CN114746040A - 不可逆电穿孔和射频消融(ire/rfa)波形的生成及交织 - Google Patents
不可逆电穿孔和射频消融(ire/rfa)波形的生成及交织 Download PDFInfo
- Publication number
- CN114746040A CN114746040A CN202080083756.0A CN202080083756A CN114746040A CN 114746040 A CN114746040 A CN 114746040A CN 202080083756 A CN202080083756 A CN 202080083756A CN 114746040 A CN114746040 A CN 114746040A
- Authority
- CN
- China
- Prior art keywords
- ire
- rfa
- pulses
- signal
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B18/1233—Generators therefor with circuits for assuring patient safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/327—Applying electric currents by contact electrodes alternating or intermittent currents for enhancing the absorption properties of tissue, e.g. by electroporation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00613—Irreversible electroporation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1266—Generators therefor with DC current output
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/128—Generators therefor generating two or more frequencies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1286—Generators therefor having a specific transformer
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Surgical Instruments (AREA)
- Cardiology (AREA)
- Gynecology & Obstetrics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
Abstract
本发明提供了不可逆电穿孔和射频消融(IRE/RFA)发生器,所述IRE/RFA发生器包括IRE脉冲发生器、谐波滤波电路和波形交织器。所述IRE脉冲发生器被配置为生成双相IRE脉冲。所述谐波滤波电路被配置为将所述IRE脉冲转换为RF信号。所述波形交织器被配置为接收所述IRE脉冲和所述RF信号,并且通过交替地交织所述IRE脉冲中的一个或多个IRE脉冲与所述RF信号的一个或多个周期来生成IRE/RFA输出信号。
Description
技术领域
本发明整体涉及用于组合的不可逆电穿孔和射频消融处理的方法和系统,并且具体地讲,涉及组合的不可逆电穿孔和射频消融波形生成。
背景技术
先前在专利文献中提出了向组织递送射频(RF)脉冲。例如,美国专利No.10,258,406描述了用于将能量递送至具有坏死阈值的组织的计算机实现的系统。该系统通常可以包括电极阵列,该电极阵列包括多个电极、定位在多个电极中间的中心电极、以及控制器,该控制器被配置为(i)将第一电脉冲序列施加于电极阵列以在组织中诱导热加热并降低组织的坏死阈值,并且(ii)将第二电脉冲序列施加于中心电极,以通过不可逆电穿孔在组织中诱导细胞坏死。在示例性实施方案中,能量源可被配置为生成电脉冲,该电脉冲的频率在约1Hz至约10,000Hz的范围内,振幅在约+/-100VDC至约+/-6,000VDC的范围内,以及脉冲宽度在约1μ秒至约100毫秒的范围内。该能量源可被配置为生成适于诱导热加热的电脉冲和适于组织中不可逆电穿孔的脉冲。该能量源可以在双相模式和单相模式下操作。
又如,美国专利No.10,188,449描述了一种电外科发生器,该电外科发生器包括:被配置为输出DC电力的功率源;耦接到该功率源的反相器,该反相器包括多个开关元件;以及控制器,该控制器耦接到反相器并且被配置为发信号通知该反相器,以基于DC电力同时生成射频加热波形和电穿孔波形。在示例性实施方案中,耦接到反相器电路的控制器被配置为发信号通知反相器电路以基于DC电力同时生成射频加热波形和电穿孔波形,该射频加热波形和电穿孔波形为脉动DC波形,被配置为生成电场并且包括具有比任何后续脉冲更高的峰值电压和更高的电压增加速率的初始脉冲的多个脉冲。
美国专利No.9,289,606描述了导管系统,该导管系统包括用于电穿孔介导的治疗、电穿孔诱导的原发性坏死治疗和电场诱导的细胞凋亡治疗的方向敏感的多极尖端电极组件,包括用于产生窄的线性损伤以及分布的广区损伤的配置。对于电穿孔诱导的原发性坏死治疗,发生器可被配置为产生电流,该电流经由电极组件作为脉冲电场以紧密间隔的电极之间的短时脉冲(例如,持续时间为0.1毫秒至20毫秒)形式递送,这些紧密间隔的电极能够(即,在组织位点处)递送约0.1kV/cm至1.0kV/cm的相对较低的电场强度。对于电场诱导的细胞凋亡治疗,发生器可被配置为产生电流,该电流作为脉冲电场以极短时直流脉冲(例如,持续时间为1纳秒至300纳秒)的形式以约2kV/cm至300kV/cm的相对较高的电场强度(即,在组织位点处)递送。在某些其他示例性实施方案中,诸如电穿孔介导的消融治疗,在整个过程中将使用电穿孔比能和消融比能两者,并且在此类实施方案中,发生器可进一步被配置为递送消融能量。
发明内容
本发明的示例性实施方案提供了一种不可逆电穿孔和射频消融(IRE/RFA)发生器,包括IRE脉冲发生器、谐波滤波电路和波形交织器。所述IRE脉冲发生器被配置为生成双相IRE脉冲。所述谐波滤波电路被配置为将所述IRE脉冲转换为RF信号。所述波形交织器被配置为接收所述IRE脉冲和所述RF信号,并且通过交替地交织所述IRE脉冲中的一个或多个IRE脉冲与所述RF信号的一个或多个周期来生成IRE/RFA输出信号。
在一些示例性实施方案中,波形交织器被配置为从处理器接收指定IRE脉冲与RF信号的周期之间的交织比率的设置,并且响应于该设置生成交织的IRE/RFA输出信号。
在一些示例性实施方案中,IRE脉冲发生器被配置为从处理器接收指定IRE脉冲的形状、振幅和重复速率中的一者或多者的设置,并且响应于该设置生成双相IRE脉冲。
