将纯Ti、Zn-0.8Li、Zn-0.8Li-0.5Ag、Zn-0.8Li-1.25Ag,和Zn-0.8Li-2.0Ag合金金属圆盘轻轻放置在板的中心。通过分析材料周围的抗菌环直径确定其抗菌效果。在37℃培养箱中培养24h后对平板拍照,并测量抑菌圈的直径。图5结果显示,相比纯Ti和Zn-Li合金,本发明锌合金骨植入物对MASA菌具有显著提升的抗菌效果。
将1mL浓度为1×106CFU/mL的MASA细菌悬液加入24孔板中,与金属材料圆片共培养24h后收集细菌悬液,离心漂洗后收集细菌沉淀,固定脱水后保存在无水乙醇中,临界点干燥后进行喷金处理,然后用场发射扫描电镜观察细菌的形态。图6结果显示,相比纯Ti,本发明锌合金骨植入物对MASA菌具有显著提升的抗菌效果。
实施例5
Zn-0.8Li-0.5Ag合金通过激光熔融制备成Φ1.5×20mm的钉状植入物,同尺寸纯钛钉用作对照。首先建立MRSA诱发的股骨骨髓炎模型。大鼠腹腔注射氯胺酮(10mg/kg)和2%甲苯噻嗪麻醉,无菌条件下沿髌骨外侧切开15mm纵切口。逐层分离脱臼的膝关节,暴露股骨髁。然后用1mm钻头在髓腔方向钻出股骨髁的中心。然后用生理盐水冲洗骨碎屑,用1mL注射器将100μL 1×108CFU/mL细菌悬液注入股骨髓腔。最后用骨蜡封住钻孔,逐层封闭切口。丁丙诺啡皮下注射用于术后镇痛。造模术后3周行X线片检查造模效果。在建模手术后3周,植入材料治疗MRSA引起的感染。在常规麻醉和皮肤准备后,沿着原始手术切口暴露股骨髁。完全清创和冲洗后,在髓腔方向的股骨髁中心钻1.5mm的孔。生理盐水冲洗后,将Zn-0.8Li-0.5Ag合金或纯钛髓内钉植入股骨髓腔。再次用生理盐水冲洗手术部位,逐层缝合切口。实验分组如下:空白对照组、纯钛对照组、Zn-0.8Li-0.5Ag合金实验组。髓内钉植入后第3周和第6周,对各组大鼠实施安乐死,取相关组织/器官进行后续分析。
在植入材料术后第3周和第6周评估锌合金对大鼠股骨骨髓炎的治疗效果。进行定量X射线评估以检测骨膜抬高、隔离、结构变形、骨干增宽和软组织变形。对每个特征给出0-3分,分数越高表示感染越严重。图7结果显示,髓内钉植入后第3周和第6周,纯Ti组大鼠股骨干进一步增厚,充血明显,窦道形成,表明骨髓炎进展。相比之下,Zn-0.8Li-0.5Ag合金组大鼠股骨感染症状明显减轻,术后6周大体形态恢复正常,表明骨髓炎得到控制。X射线3周显示,纯Ti组感染征象明显,而Zn-0.8Li-0.5Ag合金组感染征象得到控制。6周时的X射线结果进一步验证了这一结果。定量X射线评估的结果表明,与纯钛植入组相比,本发明锌合金骨植入物在体内具有优异的抗感染能力。
植入材料术后第3周和第6周,对各组大鼠实施安乐死取右股骨。将股骨浸泡在多聚甲醛24h后进行MicroCT分析。扫描完成后,用于数据分析的区域定义为股骨髁内髓内钉(不包括髓内钉)圆周外1mm到3mm圆柱形区域。定量分析骨矿物质密度(BMD)、骨体积(BV)、骨体积分数(BV/TV)、骨小梁数量(Tb.N)、骨小梁厚度(Tb.Th)和骨小梁分离度(Tb.Sp),评价各组大鼠股骨骨质情况。CT结果显示(图7,Coronal section:冠状面;Sagittalreconstruction:矢状面重建;ROI reconstruction:感兴趣区域重建),在纯钛组中观察到股骨感染的迹象,有明显的骨质溶解和骨质流失。而Zn-0.8Li-0.5Ag合金组大鼠股骨未见明显骨质流失。相反,在髓内钉周围可以看到少量降解产物和大量新形成的骨。与纯钛组相比,Zn-0.8Li-0.5Ag合金组具有更高的BMD、BV、Tb.N和更低的Tb.Sp,这些结果表明,本发明锌合金骨植入物具有更好的骨保留效果。
二次植入手术后3周,6周安乐死各组大鼠取材大鼠右侧股骨,取出大鼠股骨髓腔中的内植物。每个时间点,每组随机选择4个内植物以扫描电子显微镜观察内植物表面的细菌黏附和生物膜形成情况。SEM结果如图8所示。在内植物植入后3周和6周时,纯Ti髓内钉表面可见丘状和团状黏附,细菌包绕于其中,表明在纯Ti髓内钉表面细菌生物膜的形成,高倍镜下可见细菌形态正常,呈簇状分布。而在Zn-0.8Li-0.5Ag合金髓内钉表面,细菌罕见,仅可见Zn-0.8Li-0.5Ag合金表面降解碎裂,这证实细菌在Zn-0.8Li-0.5Ag合金表面无法黏附生长,这说明本发明锌合金骨植入物具有良好抗菌特性。
实施例6
1)首先基于CT影像技术对患者的骨肿瘤切除术后的骨缺损进行三维重建,模拟出骨缺损区域的大小及形状;
2)根据重建的骨缺损区域的范围与形状,利用计算机辅助设计软件进行植入物的孔径与孔隙设计,与骨缺损相接触的植入物外层结构单元的孔径为300微米,内部结构单元的孔径逐级增加,骨支架的中心处孔径为600微米;
3)将设计好的三维结构模型数据以STL格式导入3D打印控制软件;
4)制备个性化植入物的材料为Zn-0.8Li-0.5Ag合金,通过选区激光熔化技术进行制备;
5)成型后用酸清洗支架的内部,并通过喷砂来处理植入物的外表面,然后分别在无水乙醇、去离子水中进行超声清洗15min,Co60γ射线辐照灭菌。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案,本领域的普通技术人员应当理解,仍然可以对本发明进行局部修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明保护范围之内。
Claims (10)
1.一种个性化锌合金骨植入物,其特征在于:为Zn-Li-Ag三元锌合金植入物;其中,锌占锌合金的质量百分比为≥96%且<100%,锂占锌合金的质量百分比为>0%且≤1%,银占锌合金的质量百分比为>0%且≤3%。
2.根据权利要求1所述的个性化锌合金骨植入物,其特征在于:锂占锌合金的质量百分比为0.1~0.8%;银占锌合金的质量百分比为0.5~3%。
3.一种权利要求1或2所述的个性化锌合金骨植入物的制备方法,其特征在于:先采用氩气雾化法获得LiZn4、LiZn2或Li2Zn3和AgZn3金属间化合物粉末;然后通过三维建模重建出待植骨区域骨缺损的形态;再用增材制造工艺制备得到梯度三维多孔结构植入物或均质实心结构的个性化植入物。
4.根据权利要求3所述的个性化锌合金骨植入物的制备方法,其特征在于:制备过程中的保护气流为氩气,其中氧含量<50ppm。
5.根据权利要求3所述的个性化锌合金骨植入物的制备方法,其特征在于:所述LiZn4、LiZn2或Li2Zn3和AgZn3金属间化合物粉末的平均直径为>0且≤50微米。
6.根据权利要求3所述的个性化锌合金骨植入物的制备方法,其特征在于:所述梯度三维多孔结构植入物为外部小孔径、内部大孔径结构;其外层孔径为0~300微米,杆宽为400微米,内部的孔径逐级增加,骨支架的中心处孔径为300~600微米,中心处孔径最大。
7.根据权利要求3所述的个性化锌合金骨植入物的制备方法,其特征在于:所述增材制造工艺为激光粉末床熔融技术,采用的工艺参数为:激光功率50~400W,光斑直径50~100μm,层厚10~40μm,开口间距50~100μm,扫描速率200~1000mm/s。
8.根据权利要求3所述的个性化锌合金骨植入物的制备方法,其特征在于:增材制造成型后的个性化锌合金骨植入物,进行后处理;所述后处理工艺为:先采用酸清洗其内部,然后通过喷砂来处理植入物的外表面,再分别在无水乙醇、去离子水中进行超声清洗10~20min,采用Co60γ射线辐照灭菌。
9.一种权利要求1或2所述的所述个性化锌合金骨植入物的应用,其特征在于:作为大面积骨缺损的骨植入物。
10.根据权利要求9所述的所述个性化锌合金骨植入物的应用,其特征在于:是根据不同患者的骨缺损的个性化修复需求,制作出与患者骨缺损部位精准吻合的个性化锌合金骨植入物,所述植入物为外表面小孔径、内部大孔径的梯度三维多孔结构或均质实心结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210406924.6A CN114748686B (zh) | 2022-04-18 | 2022-04-18 | 一种个性化锌合金骨植入物及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210406924.6A CN114748686B (zh) | 2022-04-18 | 2022-04-18 | 一种个性化锌合金骨植入物及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114748686A true CN114748686A (zh) | 2022-07-15 |
CN114748686B CN114748686B (zh) | 2023-02-03 |
Family
ID=82331407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210406924.6A Active CN114748686B (zh) | 2022-04-18 | 2022-04-18 | 一种个性化锌合金骨植入物及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114748686B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116212104A (zh) * | 2023-03-28 | 2023-06-06 | 北京航空航天大学 | 一种多孔锌合金支架、制备方法及其应用 |
CN117206544A (zh) * | 2023-11-09 | 2023-12-12 | 四川工程职业技术学院 | 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法 |
WO2024134604A1 (en) * | 2022-12-22 | 2024-06-27 | Centre For Dairy Intelligence Limited | Apparatus and methods for treating and preventing disease in livestock animals |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107460371A (zh) * | 2016-06-02 | 2017-12-12 | 北京大学 | 一种Zn-Li系锌合金及其制备方法与应用 |
CN108570578A (zh) * | 2018-06-06 | 2018-09-25 | 东北大学 | 孔径梯度分布的开孔结构生物医用锌材料及其制备方法 |
CN109872769A (zh) * | 2018-12-20 | 2019-06-11 | 华中科技大学 | 一种孔隙率梯度变化的植入体的制备方法 |
CN109966026A (zh) * | 2019-04-10 | 2019-07-05 | 重庆大学 | 一种基于曲线干扰的功能梯度人工骨支架的制备方法 |
CN110541089A (zh) * | 2019-09-20 | 2019-12-06 | 江西理工大学 | 一种生物Nd-Zn合金及其制备方法 |
US20210282930A1 (en) * | 2018-12-04 | 2021-09-16 | Beijing Chunlizhengda Medical Instruments Co., Ltd | Bone trabecula structure and prosthesis using same and manufacturing method therefor |
-
2022
- 2022-04-18 CN CN202210406924.6A patent/CN114748686B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107460371A (zh) * | 2016-06-02 | 2017-12-12 | 北京大学 | 一种Zn-Li系锌合金及其制备方法与应用 |
CN108570578A (zh) * | 2018-06-06 | 2018-09-25 | 东北大学 | 孔径梯度分布的开孔结构生物医用锌材料及其制备方法 |
US20210282930A1 (en) * | 2018-12-04 | 2021-09-16 | Beijing Chunlizhengda Medical Instruments Co., Ltd | Bone trabecula structure and prosthesis using same and manufacturing method therefor |
CN109872769A (zh) * | 2018-12-20 | 2019-06-11 | 华中科技大学 | 一种孔隙率梯度变化的植入体的制备方法 |
CN109966026A (zh) * | 2019-04-10 | 2019-07-05 | 重庆大学 | 一种基于曲线干扰的功能梯度人工骨支架的制备方法 |
CN110541089A (zh) * | 2019-09-20 | 2019-12-06 | 江西理工大学 | 一种生物Nd-Zn合金及其制备方法 |
Non-Patent Citations (2)
Title |
---|
YANHONG LI,ET AL.: "Additively manufactured functionally graded biodegradable porous zinc", 《BIOMATERIALS SCIENCE》 * |
YU ZHANG,ET AL.: "Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration", 《MATERIALS SCIENCE AND ENGINEERING: C》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024134604A1 (en) * | 2022-12-22 | 2024-06-27 | Centre For Dairy Intelligence Limited | Apparatus and methods for treating and preventing disease in livestock animals |
CN116212104A (zh) * | 2023-03-28 | 2023-06-06 | 北京航空航天大学 | 一种多孔锌合金支架、制备方法及其应用 |
CN117206544A (zh) * | 2023-11-09 | 2023-12-12 | 四川工程职业技术学院 | 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法 |
CN117206544B (zh) * | 2023-11-09 | 2024-02-20 | 四川工程职业技术学院 | 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114748686B (zh) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114748686B (zh) | 一种个性化锌合金骨植入物及其制备方法与应用 | |
Sarraf et al. | A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications | |
CN104212998B (zh) | 一种Zn‑Mg系锌合金及其制备方法与应用 | |
Balamurugan et al. | Corrosion aspects of metallic implants—An overview | |
Baino et al. | Bioactive glasses: Special applications outside the skeletal system | |
Rogowska-Tylman et al. | In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration | |
CN104195368B (zh) | 一种Zn-Sr系锌合金及其制备方法与应用 | |
Fan et al. | Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo | |
CN104195369B (zh) | 一种Zn-Ca系锌合金及其制备方法与应用 | |
EP1385449A2 (de) | Biologisch funktionalisierte, metabolisch induktive implantatoberflächen | |
Zhang et al. | Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies | |
CN104911427A (zh) | 一种Mg-Ca-Sr-Zn系镁合金及其制备方法与应用 | |
Abaszadeh et al. | Nanotechnology development in surgical applications: recent trends and developments | |
Du et al. | Enhanced mechanical and antibacterial properties of Cu-bearing Ti-based bulk metallic glass by controlling porous structure | |
Westhauser et al. | Gelatin coating increases in vivo bone formation capacity of three‐dimensional 45S5 bioactive glass‐based crystalline scaffolds | |
CN105797208A (zh) | 一种颅骨修复用可降解金属植入体及其制备方法 | |
CN116815107B (zh) | 一种复合合金材料及其制备方法与应用 | |
CN113174592A (zh) | 一种改善医用锌/锌合金表面生物相容性涂层的制备与应用 | |
CN115414526B (zh) | 一种仿生学结构的生物降解锌合金承重骨支架及加工方法 | |
KR101611583B1 (ko) | 골드 입자로 표면 처리된 임플란트 및 그 제작방법 | |
Wang et al. | Comparison of the effects of 3D printing bioactive porous titanium alloy scaffolds and nano-biology for direct treatment of bone defects | |
KR100441765B1 (ko) | 초미세 생체활성 다공성 표면을 갖는 생체 재료용티타늄계 합금 및 그 제조방법 | |
KR102254182B1 (ko) | 구강악안면 재건수술을 위한 악안면 플레이트와 이의 제조방법 | |
Sun et al. | The In Vivo Evaluation of the Biocompatibility and Bone Bonding Efficiency of Zr-Based Bulk Metallic Glass Implant Material | |
Korenkov et al. | In Vivo Feature of the Regenerative Potential of Chitosan and Alginate Based Osteoplastic Composites Doped with Calcium Phosphates, Zinc Ions, and Vitamin D2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |