CN114748449A - 一种喜树碱衍生物的纳米粒制剂及其制备方法 - Google Patents

一种喜树碱衍生物的纳米粒制剂及其制备方法 Download PDF

Info

Publication number
CN114748449A
CN114748449A CN202210466853.9A CN202210466853A CN114748449A CN 114748449 A CN114748449 A CN 114748449A CN 202210466853 A CN202210466853 A CN 202210466853A CN 114748449 A CN114748449 A CN 114748449A
Authority
CN
China
Prior art keywords
aromatic ring
preparation
organic solvent
copolymer
camptothecin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210466853.9A
Other languages
English (en)
Inventor
帅棋
葛童童
李和霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202210466853.9A priority Critical patent/CN114748449A/zh
Publication of CN114748449A publication Critical patent/CN114748449A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种喜树碱衍生物的纳米粒制剂及其制备方法,将具有萘环芳香环结构的喜树碱类药物和共聚物溶于含有机溶剂的油相;低速搅拌下将油相缓慢滴入含助溶剂的注射用水的水相中,形成淡蓝色乳光的乳液,去除有机溶剂,得到纳米粒,共聚物为芳香环侧链修饰的两亲性嵌段共聚物,共聚物由以聚乙二醇单甲醚为引发剂,与带芳香环的脂肪族环状酯类单体以及疏水性嵌段单体混合制备得到,带芳香环的脂肪族环状酯类单体为4‑萘基戊内酯,所述疏水性嵌段单体为己内酯。本发明制得的喜树碱衍生物纳米粒的平均粒径小于100nm,粒径均匀、分布良好、包封率较高、稳定性好,且制备过程简单可控、易于放大生产。

Description

一种喜树碱衍生物的纳米粒制剂及其制备方法
技术领域
本发明属于高分子材料制备技术领域,涉及利用萘基芳香环修饰侧链的一种双亲性嵌段共聚物包载喜树碱类抗肿瘤药物,具体涉及一种喜树碱衍生物的纳米粒制剂及其制备方法。
背景技术
喜树碱(Camptothecin,CPT),是一种细胞毒性喹啉类生物碱,是由产于中国的喜树的树皮和枝干分离出来,早期为传统中医疗法用于治疗癌症。其抗癌机理是选择性抑制拓扑异构酶Ⅰ(TopoⅠ)与TopoⅠ-DNA形成的复合物结合,稳定此复合物,从而使断裂的DNA链不能重新接合,阻止DNA复制及RNA合成,为细胞周期S期特异性药物,对G0期细胞无作用,对G1、G2与M期细胞有轻微杀伤力。另外,它还能直接破坏DNA结构。实验证明,喜树碱对多种动物肿瘤有抑制作用,与常用抗肿瘤药物无交叉耐药。然而,喜树碱水溶性很差且毒性强,限制了其临床应用。经过不断地研究探索,研究者发现经哌啶基哌啶环修饰的喜树碱具有良好的溶解性、毒性小且抗肿瘤活性强,即上市的伊立替康,目前仍是良好的治疗晚期或转移性大肠癌、肺癌、胃癌的一线药物,以伊立替康为基础的联合化疗方案显示出较传统方案更好的临床效益,与此同时不良反应可预见,易于处理并可控制。然而其转化为活性代谢物的效率仍然较低,因此高效递送到病灶部位依旧是一大问题。
纳米粒给药系统(Nanoparticles-based drug delivery systems)是将纳米技术和纳米材料应用于药学领域,是以纳米粒(Nanoparticle,NP)作为药物载体的一种药物输送体系。纳米粒是一类由高分子物质组成的固态胶体粒子,粒径大小介于10~1000nm,可分散在水中形成近似胶体溶液。由于纳米粒的独特性和优越性,已作为药物载体,成为国内外医药学的重要研究方向。用于制备纳米粒制剂的辅料多为高分子可降解聚合物。纳米载体拥有独特的性质,例如纳米级的优良尺寸,比表面积较高,物化性质良好。因此,研究人员可以借助聚合物材料本身性能或通过化学方法引入可修饰位点,来设计得到具有广泛适用性的材料,进一步提高药物的生物利用度,从而提高药物的治疗指数(TI)。
喜树碱类纳米粒制剂也存在一些问题,特别是较低的药物包封率和不够理想的药物释放。为此,各种物理作用和化学键合被用来提高纳米药物的包载能力,其中物理作用分为疏水作用、离子键作用、氢键作用以及π-π堆积作用。芳香环之间的π-π堆积作用是一种与氢键作用相似的非共价键相互作用,强度范围通常在1-50kj/mol之间。根据几何构型的不同,可以将其分为以下三类:(1)边对面堆积,(2)面对面堆积,(3)错位堆积。随着药物递送新材料的快速发展,纳米药物自组装设计及作为药物递送驱动力方面得到了广泛的研究。众所周知,大多数抗癌药物如小分子疏水药物(DOX,DTX,PTX)等都具有复杂的芳香结构。因此,利用纳米载体和抗肿瘤药物之间的π-π堆积作用进行包载已成为抗肿瘤药物传递的新方法,在临床转化上具有潜在的应用价值。由于喜树碱类药物都含有多苯环结构,π-π堆积作用成为了研究者最感兴趣的选择之一。
总的来说,目前就π-π堆积作用应用于纳米药物这方面还停留在实验室研究阶段上,还难以实现规模化扩大生产。
发明内容
针对现有技术存在的上述问题,本发明的目的在于提供一种简单高效的基于π-π堆积作用的喜树碱衍生物纳米粒的制备方法及通过该方法制备得到的喜树碱衍生物的纳米粒制剂,该载药纳米粒具有靶向性、可生物降解性、高包封率和良好稳定性。
为达到上述目的,提出以下技术方案:
一种喜树碱衍生物的纳米粒制剂的制备方法,包括如下步骤:
1)将喜树碱衍生物药物和共聚物溶于有机溶剂中作为油相,助溶剂吐温80溶于注射用水作为水相;
2)在低速搅拌剪切力作用下将油相缓慢逐滴滴入水相中,得到淡蓝色乳光的乳液;
3)使用旋转蒸发仪去除有机溶剂,得到喜树碱衍生物纳米粒;
步骤1)中所述的共聚物为芳香环侧链修饰的两亲性嵌段共聚物,喜树碱衍生物药物为苯环-SN38、亚麻酸-SN38或伊立替康。
进一步地,所述的有机溶剂为四氢呋喃、丙酮、N,N-二甲基甲酰胺中的一种,优选为四氢呋喃;油相和水相的体积比为1:5~1:15,所述的共聚物与喜树碱类药物的质量比例为10:1~20:1,优选为15:1。
进一步地,所述步骤(1)中芳香环侧链修饰的两亲性嵌段共聚物的制备方法为:以聚乙二醇单甲醚为引发剂,与带芳香环的脂肪族环状酯类单体以及疏水性嵌段单体混合,通过高温开环聚合制得所述的芳香环侧链修饰的两亲性嵌段共聚物。
进一步地,所述步骤(1)中芳香环侧链修饰的两亲性嵌段共聚物的具体制备方法包括以下步骤:
1)在氮气保护下,以聚乙二醇单甲醚为引发剂,与带芳香环的脂肪族环状酯类单体以及疏水性嵌段单体混合,溶于有机溶剂;在150-160℃下,通过分水器分离有机溶剂至大部分蒸发,得到半熔融态原料;
2)在氮气保护下,加入异辛酸亚锡催化剂,在150-160℃下开环聚合反应1-3天;反应结束后冷却至室温,经二氯甲烷-水混合液酸洗、萃取,干燥有机相,浓缩,浓缩物用少量二氯甲烷溶解,再用沉淀法滴入石油醚形成固体沉淀,静置分层,舍去上层清液,下层固体沉淀经真空干燥,得到芳香环侧链修饰的两亲性嵌段共聚物。
进一步地,芳香环侧链修饰的两亲性嵌段共聚物制备过程中所述的有机溶剂为甲苯。
进一步地,所述带芳香环的脂肪族环状酯类单体为4-萘基戊内酯,所述疏水性嵌段单体为己内酯。
一种采用上述的制备方法制备得到的喜树碱衍生物的纳米粒制剂,喜树碱衍生物的纳米粒制剂的粒径小于100nm,纳米粒制剂的平均包封率为76%~92%。
进一步地,所述共聚物为聚乙二醇单甲醚-聚(4-萘基戊内酯-己内酯)共聚物(mPEG-b-P(BBVL-co-CL)),共聚物采用自由基聚合,示例性制备路线如下:
Figure BDA0003624670080000041
本发明的有益效果在于:合成了一种新型共聚物,通过π-π堆积作用将喜树碱衍生物包裹于共聚物中,包封率高,纳米粒稳定性好;此外,本共聚物不仅适用喜树碱衍生物药物,而且为其他具有多苯环结构的抗癌药物的开发提供巨大的潜力;本发明的制备纳米粒工艺简单、成本低、稳定性和生物相容性好,有益于后续拓展研究。
附图说明
图1是实施例1中步骤(1)制得的a:mPEG2K-P(BBVLx-CLy)2K(x:y=1:3)的1H-NMR图谱。
图2是实施例2中步骤(1)制得的b:mPEG2K-P(BBVLx-CLy)2K(x:y=1:1)的1H-NMR图谱。
图3是实施例3中步骤(1)制得的c:mPEG4K-P(BBVLx-CLy)4K(x:y=1:3)的1H-NMR图谱。
图4是实施例4中步骤(1)制得的d:mPEG4K-P(BBVLx-CLy)4K(x:y=1:1)的1H-NMR图谱。
图5是凝胶色谱仪(GCP)测定通过实施例1-4制备得到的纳米粒材料的分子量分布情况。
图6是实施例1-4通过激光粒度仪Zetasizer(动态光散射技术DLS)观测粒径变化和粒径分布系数PDI的变化。
图7是实施例7进行纳米粒药物释放实验的结果图谱。
具体实施方式
下面结合具体实施例来进一步说明本发明,但本发明的保护范围并不限于此。
实施例1:喜树碱衍生物纳米粒的制备
(1)聚乙二醇单甲醚-聚4-萘基戊内酯-聚乳酸嵌段共聚物(a)的制备:
氮气保护下,取0.50g聚乙二醇单甲醚(平均分子量2000)、0.309g 4-萘基戊内酯、0.293g己内酯和25mL甲苯加入50mL两口圆底烧瓶,150℃下搅拌溶解,用分水器收集加热回流的带水甲苯,持续加热至溶剂刚好够溶解反应物,得到半熔融态原料。在氮气保护下,加入0.130g异辛酸亚锡催化剂,继续以150℃高温条件下开环聚合反应约48小时;反应结束后冷却至室温,加入1M盐酸洗涤,再经体积比为3:1的二氯甲烷-水混合液萃取、分液,收集有机相浓缩,浓缩物用二氯甲烷复溶,滴加石油醚搅拌形成浑浊沉淀后,静置分层为上层清液和下层固状物,舍弃上层清液,反复三次后将固状物真空干燥,得到萘基芳香环侧链修饰的两亲性嵌段共聚物,将其标记为mPEG2K-P(BBVLx-CLy)2K(x:y=1:3),其1H-NMR谱图如图1所示。
(2)纳米粒的制备:
15mg通过步骤(1)制备得到的mPEG2K-P(BBVLx-CLy)2K(x:y=1:3)和1mg伊立替康溶于1mL四氢呋喃溶液作为油相,以2秒/滴的速度滴入低速搅拌的10mL注射用水(0.1%吐温80)中形成淡蓝色纳米乳,滴加完成后,将纳米乳剂转移到旋转蒸发仪真空旋转除去有机溶剂,得到纳米粒,激光粒度仪Zetasizer测试的平均粒径39.5±2.1nm,粒径分布系数PDI为0.154,纳米粒包封率为76.3%。
实施例2:喜树碱衍生物纳米粒的制备
(1)聚乙二醇单甲醚-聚4-萘基戊内酯-聚乳酸嵌段共聚物(b)的制备:
氮气保护下,取0.50g聚乙二醇单甲醚(平均分子量2000)、0.508g 4-萘基戊内酯、0.161g己内酯和25mL甲苯加入50mL两口圆底烧瓶中,在150℃下搅拌溶解,利用分水器收集加热回流的带水甲苯,并持续加热直至溶剂刚好够溶解反应物,得到半熔融态原料。在氮气保护下,加入0.130g异辛酸亚锡催化剂,继续以150℃高温条件下开环聚合反应约48小时;反应结束后冷却至室温,加入1M盐酸洗涤,再经体积比为3:1的二氯甲烷-水混合液萃取、分液,收集有机相浓缩,浓缩物用二氯甲烷复溶,滴加石油醚搅拌形成浑浊沉淀后,静置分层为上层清液和下层固状物,舍弃上层清液,反复三次后将固状物真空干燥,得到萘基芳香环侧链修饰的两亲性嵌段共聚物,将其标记为mPEG2K-P(BBVLx-CLy)2K(x:y=1:1),其1H-NMR谱图如图2所示。
(2)纳米粒的制备
15mg通过步骤(1)制备得到的mPEG2K-P(BBVLx-CLy)2K(x:y=1:1)和1mg伊立替康溶于1mL四氢呋喃溶液作为油相,以2秒/滴的速度滴入低速搅拌的10mL注射用水(0.1%吐温80)中形成淡蓝色纳米乳,滴加完成后,将纳米乳剂转移到旋转蒸发仪真空旋转除去有机溶剂,得到纳米粒,激光粒度仪Zetasizer测试的平均粒径86±4.3nm,粒径分布系数PDI为0.163,纳米粒包封率为82.7%。
实施例3:喜树碱衍生物纳米粒的制备
(1)聚乙二醇单甲醚-聚4-萘基戊内酯-聚乳酸嵌段共聚物(c)的制备:
氮气保护下,取0.75g聚乙二醇单甲醚(平均分子量4000)、0.464g 4-萘基戊内酯、0.440g己内酯和25mL甲苯加入50mL两口圆底烧瓶,在150℃下搅拌溶解,利用分水器收集加热回流的带水甲苯,并持续加热直至溶剂刚好够溶解反应物,得到半熔融态原料。在氮气保护下,加入0.20g异辛酸亚锡催化剂,在150℃高温条件下开环聚合约48小时;反应结束后冷却至室温,加入1M的盐酸洗涤,再经体积比为3:1的二氯甲烷-水混合液萃取、分液,收集有机相浓缩。浓缩物用二氯甲烷复溶,滴加石油醚搅拌形成浑浊沉淀后,静置分层为上层清液和下层固状物。舍弃上层清液,反复三次后将固状物真空干燥,得到萘基芳香环侧链修饰的两亲性嵌段共聚物,将其标记为mPEG4K-P(BBVLx-CLy)4K(x:y=1:3),其1H-NMR谱图如图3所示。
(2)纳米粒的制备
15mg步骤(1)制备的mPEG4K-P(BBVLx-CLy)4K(x:y=1:3)和1mg伊立替康溶于1mL四氢呋喃溶液作为油相,以2秒/滴的速度滴入低速搅拌的10mL注射用水(0.1%吐温80)中形成淡蓝色纳米乳,滴加完成后,将纳米乳剂转移到旋转蒸发仪真空旋转除去有机溶剂,得到纳米粒。激光粒度仪Zetasizer测试的平均粒径61.3±3.3nm,粒径分布系数PDI为0.169,纳米粒包封率为89.6%。
实施例4:喜树碱衍生物纳米粒的制备
(1)聚乙二醇单甲醚-聚4-萘基戊内酯-聚乳酸嵌段共聚物(d)的制备:
氮气保护下,取0.75g聚乙二醇单甲醚(平均分子量4000),0.763g 4-萘基戊内酯、0.241g己内酯和25mL甲苯加入50mL两口圆底烧瓶,在150℃下搅拌溶解,利用分水器收集加热回流的带水甲苯,并持续加热直至溶剂刚好够溶解反应物,得到半熔融态原料。在氮气保护下,加入0.20g异辛酸亚锡催化剂,继续以150℃高温条件下开环聚合反应约48小时;反应结束后冷却至室温,加入1M的盐酸洗涤,再经体积比为3:1的二氯甲烷-水混合液萃取、分液,收集有机相浓缩,浓缩物用二氯甲烷复溶,滴加石油醚搅拌形成浑浊沉淀后,静置分层为上层清液和下层固状物,舍弃上层清液,反复三次后将固状物真空干燥,得到萘基芳香环侧链修饰的两亲性嵌段共聚物,将其标记为mPEG4K-P(BBVLx-CLy)4K(x:y=1:1),其1H-NMR谱图如图4所示。
(2)纳米粒的制备:
15mg步骤(1)制备的mPEG4K-P(BBVLx-CLy)4K(x:y=1:1)和1mg伊立替康溶于1mL四氢呋喃溶液作为油相,以2秒/滴的速度滴入低速搅拌的10mL注射用水(0.1%吐温80)中形成淡蓝色纳米乳,滴加完成后,将纳米乳剂转移到旋转蒸发仪真空旋转除去有机溶剂,得到纳米粒。激光粒度仪Zetasizer测试的平均粒径97.4±4.6nm,粒径分布系数PDI为0.172,纳米粒包封率为90.1%。
实施例5:纳米粒包封率的测定
采用液相高效色谱检测伊立替康纳米粒的包封率:色谱柱:Welch XB-C18;流动相:甲醇/磷酸盐缓冲液(50:50V:V);检测波长255nm;流速1.0mL/min:进样量10μL。分别取浓度为0.01-1mg/mL的伊立替康标准品甲醇溶液,按照色谱条件进行测试,以峰面积对伊立替康浓度进行曲线拟合,建立回归方程。
制备得到的纳米粒水溶液先以1000rmp低速离心10min,去掉未包封的药物结晶,以10000rmp高速离心30min,将上清液洗掉,用高纯水复溶,再加入同等体积的甲醇溶解,将溶解得到的溶液按照上述色谱条件含量。同时取未经任何处理的纳米粒溶液加同样体积的甲醇溶解,按照同样的HPLC条件测定含量。
包封率(%)=纳米粒包封的药物的量/投入药物总的量×100%;
实施例1-4所得载药纳米粒的平均包封率为76%-92%。
实施例6:高分子共聚物材料分子量分布
采用凝胶色谱仪测定其分子量及分布情况:流动相:四氢呋喃:三乙胺(100:5V:V);流速:1.0mL/min;进样量:25μL。分别将实施例1-4制备的共聚物材料用流动相溶解(浓度:10mg/mL),按上述条件测定分子量分布,其分布曲线如图5所示。
实施例7:喜树碱衍生物纳米粒的体外稳定性
将实施例1-4制备好的载药纳米粒室温恒温放置,在第0天,第1天,第3天,第7天取样通过激光粒度仪Zetasizer观测粒径变化和粒径分布系数PDI的变化,粒径变化如图6所示。
实施例8:喜树碱衍生物纳米粒的体外药物释放实验
用纳米材料mPEG4K-PCL4K仿照实施例1制备纳米粒,其制备步骤重复实施例1,制得用材料mPEG4K-PCL4K包载伊立替康的载药纳米粒。
实验过程如下:
将实施例1制备的载药纳米粒溶液取3mL置于透析袋中,离心管中加入20ml释放介质(含0.1%吐温80的PBS缓冲液(pH=6.5)),恒温37℃,摇床震荡。在96小时内,每隔一定时间从离心管内取出1ml释放介质并加入等量的缓冲液补充,取出样品经实施例5的条件,高效液相检测浓度,换算出累积释放率。纳米粒药物体外释放实验释放结果如图7所示。

Claims (7)

1.一种喜树碱衍生物的纳米粒制剂的制备方法,其特征在于包括如下步骤:
1)将喜树碱衍生物药物和共聚物溶于有机溶剂中作为油相,助溶剂吐温80溶于注射用水作为水相;
2)在低速搅拌剪切力作用下将油相缓慢逐滴滴入水相中,得到淡蓝色乳光的乳液;
3)使用旋转蒸发仪去除有机溶剂,得到喜树碱衍生物纳米粒;
步骤1)中所述的共聚物为芳香环侧链修饰的两亲性嵌段共聚物,喜树碱衍生物药物为苯环-SN38、亚麻酸-SN38或伊立替康。
2.如权利要求1所述的制备方法,其特征在于所述的有机溶剂为四氢呋喃、丙酮、N,N-二甲基甲酰胺中的一种,优选为四氢呋喃;油相和水相的体积比为1:5~1:15,所述的共聚物与喜树碱类药物的质量比例为10:1~20:1,优选为15:1。
3.如权利要求1所述的制备方法,其特征在于所述步骤(1)中芳香环侧链修饰的两亲性嵌段共聚物的制备方法为:以聚乙二醇单甲醚为引发剂,与带芳香环的脂肪族环状酯类单体以及疏水性嵌段单体混合,通过高温开环聚合制得所述的芳香环侧链修饰的两亲性嵌段共聚物。
4.如权利要求3所述的制备方法,其特征在于所述步骤(1)中芳香环侧链修饰的两亲性嵌段共聚物的具体制备方法包括以下步骤:
1)在氮气保护下,以聚乙二醇单甲醚为引发剂,与带芳香环的脂肪族环状酯类单体以及疏水性嵌段单体混合,溶于有机溶剂;在150-160℃下,通过分水器分离有机溶剂至大部分蒸发,得到半熔融态原料;
2)在氮气保护下,加入异辛酸亚锡催化剂,在150-160℃下开环聚合反应1-3天;反应结束后冷却至室温,经二氯甲烷-水混合液酸洗、萃取,干燥有机相,浓缩,浓缩物用少量二氯甲烷溶解,再用沉淀法滴入石油醚形成固体沉淀,静置分层,舍去上层清液,下层固体沉淀经真空干燥,得到芳香环侧链修饰的两亲性嵌段共聚物。
5.如权利要求4所述的制备方法,其特征在于芳香环侧链修饰的两亲性嵌段共聚物制备过程中所述的有机溶剂为甲苯。
6.如权利要求4所述的制备方法,其特征在于所述带芳香环的脂肪族环状酯类单体为4-萘基戊内酯,所述疏水性嵌段单体为己内酯。
7.一种采用如权利要求1或2所述的制备方法制备得到的喜树碱衍生物的纳米粒制剂,其特征在于喜树碱衍生物的纳米粒制剂的粒径小于100nm,纳米粒制剂的平均包封率为76%~92%。
CN202210466853.9A 2022-04-29 2022-04-29 一种喜树碱衍生物的纳米粒制剂及其制备方法 Pending CN114748449A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210466853.9A CN114748449A (zh) 2022-04-29 2022-04-29 一种喜树碱衍生物的纳米粒制剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210466853.9A CN114748449A (zh) 2022-04-29 2022-04-29 一种喜树碱衍生物的纳米粒制剂及其制备方法

Publications (1)

Publication Number Publication Date
CN114748449A true CN114748449A (zh) 2022-07-15

Family

ID=82332867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210466853.9A Pending CN114748449A (zh) 2022-04-29 2022-04-29 一种喜树碱衍生物的纳米粒制剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114748449A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029718A (en) * 1972-06-30 1977-06-14 E. I. Du Pont De Nemours And Company Pivalolactone random graft copolymers
KR20140080203A (ko) * 2012-12-20 2014-06-30 한남대학교 산학협력단 관절염 치료 제제 및 이의 제조방법
CN104857525A (zh) * 2015-05-27 2015-08-26 湘潭大学 一种以聚乙二醇-b-聚ε-己内酯为载体的pH响应型抗肿瘤前药及其制备方法
CN112107690A (zh) * 2020-10-16 2020-12-22 浙江工业大学 一种喜树碱类药物纳米粒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029718A (en) * 1972-06-30 1977-06-14 E. I. Du Pont De Nemours And Company Pivalolactone random graft copolymers
KR20140080203A (ko) * 2012-12-20 2014-06-30 한남대학교 산학협력단 관절염 치료 제제 및 이의 제조방법
CN104857525A (zh) * 2015-05-27 2015-08-26 湘潭大学 一种以聚乙二醇-b-聚ε-己内酯为载体的pH响应型抗肿瘤前药及其制备方法
CN112107690A (zh) * 2020-10-16 2020-12-22 浙江工业大学 一种喜树碱类药物纳米粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO ET AL.: "Highly Efficient Modular Construction of Functional Drug Delivery Platform Based on Amphiphilic Biodegradable Polymers via Click Chemistry", 《INT. J. MOL. SCI.》 *

Similar Documents

Publication Publication Date Title
Ma et al. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery
Kim et al. Hydrogen bonding-enhanced micelle assemblies for drug delivery
CN109350748B (zh) 氧化还原双敏感键桥连小分子前药及其自组装纳米粒
CN111621024B (zh) 快速氧化/还原双重响应性含双硒键的嵌段共聚物的制备方法
Jiang et al. A tumor-targeting nano doxorubicin delivery system built from amphiphilic polyrotaxane-based block copolymers
Tao et al. Cross-linked micelles of graftlike block copolymer bearing biodegradable ε-caprolactone branches: a novel delivery carrier for paclitaxel
CN103006539A (zh) 一种聚合物胶束药物组合物及其制备方法
CN116888178A (zh) 新型共聚物
Guo et al. Well-defined podophyllotoxin polyprodrug brushes: preparation via RAFT polymerization and evaluation as drug carriers
CN110917361A (zh) 一种pH响应型的姜黄素丁二酸酐前药纳米胶束及其制备方法和应用
CN107823184B (zh) 氧化还原敏感诱导pH响应纳米药物载体的制备方法与应用
CN112107690B (zh) 一种喜树碱类药物纳米粒的制备方法
CN105254836B (zh) 主链含光敏前药两亲性高分子、制备方法及其纳米胶束
Cheng et al. Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate
CN112156071A (zh) 一种响应性两亲性聚合物自组装胶束的制备方法
CN109400830B (zh) 一种pH可解离轻度交联聚合物纳米材料及其制备方法和应用
CN109821025B (zh) 一种光和氧化还原双重刺激响应型两亲性聚合物药物载体及其制备方法和应用
CN114748449A (zh) 一种喜树碱衍生物的纳米粒制剂及其制备方法
Gao et al. Hydrotropic polymer-based paclitaxel-loaded self-assembled nanoparticles: preparation and biological evaluation
Jeon et al. A versatile gold cross-linked nanoparticle based on triblock copolymer as the carrier of doxorubicin
CN111671917B (zh) 一种石蒜碱纳米粒、其制备方法及应用
CN110563863B (zh) 两亲性pH/还原双响应四臂星型纳米聚合物及其可逆交联胶束及制备与应用
CN110368500B (zh) 一种两亲性共聚物药物前体、制备方法以及包载钙泊三醇的纳米颗粒
CN114605600A (zh) 一种酯酶响应的两亲性线性聚合物及其制备方法与应用
CN110721319B (zh) 同时键合喜树碱和阿霉素的聚磷酸酯前药及前药纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220715