在示例性实施方案中,谐波滤波电路被配置为从处理器接收指定RF信号的频率和振幅中的一者或多者的设置,并且响应于该设置将IRE脉冲转换为RF信号。
在示例性实施方案中,IRE/RFA发生器还包括IRE脉冲整形电路,该IRE脉冲整形电路被配置为将预先指定的脉冲形状施加于IRE脉冲。
在一些示例性实施方案中,波形交织器被配置为根据可配置处理协议将IRE脉冲与RF信号交织。
根据本发明的另一个示例性实施方案,另外提供了一种生成不可逆电穿孔和射频消融(IRE/RFA)信号的方法,该方法包括生成双相IRE脉冲。使用谐波滤波电路,将IRE脉冲转换为RF信号。通过使IRE脉冲中的一个或多个IRE脉冲与RF信号的一个或多个周期交织来生成IRE/RFA输出信号。
附图说明
结合附图,通过以下对本发明的实施方案的详细描述,将更全面地理解本发明,其中:
图1为根据本发明的示例性实施方案的基于导管的IRE/RFA系统的示意性图解;
图2为根据本发明的示例性实施方案的图1的系统的IRE/RFA生成器的示意性框图;
图3为示出根据本发明的示例性实施方案的图2的IRE/RFA发生器的某些细节的示意性框图;并且
图4为根据本发明的示例性实施方案的示意性地示出使用图1的IRE/RFA系统进行IRE/RFA治疗的方法的流程图。
具体实施方式
概述
用作侵入式治疗模式的射频消融(RFA)和不可逆电穿孔(IRE)可具有互补的临床属性。RFA通过耗散组织中的电能来用热破坏组织细胞,而IRE通过使组织经受强电场脉冲而破坏组织细胞,从而最小化组织中的电能耗散。
预期通过组合IRE和RFA,可实现更有效的治疗。例如,热辅助的IRE可导致更完整的消融,其中由于例如组织几何模态和/或组成而未被一种模态充分破坏的组织随后将被另一种模态完全破坏。然而,逐个递送上述治疗在一些应用中,诸如在心脏处理中由于例如心脏运动可能不那么有效。
下文所述的本发明的示例性实施方案提供了用于将IRE和RFA处理联合递送至相同位置的系统和方法。在本发明所公开的技术(下文中也称为“IRE/RFA”)中,生成并且递送在亚秒级上交错、交叉和/或交织的IRE和RFA波形的序列。在示例性实施方案中,通过将一个或多个IRE脉冲与相同消融电极上的一个或多个RFA循环根据预设的交织比率交织来将IRE脉冲和RFA循环同时施加于相同的组织位置。
在一些示例性实施方案中,提供了一种发生器,该发生器可以改变其波形输出序列以仅施加IRE脉冲、仅施加RF循环、或者交替施加M个IRE脉冲和N个RFA循环的序列,其中M≥1,N≥1。
序列的其他特性可以通过控制发生器的处理器来配置,例如IRE脉冲形状和振幅、脉冲重复速率,以及RFA参数,诸如RF频率。通常,对于IRE,发生器能够生成峰间电压高达4kV并且具有微秒级的典型脉冲宽度的双相脉冲。对于RFA,发生器能够生成峰间电压高达100V且具有毫秒级周期性的正弦循环。
在一些示例性实施方案中,本发明所公开的发生器的操作者,例如使用处理器中的用户界面,可以选择例如能量标度,诸如100%IRE(以N=0表示)、100%RFA(以M=0表示),或介于这两者之间的任何比率。发生器被编程用于例如使用可配置协议来根据操作者选择提供交织波形的正确序列{M,N}。这种可配置协议还可以包括例如产生所要求的选择的脉冲宽度和脉冲振幅。
在一些示例性实施方案中,本发明所公开的发生器使用(a)谐波滤波电路和(b)IRE/RFA切换电路从IRE脉冲产生RF信号(例如,循环)。为了生成RFA的波形,本发明所公开的谐波滤波可根据给定的实施方案将以下一者或多者施加于IRE波形:低通滤波、带通滤波或带阻滤波。
本发明所公开的IRE/RPA发生器能够同时将IRE和RFA治疗施加于相同位置,因此可以改善心律失常的侵入式治疗的临床结果。
系统描述
图1为根据本发明的示例性实施方案的基于导管的IRE/RFA系统20的示意性图解。系统20包括导管21,其中导管的轴22通过护套23插入患者28的心脏26中。导管21的近侧端部连接到控制台24。
控制台24包括用于经由导管21施加交错的IRE/RFA波形以消融心脏26的左心房45中的组织的IRE/RFA发生器38。在本文所述的示例性实施方案中,导管21可以用于任何合适的治疗目的和/或诊断目的,诸如心脏26的左心房45中的肺静脉的窦口组织的电感测和/或隔离。
医师30将轴22插入穿过患者28的血管系统。如插图25所示,可充胀的球囊40装配在轴22的远侧端部处。在轴22的插入期间,球囊40在护套23内部保持在塌缩构型中。通过将球囊40包含在塌缩构型中,护套23还用于使至目标位置的沿途的血管创伤最小化。医师30将轴22的远侧端部定位到心脏26中的目标位置。
一旦轴22的远侧端部已到达目标位置,医师30便回缩护套23以使球囊40膨胀。医师30然后操纵轴22,使得设置在球囊40上的电极接合窦口的内壁。
控制台24包括处理器41,通常为通用计算机,该通用计算机具有合适的前端和接口电路37,以用于接收来自导管21和来自通常围绕患者26的胸部放置的外部电极49的信号。为此,处理器41通过延伸穿过线缆39的导线连接至外部电极49。在示例性实施方案中,医师30使用例如由导管21获取的电生理信号来诊断心律失常组织位置。随后,医师30经由设置在球囊40上的电极施加交错的IRE/RFA波形以消融组织。
处理器41通常被编程(软件)以执行本文所述的功能。该软件可通过网络以电子形式被下载到计算机,例如或者其可另选地或另外地设置和/或存储在非临时性有形介质(诸如磁存储器、光存储器或电子存储器)上。
尽管所示的示例性实施方案具体涉及使用球囊用于心脏组织的消融,但是系统20的元件和本文所述的方法可以另选地应用于使用其他种类的多电极消融装置诸如多臂消融导管来控制消融。换句话讲,根据本发明,可以利用任何合适的装置。
交织的IRE/RFA波形序列的生成
图2为根据本发明的示例性实施方案的图1所示的系统20的IRE/RFA发生器38的示意性框图。在所示的示例性实施方案中,发生器38包括IRE脉冲发生器50和IRE/RFA波形整形器和交织器55,它们都可以由处理器41配置和控制。
如图所示,IRE脉冲发生器50生成预定义波形的高压IRE双相脉冲的序列52。在本发明的上下文中,术语“双相脉冲”是指具有正电压相位和负电压相位的脉冲,使得脉冲的平均电压为零伏。在示例性实施方案中,但并非必须,双相脉冲具有方波脉冲形状。在一些示例性实施方案中,双相脉冲的峰间电压高达大约4kV,即±2KV。每个双相脉冲的脉冲宽度通常为大约几微秒。另选地,可以使用任何其他合适的脉冲参数。
在图3中进一步描述的IRE/RFA波形整形器和交织器55将输入序列52转换为输出波形的交织的IRE/RFA序列57,该输出波形以举例的方式包括与N=2正弦周期(例如,两个窦形脉冲)的RF能量交织的M=2IRE形状脉冲。通常将IRE/RFA序列57递送至导管22,以经由消融电极施加于所选择的组织位置,如上文参考图1所述。
图3为示出根据本发明的示例性实施方案的图2的IRE/RFA发生器38的某些细节的示意性框图。在本示例中,IRE/RFA波形整形器和脉冲交织器55包括双相脉冲整形器电路60、谐波滤波器电路64和波形交织器电路66。
如果需要,双相脉冲整形器电路60被配置为使序列52的IRE脉冲适配于具有最终形状和重复速率的IRE脉冲62。例如,脉冲整形器60可以包括用于产生双相脉冲的不同上升时间和/或下降时间的电容器阵列。
谐波滤波器电路64可以包括上述类型中的一些类型的一组谐波滤波器,并且可被配置为基于由处理器41提供的设置将序列52的输入IRE脉冲转换为RF信号59,通常为正弦信号。RF信号59通常具有大约450kHz至500kHz的频率和高达大约100V(即,±50V)的峰间电压。然而,另选地,可以使用任何其他合适的信号参数。
如插图65所示,谐波滤波可以由低通滤波器(由电容器表示)执行,而输出电压则使用一个或多个变压器来确定。最后,波形交织器66将一个或多个IRE脉冲62与一个或多个周期的RF信号59交织,并且将交织序列57输出至导管21。如图所示,波形交织器66包括切换电路67,以在输入波形59和输入波形62之间切换。
谐波滤波是将方波转换为正弦波的最简单的方法之一。方波由基频和高阶谐波组成。谐波滤波用于移除高阶谐波,从而留下正弦基频信号。
图2和图3所示的示例性配置是完全为了概念清楚而选择的。在另选的示例性实施方案中,所公开的技术可使用任何其他合适的脉冲生成和整形方案。
图4为根据本发明的示例性实施方案的示意性地示出了使用图1的IRE/RFA系统20进行IRE/RFA治疗的方法的流程图。该过程始于在导管插入步骤70处医师30将导管20插入心脏26中。接着,医师30选择要递送至目标组织的IRE/RFA能量的比率,例如,通过在治疗能量选择步骤72处选择预定义的协议。如上所述,医师30可以根据临床目标选择介于100%IRE能量与100%RFA能量之间的任何比率。
假设医师30选择施加IRE能量和RFA能量的混合物,则医师30在交织序列选择步骤74处指定例如由所选择的协议指定的IRE/RFA波形的交织序列。例如,医师30可以选择如上定义的具有最大交织程度的{M=1,N=1}序列。
接着,在导管定位步骤76处,医师30操纵导管21以在设置在球囊40上的电极与组织(诸如肺静脉窦口的组织)之间建立接触。下一步,在IRE/RFA处理步骤78处,医师30将所选择的IRE/RFA波形的交织序列施加于组织。
在处理后立即,在IRE/RFA后处理诊断步骤80处,医师30使用球囊40作为诊断导管以获取电描记图,以检查处理步骤78在多大程度上实现了隔离。如果在检查步骤82处,医师发现实现了充分的隔离,则医师30然后在导管回缩步骤84处从患者身体移除导管。否则,医师30可以通过循环回到步骤72来选择附加处理步骤的参数而重新定位球囊以用于附加治疗。
尽管本文所述的实施方案主要涉及心脏应用,但本文所述的方法和系统也可以用于其他医疗应用,诸如,诸如在肺或肝脏中的实体瘤的处理。
因此应当理解,上面描述的示例性实施方案以举例的方式被引用,并且本发明不限于上文特定示出和描述的内容。相反,本发明的范围包括上文描述的各种特征的组合和子组合以及它们的变型和修改,本领域的技术人员在阅读上述描述时将会想到该变型和修改,并且该变型和修改并未在现有技术中公开。以引用方式并入本专利申请的文献被视为本申请的整体部分,不同的是如果这些并入的文献中限定的任何术语与本说明书中明确或隐含地给出的定义相冲突,则应仅考虑本说明书中的定义。
Claims (12)
1.一种不可逆电穿孔和射频消融(IRE/RFA)发生器,包括:
IRE脉冲发生器,所述IRE脉冲发生器被配置为生成双相IRE脉冲;
谐波滤波电路,所述谐波滤波电路被配置为将所述IRE脉冲转换为RF信号;以及
波形交织器,所述波形交织器被配置为接收所述IRE脉冲和所述RF信号,并且通过交替地交织所述IRE脉冲中的一个或多个IRE脉冲与所述RF信号的一个或多个周期来生成IRE/RFA输出信号。
2.根据权利要求1所述的IRE/RFA发生器,其中,所述波形交织器被配置为从处理器接收指定所述IRE脉冲与所述RF信号的所述周期之间的交织比率的设置,并且响应于所述设置生成所交织的IRE/RFA输出信号。
3.根据权利要求1所述的IRE/RFA发生器,其中,所述IRE脉冲发生器被配置为从处理器接收指定所述IRE脉冲的形状、振幅和重复速率中的一者或多者的设置,并且响应于所述设置生成所述双相IRE脉冲。
4.根据权利要求1所述的IRE/RFA发生器,其中,所述谐波滤波电路被配置为从处理器接收指定所述RF信号的频率和振幅中的一者或多者的设置,并且响应于所述设置将所述IRE脉冲转换为所述RF信号。
5.根据权利要求1所述的IRE/RFA发生器,并且包括IRE脉冲整形电路,所述IRE脉冲整形电路被配置为将预先指定的脉冲形状施加于所述IRE脉冲。
6.根据权利要求1所述的IRE/RFA发生器,其中,所述波形交织器被配置为根据可配置处理协议将所述IRE脉冲与所述RF信号交织。
7.一种生成不可逆电穿孔和射频消融(IRE/RFA)信号的方法,所述方法包括:
生成双相IRE脉冲;
使用谐波滤波电路,将所述IRE脉冲转换为RF信号;以及
通过使所述IRE脉冲中的一个或多个IRE脉冲与所述RF信号的一个或多个周期交织来生成IRE/RFA输出信号。
8.根据权利要求7所述的方法,其中,生成所述IRE/RFA输出信号包括从处理器接收指定所述IRE脉冲与所述RF信号的所述周期之间的交织比率的设置,并且响应于所述设置生成所交织的IRE/RFA输出信号。
9.根据权利要求7所述的方法,其中,生成所述双相IRE脉冲包括从处理器接收指定所述IRE脉冲的形状、振幅和重复速率中的一者或多者的设置,并且响应于所述设置生成所述双相IRE脉冲。
10.根据权利要求7所述的方法,其中,将所述IRE脉冲转换为所述RF信号包括从处理器接收指定所述RF信号的频率和振幅中的一者或多者的设置,并且响应于所述设置将所述IRE脉冲转换为所述RF信号。
11.根据权利要求7所述的方法,并且包括通过将预先指定的脉冲形状施加于所述IRE脉冲来对所述IRE脉冲进行整形。
12.根据权利要求7所述的方法,其中,生成所述IRE/RFA输出信号包括根据可配置处理协议将所述IRE脉冲与所述RF信号交织。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/704421 | 2019-12-05 | ||
US16/704,421 US11660135B2 (en) | 2019-12-05 | 2019-12-05 | Generating and interleaving of irreversible-electroporation and radiofrequnecy ablation (IRE/RFA) waveforms |
PCT/IB2020/050677 WO2021111193A1 (en) | 2019-12-05 | 2020-01-29 | Generating and interleaving of irreversible-electroporation and radiofrequency-ablation (ire/rfa) waveforms |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114746040A true CN114746040A (zh) | 2022-07-12 |
Family
ID=69726624
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080083756.0A Pending CN114746040A (zh) | 2019-12-05 | 2020-01-29 | 不可逆电穿孔和射频消融(ire/rfa)波形的生成及交织 |
CN202010078861.7A Active CN111265295B (zh) | 2019-12-05 | 2020-02-03 | 不可逆电穿孔和射频消融(ire/rfa)波形的生成及交织 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010078861.7A Active CN111265295B (zh) | 2019-12-05 | 2020-02-03 | 不可逆电穿孔和射频消融(ire/rfa)波形的生成及交织 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11660135B2 (zh) |
EP (1) | EP4069115A1 (zh) |
JP (1) | JP7443523B2 (zh) |
CN (2) | CN114746040A (zh) |
IL (1) | IL272337A (zh) |
WO (1) | WO2021111193A1 (zh) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210361337A1 (en) * | 2020-05-21 | 2021-11-25 | Covidien Lp | Independent control of dual rf bipolar electrosurgery |
US12076071B2 (en) | 2020-08-14 | 2024-09-03 | Kardium Inc. | Systems and methods for treating tissue with pulsed field ablation |
US12064170B2 (en) | 2021-05-13 | 2024-08-20 | Biosense Webster (Israel) Ltd. | Distal assembly for catheter with lumens running along spines |
US20230008044A1 (en) | 2021-07-09 | 2023-01-12 | Biosense Webster (Israel) Ltd. | Pulsed field ablation catheter |
US20230009573A1 (en) | 2021-07-09 | 2023-01-12 | Biosense Webster (Israel) Ltd. | Ablation and mapping with a singular multi-electrode catheter |
US20230009191A1 (en) | 2021-07-09 | 2023-01-12 | Biosense Webster (Israel) Ltd. | Irreversible electroporation and thermal ablation by focal catheter |
CN113768612B (zh) * | 2021-07-30 | 2023-12-22 | 苏州艾科脉医疗技术有限公司 | 用于导管的高压发射电路及消融工具 |
CN113729918B (zh) * | 2021-08-12 | 2024-10-18 | 圣犹达医疗用品心脏病学部门有限公司 | 使用不对称波形的电穿孔的系统和方法 |
US20230190366A1 (en) | 2021-12-17 | 2023-06-22 | Biosense Webster (Israel) Ltd. | High-frequency tissue ablation using coated electrodes |
CN114343828A (zh) * | 2021-12-22 | 2022-04-15 | 杭州维纳安可医疗科技有限责任公司 | 消融装置及其控制方法、设备、存储介质 |
US20230225790A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Mechanical retainer systems for electrodes of a basket catheter, and methods of the same |
US20230225789A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Systems and methods for linear spines and spine retention hub for improved tissue contact and current delivery |
US20230225784A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Systems and methods for tripodic spines forming a spherical basket for improved tissue contact and current delivery |
US20230225788A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Systems and methods for c-shaped spines forming a spherical basket for improved tissue contact and current delivery |
US20230225783A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Systems and methods for a single spiral electrode assembly forming a spherical basket for improved tissue contact and current delivery |
US20230225787A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Systems and methods for linear spines forming a spherical basket for improved tissue contact and current delivery |
US20230226336A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Electrode assemblies of a basket catheter having mechanical retainers and methods of the same |
US20230226638A1 (en) | 2022-01-20 | 2023-07-20 | Biosense Webster (Israel) Ltd. | Intravascular device including high voltage coaxial conductor wiring |
CN114366280B (zh) * | 2022-03-22 | 2022-11-08 | 上海睿刀医疗科技有限公司 | 脉冲处理装置、脉冲处理方法、电子设备和存储介质 |
US20230301712A1 (en) | 2022-03-25 | 2023-09-28 | Biosense Webster (Israel) Ltd. | Elongated trapezoidal electrodes of a basket catheter and methods of making the same |
US20230301713A1 (en) | 2022-03-25 | 2023-09-28 | Biosense Webster (Israel) Ltd. | Expandable basket assemblies with linear spine patterns for improved tissue contact and methods for making thereof |
US20230301707A1 (en) | 2022-03-25 | 2023-09-28 | Biosense Webster (Israel) Ltd. | Elongated cylindrical electrodes of a basket catheter and methods of making the same |
US20230346462A1 (en) | 2022-04-28 | 2023-11-02 | Biosense Webster (Israel) Ltd. | Strengthened expandable baskets for medical probes and medical probes containing strengthen expandable baskets |
US20230346466A1 (en) | 2022-04-28 | 2023-11-02 | Biosense Webster (Israel) Ltd. | Basket catheter with cloverleaf structure to provide predetermined lateral stiffness and axial strain |
US20230346463A1 (en) | 2022-04-28 | 2023-11-02 | Biosense Webster (Israel) Ltd. | Barrel electrodes for a basket catheter, and methods of the same |
US20230346465A1 (en) | 2022-04-28 | 2023-11-02 | Biosense Webster (Israel) Ltd. | Irrigation hub for an ablation catheter |
US20230346464A1 (en) | 2022-04-28 | 2023-11-02 | Biosense Webster (Israel) Ltd. | Basket catheter with cloverleaf structure to prevent buckling and retention feature for electrodes |
US20230346461A1 (en) | 2022-04-28 | 2023-11-02 | Biosense Webster (Israel) Ltd. | Systems and devices for improved irrigation flow during cardiac procedure |
US20230346455A1 (en) | 2022-04-28 | 2023-11-02 | Biosense Webster (Israel) Ltd. | Basket catheter with force sensor having bayonet mount |
WO2023227953A1 (en) * | 2022-05-25 | 2023-11-30 | Btl Medical Solutions A.S. | Device and method for treatment of part of a human body |
US20240065755A1 (en) | 2022-08-23 | 2024-02-29 | Biosense Webster (Israel) Ltd. | Planar multi-electrode catheters |
US20240180614A1 (en) | 2022-12-01 | 2024-06-06 | Biosense Webster (Israel) Ltd. | Basket assembly, spines, and electrodes for a catheter, and methods of the same |
US20240180615A1 (en) | 2022-12-06 | 2024-06-06 | Biosense Webster (Israel) Ltd. | Electrodes for basket catheters |
US20240189023A1 (en) | 2022-12-09 | 2024-06-13 | Biosense Webster (Israel) Ltd. | Force sensors for basket catheters |
US20240197391A1 (en) | 2022-12-15 | 2024-06-20 | Biosense Webster (Israel) Ltd. | Basket assembly with atraumatic tip electrode and methods of making thereof |
US20240197392A1 (en) | 2022-12-20 | 2024-06-20 | Biosense Webster (Israel) Ltd. | Multi-electrode basket end effector of a catheter |
US20240207587A1 (en) | 2022-12-23 | 2024-06-27 | Biosense Webster (Israel) Ltd. | Rapid depressurization of irrigated balloon catheter |
US20240206965A1 (en) | 2022-12-27 | 2024-06-27 | Biosense Webster (Israel) Ltd. | Deformed spine electrode basket and methods of the same |
US20240216045A1 (en) | 2022-12-28 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Basket end effector with distal position sensor |
US20240216049A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Ablation catheter with expandable woven mesh having electrically conductive strands |
US20240216051A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Contact force sensors for basket catheters and methods of using thereof |
US20240216052A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Systems and methods for cylindrical cage mapping and ablation catheters having flexible circuits |
US20240216050A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Multi-electrode catheter with interlaced substrate |
US20240215854A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Cylindrical cage systems and methods for distributed tissue contact for mapping and ablation |
US20240216055A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Fractal cylindrical cage systems and methods for distributed tissue contact for mapping and ablation |
US20240216053A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Systems and methods for cylindrical cage mapping and ablation catheters having integrated electrodes |
US20240216046A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Systems and methods for linear spines forming a spherical basket for improved tissue contact and current delivery |
US20240216054A1 (en) | 2022-12-29 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Systems and methods for cylindrical cage mapping and ablation catheters comprising flexible circuits |
US20240216075A1 (en) | 2022-12-30 | 2024-07-04 | Biosense Webster (Israel) Ltd. | Position and force sensors for catheters |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7282048B2 (en) * | 2001-08-27 | 2007-10-16 | Gyrus Medical Limited | Electrosurgical generator and system |
AU2004311842C1 (en) | 2003-12-24 | 2011-01-06 | The Regents Of The University Of California | Tissue ablation with irreversible electroporation |
CN101502442B (zh) * | 2008-02-05 | 2011-06-01 | 北京迈迪顶峰医疗科技有限公司 | 射频消融系统、消融控制器及射频消融装置 |
US9474574B2 (en) | 2008-05-21 | 2016-10-25 | Atricure, Inc. | Stabilized ablation systems and methods |
US8221411B2 (en) | 2008-07-28 | 2012-07-17 | Medtronic, Inc. | Systems and methods for cardiac tissue electroporation ablation |
US8753335B2 (en) * | 2009-01-23 | 2014-06-17 | Angiodynamics, Inc. | Therapeutic energy delivery device with rotational mechanism |
US9289606B2 (en) | 2010-09-02 | 2016-03-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for electroporation therapy |
EP2642937A4 (en) * | 2010-11-23 | 2014-05-07 | Virginia Tech Intell Prop | IRREVERSIBLE ELECTROPORATION USING TISSUE BLOOD VESSELS FOR THE TREATMENT OF BUTTERED CELL MASS OR FOR THE PRODUCTION OF TISSUE OBSTACLES |
US9379643B2 (en) | 2010-12-23 | 2016-06-28 | The Regents Of The University Of Colorado, A Body Corporate | Electrosurgical generator controller for regulation of electrosurgical generator output power |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US8858548B2 (en) * | 2011-03-15 | 2014-10-14 | Medtronic Ablation Frontiers Llc | Independent passive cooling design for ablation catheters |
US9387031B2 (en) * | 2011-07-29 | 2016-07-12 | Medtronic Ablation Frontiers Llc | Mesh-overlayed ablation and mapping device |
US20130030430A1 (en) | 2011-07-29 | 2013-01-31 | Stewart Mark T | Intracardiac tools and methods for delivery of electroporation therapies |
US9078665B2 (en) * | 2011-09-28 | 2015-07-14 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
CN104220020B (zh) * | 2011-12-21 | 2017-08-08 | 纽华沃医药公司 | 一种消融天线装置 |
WO2014025394A1 (en) * | 2012-08-09 | 2014-02-13 | University Of Iowa Research Foundation | Catheters, catheter systems, and methods for puncturing through a tissue structure |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US9113911B2 (en) | 2012-09-06 | 2015-08-25 | Medtronic Ablation Frontiers Llc | Ablation device and method for electroporating tissue cells |
US9888956B2 (en) * | 2013-01-22 | 2018-02-13 | Angiodynamics, Inc. | Integrated pump and generator device and method of use |
US9259287B2 (en) * | 2013-04-02 | 2016-02-16 | Siemens Aktiengesellschaft | Patient specific planning and simulation of ablative procedures |
US10149700B2 (en) * | 2013-08-12 | 2018-12-11 | Jan R. Lau | 3 dimensional simultaneous multiple core biopsy or fiducial marker placement device and methods |
US10111703B2 (en) | 2014-05-06 | 2018-10-30 | Cosman Instruments, Llc | Electrosurgical generator |
JP2017523891A (ja) * | 2014-07-03 | 2017-08-24 | ビーケイアール アイピー ホールドコ リミテッド ライアビリティ カンパニー | キャビテーション(cavitation)を伴うことなく、交互切替超音波伝達(Alternating Ultrasonic Transmissions)の効果を齎すための方法および装置。 |
US10271893B2 (en) | 2014-12-15 | 2019-04-30 | Medtronic Ablation Frontiers Llc | Timed energy delivery |
CN107431771B (zh) * | 2015-03-06 | 2020-12-04 | 菲力尔系统公司 | 用于异常像素检测的系统和方法 |
CN204581499U (zh) * | 2015-03-11 | 2015-08-26 | 上海微创电生理医疗科技有限公司 | 射频消融仪及射频消融系统 |
EP3294172B9 (en) * | 2015-05-12 | 2023-04-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Asymmetric balanced waveform for ac cardiac irreversible electroporation |
US9839470B2 (en) * | 2015-06-30 | 2017-12-12 | Covidien Lp | Electrosurgical generator for minimizing neuromuscular stimulation |
DE202016009219U1 (de) | 2015-08-06 | 2024-05-13 | Medtronic, Inc. | Herzablation mittels gepulsten Feldes |
US10188449B2 (en) * | 2016-05-23 | 2019-01-29 | Covidien Lp | System and method for temperature enhanced irreversible electroporation |
KR101780269B1 (ko) * | 2016-10-04 | 2017-10-10 | (주) 헤파토 | 전기 수술 장치 |
US11364072B2 (en) * | 2017-01-27 | 2022-06-21 | Medtronic, Inc. | Catheter electrodes for energy management |
US11229478B2 (en) * | 2017-02-08 | 2022-01-25 | Medtronic, Inc. | Profile parameter selection algorithm for electroporation |
WO2018165421A1 (en) * | 2017-03-10 | 2018-09-13 | Minnetronix, Inc. | Control and inverter design topologies for electronic medical devices |
GB2563386A (en) * | 2017-06-08 | 2018-12-19 | Creo Medical Ltd | Electrosurgical instrument |
US11957903B2 (en) * | 2018-01-02 | 2024-04-16 | St. Jude Medical, Cardiology Division, Inc. | Electroporation catheter including a distal hoop |
EP3742998B1 (en) * | 2018-01-23 | 2023-11-15 | Boston Scientific Scimed, Inc. | Enhanced needle array and therapies for tumor ablation |
KR102132370B1 (ko) * | 2018-03-13 | 2020-08-05 | 주식회사 지씨에스 | 피부관리장치, 피부관리장치의 구동방법 및 컴퓨터 판독가능 기록매체 |
JP7379377B2 (ja) * | 2018-05-07 | 2023-11-14 | ファラパルス,インコーポレイテッド | パルス電界アブレーションによって誘導される高電圧ノイズをフィルタリングするためのシステム、装置、および方法 |
CN109157280A (zh) * | 2018-08-10 | 2019-01-08 | 重庆大学 | 不可逆电穿孔组织消融效果动态实时评估设备 |
-
2019
- 2019-12-05 US US16/704,421 patent/US11660135B2/en active Active
-
2020
- 2020-01-29 JP JP2022533513A patent/JP7443523B2/ja active Active
- 2020-01-29 EP EP20708167.0A patent/EP4069115A1/en active Pending
- 2020-01-29 CN CN202080083756.0A patent/CN114746040A/zh active Pending
- 2020-01-29 WO PCT/IB2020/050677 patent/WO2021111193A1/en unknown
- 2020-01-29 IL IL272337A patent/IL272337A/en unknown
- 2020-02-03 CN CN202010078861.7A patent/CN111265295B/zh active Active
-
2023
- 2023-04-18 US US18/302,109 patent/US20230248412A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2021111193A1 (en) | 2021-06-10 |
CN111265295B (zh) | 2020-11-17 |
JP7443523B2 (ja) | 2024-03-05 |
EP4069115A1 (en) | 2022-10-12 |
CN111265295A (zh) | 2020-06-12 |
JP2023510485A (ja) | 2023-03-14 |
US20230248412A1 (en) | 2023-08-10 |
IL272337A (en) | 2021-06-30 |
US11660135B2 (en) | 2023-05-30 |
US20210169550A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111265295B (zh) | 不可逆电穿孔和射频消融(ire/rfa)波形的生成及交织 | |
US12070265B2 (en) | Electroporation system and method of preconditioning tissue for electroporation therapy | |
JP7459252B2 (ja) | 電気穿孔システムおよび方法 | |
CN112118798B (zh) | 用于过滤由脉冲电场消融诱导的高压噪声的系统、设备和方法 | |
JP2020516371A (ja) | エレクトロポレーションシステム及びカテーテルへの通電方法 | |
EP3984484A1 (en) | Using unipolar configuration for irreversible-electroporation (ire) | |
CN113729918B (zh) | 使用不对称波形的电穿孔的系统和方法 | |
EP3081256B1 (en) | Electrotherapy device | |
EP3841999B1 (en) | Combined cardiac pacing and irreversible electroporation (ire) treatment | |
US20230346467A1 (en) | Bipolar tissue ablation in accordance with a predefined periodic set of time slots | |
CN115590607A (zh) | 通过局灶导管进行的不可逆电穿孔和热消融 | |
JP2022045316A (ja) | インピーダンスに基づく不可逆電気穿孔(ire) | |
US20230240745A1 (en) | Systems and methods for electroporation using waveforms that reduce electrical stimulation | |
JP2022024985A (ja) | 気泡の発生を回避するための慎重な不可逆電気穿孔(ire)プロトコル | |
US20230052114A1 (en) | Systems and methods for electroporation using asymmetric waveforms and waveforms with reduced burst duration | |
US20230329769A1 (en) | Systems and methods for electroporation using arbitrary electrode addressing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |