CN114744076A - 基于氮化镓异质结薄膜的双极型光电二极管及其制备方法 - Google Patents

基于氮化镓异质结薄膜的双极型光电二极管及其制备方法 Download PDF

Info

Publication number
CN114744076A
CN114744076A CN202210279033.9A CN202210279033A CN114744076A CN 114744076 A CN114744076 A CN 114744076A CN 202210279033 A CN202210279033 A CN 202210279033A CN 114744076 A CN114744076 A CN 114744076A
Authority
CN
China
Prior art keywords
layer
thickness
doped
metal
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210279033.9A
Other languages
English (en)
Other versions
CN114744076B (zh
Inventor
卢红亮
陈丁波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202210279033.9A priority Critical patent/CN114744076B/zh
Publication of CN114744076A publication Critical patent/CN114744076A/zh
Application granted granted Critical
Publication of CN114744076B publication Critical patent/CN114744076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于氮化镓异质结薄膜的双极型光电二极管及其制备方法。氮化镓异质结薄膜的主体结构为SiN/GaN/AlyGa1‑yN/AlN/GaN。阴极与异质结界面的二维电子气形成欧姆接触,在SiN介电层上的半透明金属阳极与氮化镓异质结形成金属‑绝缘体‑半导体(MIS)结构。由于异质结薄膜中具有的对立的极化电场,这种基于氮化镓异质结的MIS光电二极管在不同能量的紫外光激发下可以产生不同方向的光电流。本发明的基于硅衬底上氮化镓异质结薄膜的双极型光电二极管工艺简单,性能稳定,能够与CMOS工艺兼容,可以作为未来多功能光电集成芯片及系统中的高性能光电探测单元。

Description

基于氮化镓异质结薄膜的双极型光电二极管及其制备方法
技术领域
本发明涉及半导体光电技术领域中的光电二极管,特别涉及一种基于氮化镓异质结薄膜的双极型光电二极管及其制备方法。
背景技术
光子学和电子学的结合是下一代系统级芯片的主流,在光通信和光计算领域中显示出巨大的潜力。作为将光信号转换为电信号的光电接口,芯片级半导体光电二极管 (PD)在光电集成系统中发挥着重要作用。然而,基于体材料制备的传统 PD不具有光电流极性,这限制了它们的多功能检测能力。因此,引入可以转换光电流极性的双极 PD将成为未来光电集成器件的发展方向。近年来,光电流极性的转换在光电传感器领域得到了广泛的研究。双极 PD 不仅可以改变光电流大小,还可以根据不同波长的入射光切换光电流方向。这种与波长相关的双极光响应行为可用于许多领域,例如光谱分辨和成像、光通信和光逻辑电路。
目前,基于光电化学效应的双极型光电探测器件已经被报道,例如,基于α-Fe2O3和CuFeO2复合材料工作电极的 PD、基于掺氟 SnO2上的 α-Ga2O3/Cu2O 异质结构制备的PD和利用硅上p-AlGaN/n-GaN纳米线制备的PD.这些器件中的光电流转换有赖于光电化学 (PEC)效应在不同光子能量下的相反的氧化还原反应。尽管这些器件可以实现稳定的双极性光响应,但它们的机械和化学稳定性受到参比电极、电解质溶液或其他外部组件的严重限制。为了解决这个问题,研究者们开发出了全固态双极型PD,例如由 p-SnS/ZnO、p-Sb2Se3/ZnO和InAs/InP异质结制成的PD。这类器件的双极光响应是半导体的光伏 (PV) 效应和热电效应共同导致的,称为光热电 (PTE) 效应。虽然此类器件具有稳定的机械性能和小尺寸的特点,适用于片上光电探测,但 PTE 效应的工作机制限制了器件的热稳定性。因此,开发一种基于纯PV效应的全固态双极型光电探测器件,在芯片级应用中更为可取。设计此类器件需要在异质结构中进行复杂的能带和光生电场的调制。许多具有双极性光响应的基于纯PV效应的PD 原型依赖于低维材料/结构的表面/界面效应,例如纳米线/纳米棒、纳米颗粒、等离子体和量子点。然而,这些由纳米结构组成的器件被认为难以实现集成化和大规模生产。因此,设计和开发一种基于异质结结构的薄膜 PD 成为实现光电流转换的优选方案。
发明内容
为了克服上述双极型光电二极管器件具有的弊端,本发明的目的在于提供一种基于在 Si 衬底上生长的氮化镓(GaN)异质结薄膜的全固态双极型紫外 (UV) PD。由于通过极化工程在GaN异质结中设计了对立的极化电场,在零偏压下,我们设计的UV PD 可以实现高性能的双极性光电响应。本发明开发了一种高性能芯片级双极型UV PD,具有可集成和可大规模制备的特点。
本发明的目的通过以下技术方案实现。
本发明提供一种基于氮化镓异质结薄膜的双极型光电二极管的制备方法,包括以下步骤:
(1)采用金属有机化学气相沉积法MOCVD在Si(111)衬底上依次外延生长AlxGa1-xN外延缓冲层,非掺杂GaN沟道层,非掺杂AlN插入层,非掺杂AlyGa1-yN势垒层,0.15≤y≤0.35,非掺杂GaN帽层和SiN介电层,得到氮化镓异质结外延片;
(2)在步骤(1)所得的晶圆表面,通过紫外光刻定义出器件的工作区域,然后通过氯气Cl2感应耦合等离子体ICP对工作区域之外的区域进行干法刻蚀,实现单个器件的隔离;
(3)对步骤(2)所得的晶圆进行去胶清洗,然后通过紫外光刻在器件工作区域定义出阴极电极区域,通过电子束蒸发设备沉积阴极金属,并对晶圆进行剥离清洗;
(4)对步骤(3)所得的晶圆进行快速热退火处理形成阴极欧姆接触;
(5)在步骤(4)所得的晶圆表面生长一层二氧化硅钝化层;
(6)在步骤(5)所得的晶圆表面,通过紫外光刻定义出器件的阳极区域,并采用缓冲氧化刻蚀剂去除阳极区域的二氧化硅钝化层;
(7)在步骤(6)所得的晶圆表面,通过电子束蒸发设备沉积阳极金属,并对晶圆进行剥离清洗,得到双极型光电二极管。
上述步骤(1)中,Si(111)衬底为晶面高阻硅衬底;AlxGa1-xN外延缓冲层包括非掺杂AlN层,非掺杂Al0.8Ga0.2N层、非掺杂Al0.6Ga0.4N层、Al0.4Ga0.6N层和非掺杂Al0.2Ga0.8N层;其中,非掺杂AlN层的厚度为100-200 nm,非掺杂Al0.8Ga0.2N层的厚度为200-300 nm,非掺杂Al0.6Ga0.4N层的厚度为300-500 nm,非掺杂Al0.4Ga0.6N层的厚度为300-500 nm,非掺杂Al0.2Ga0.8N层的厚度为200-300 nm;
非掺杂GaN沟道层的厚度为1-2μm;非掺杂AlN插入层的厚度为0.5-1nm;非掺杂AlyGa1-yN势垒层的厚度为20-30nm;非掺杂GaN帽层的厚度为2-5 nm;SiN介电层的厚度为3~5 nm。
上述步骤(2)中,ICP刻蚀深度是100~200 nm。
上述步骤(3)中,阴极金属结构为Ti/Al/Ni/Au四层金属,其中,Ti的厚度为10-30nm,Al的厚度为60~150 nm,Ni的厚度为30~60 nm,Au的厚度为30~100 nm。
上述步骤(4)中,快速热退火温度为800~900℃,时间为30~60 s。
上述步骤(5)中,二氧化硅钝化层采用等离子增强化学气相沉积法PECVD生长,生长温度为200~300℃;二氧化硅钝化层的厚度为50~300 nm。
上述步骤(6)中,缓冲氧化刻蚀剂的成分为体积比为1:6的HF和NH4F的混合溶液,湿法腐蚀时间为1~3 min。
上述步骤(7)中,阳极金属采用高功函数金属,阳极金属的厚度为5~20 nm;优选的,阳极金属选自铂Pt、镍Ni或金Au中的一种或几种。
本发明进一步提供一种根据上述的制备方法制得的基于氮化镓异质结薄膜的双极型光电二极管,其中,氮化镓异质结薄膜的主体结构为SiN/GaN/AlyGa1-yN/AlN/GaN,阴极与异质结界面的二维电子气形成欧姆接触,在SiN介电层上的半透明金属阳极与氮化镓异质结形成金属-绝缘体-半导体MIS结构;本发明的光电二极管在不同波长紫外光激发下能产生双向光电流,实现光电二极管的双极性。
本发明的原理如下:
本发明的基于氮化镓异质结薄膜的光电二极管,阴极与异质结中的二维电子气沟道形成欧姆接触,半透明的Pt电极、SiN介电层、GaN异质结形成金属-绝缘体-半导体(MIS)结构,所以器件实际是一个MIS光电二极管。由于GaN异质结材料中存在自发极化和压电极化效应,使得AlxGa1-xN势垒层和GaN帽层中存在对立的极化电场。入射的紫外光可以穿透Pt金属薄膜进入GaN异质结薄膜。当光子能量高于AlxGa1-xN禁带能量时,GaN帽层和势垒层发生本征激发,光生载流子在极化电场的作用下发生分离,GaN帽层和AlxGa1-xN势垒层产生反向光生电场。由于势垒层产生的光生电压高于比GaN帽层中的光生电压,最终产生的光电流方向取决于势垒层中的光生电场方向;当光子能量低于AlxGa1-xN禁带能量,但是高于GaN的禁带能量时,势垒层将不能发生本征激发,最终产生的光电流方向取决于GaN层中的光生电场方向。所以,本发明的基于氮化镓异质结薄膜的光电二极管在不同波长紫外光激发下能产生双向光电流,实现光电二极管的双极性。
相对于现有技术,本发明的有益效果在于:
1. 采用硅衬底上的氮化镓异质结制备双极型光电二极管,器件具有尺寸小、可集成、
可大批量制备等优点。
2. 采用MOCVD生长GaN异质结薄膜,材料的结构和成分可以精确控制,因而可通
过控制材料生长来调控器件的光电性能。
3.器件的光电探测机理为单纯光伏(PV)效应,探测效果仅随光波长和功率的变化而变化,不受热效应的影响。
4.氮化镓材料具有优良的化学、物理稳定性,这使得本发明的双极型光电二极管具有良好的器件可靠性。
附图说明
图1为本发明的实施例的Si衬底上氮化镓异质结晶圆的结构示意图。
图2为本发明的实施例的氮化镓异质结外延片经过干法刻蚀使器件区域隔离后的结构示意图。
图3为本发明的实施例的制备了欧姆接触阴极金属的结构示意图。
图4为本发明的实施例的沉积了SiO2钝化膜的结构示意图。
图5 为本发明的实施例的去除了阳极区域SiO2钝化膜的结构示意图。
图6为本发明的实施例的制备了透明金属阳极的器件结构示意图。
图7为本发明的实施例的基于氮化镓异质结薄膜的双极型光电二极管的光谱响应曲线。
具体实施方式
下面结合实施例及附图对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例1
具体实施步骤如下:
(1)在6-inch Si(111)衬底上采用MOCVD生长GaN异质结外延片,结构包括:200 nm非掺杂AlN层,300 nm非掺杂Al0.8Ga0.2N层,500 nm非掺杂Al0.6Ga0.4N层,500 nm非掺杂Al0.4Ga0.6N层,300 nm非掺杂Al0.2Ga0.8N层,2 μm非掺杂GaN层,1 nm非掺杂AlN层,20 nm非掺杂Al0.25Ga0.75N层,3nm非掺杂GaN层,5 nmSiN层,如图1所示;
(2)在步骤(1)所述的晶圆表面,通过紫外光刻定义出器件的工作区域,本实施例的工作区域面积为100×230 μm2。然后通过氯气(Cl2)感应耦合等离子体(ICP)对工作区域之外的区域进行干法刻蚀,Cl2流量为15 sccm,功率为150W,刻蚀深度为在150 nm,实现单个器件的隔离,如图2所示;
(3)对步骤(2)所得的晶圆进行去胶清洗,清洗步骤为:去胶液(市售NMP溶液)80℃加热超声清洗5min,丙酮超声清洗5min,异丙醇浸泡2min,去离子水冲洗3min,高纯氮气吹干;
(4)在步骤(3)所述晶圆表面采用紫外光刻在器件工作区域定义出阴极区域,本实施例的阴极区域面积为100×100 μm2。然后采用电子束蒸发设备沉积阴极金属,阴极金属结构为Ti(20 nm)/Al(120 nm)/Ni(50 nm)/Au(50 nm),然后将晶圆浸泡在丙酮中对金属进行超声剥离清洗,时间为10 min,如图3所示;
(5)将步骤(4)所述晶圆置于快速退火炉中进行快速热退火处理,温度为830℃,处理时间为45 s;
(6)在步骤(5)所述的晶圆表面,采用PECVD生长一层二氧化硅钝化层,生长温度为300℃,生长厚度为200 nm,如图4所示;
(7)在步骤(6)所述的晶圆表面,通过紫外光刻定义出器件的阳极区域,本实施例的阳极区域面积为100×100 μm2。并采用缓冲氧化刻蚀剂(市售BOE溶液HF:NH4F=1:6)腐蚀去除阳极区域的二氧化硅钝化层,腐蚀时间为2min,如图5所示;
(8)在步骤(7)所述的晶圆表面,通过电子束蒸发设备沉积阳极金属,本实施例中阳极金属采用20 nm金属铂,将晶圆浸泡在丙酮中对金属进行超声剥离清洗,时间为5 min,如图6所示。
本实施例的基于氮化镓异质结薄膜的双极型光电二极管器件由于异质结中设计了对立的极化电场,在紫外光激发下,对立的极化电场会产生各自方向的光生电场,在不同能量的光子激发下,光生电场的相对大小发生变化,导致器件的光电流方向发生变化,从而实现器件的双极性光响应。本实施例的基于氮化镓异质结薄膜的双极型光电二极管器件的光谱响应曲线如图7所示。当入射波长小于315 nm时,器件表现为负向光电流,当入射波长大于315 nm时,器件表现为正向光电流,器件表现出双极性特征。本实施例的基于氮化镓异质结薄膜的双极型光电二极管器件基于6inch硅衬底上的GaN异质结外延片制备,具有与CMOS工艺兼容的特点,器件可以在现有工艺基础上不断缩小尺寸,大批量制备。
实施例2
具体实施步骤如下:
(1)在6-inch Si(111)衬底上采用MOCVD生长GaN异质结外延片,结构包括:150 nm非掺杂AlN层,250 nm非掺杂Al0.8Ga0.2N层,300 nm非掺杂Al0.6Ga0.4N层,500 nm非掺杂Al0.4Ga0.6N层,400 nm非掺杂Al0.2Ga0.8N层,1.5 μm非掺杂GaN层,0.5nm非掺杂AlN层,30nm非掺杂Al0.25Ga0.75N层,4 nm非掺杂GaN层,4nmSiN层;
(2)在步骤(1)所述的晶圆表面,通过紫外光刻定义出器件的工作区域,本实施例的工作区域面积为100×230 μm2。然后通过氯气(Cl2)感应耦合等离子体(ICP)对工作区域之外的区域进行干法刻蚀,Cl2流量为15 sccm,功率为150W,刻蚀深度为200 nm,实现单个器件的隔离;
(3)对步骤(2)所得的晶圆进行去胶清洗,清洗步骤为:去胶液(市售NMP溶液)80℃加热超声清洗5min,丙酮超声清洗5min,异丙醇浸泡2min,去离子水冲洗3min,高纯氮气吹干;
(4)在步骤(3)所述晶圆表面采用紫外光刻在器件工作区域定义出阴极区域,本实施例的阴极区域面积为100×100 μm2。然后采用电子束蒸发设备沉积阴极金属,阴极金属结构为Ti(30 nm)/Al(150 nm)/Ni(60 nm)/Au(100 nm),然后将晶圆浸泡在丙酮中对金属进行超声剥离清洗,时间为10 min;
(5)将步骤(4)所述晶圆置于快速退火炉中进行快速热退火处理,温度为900℃,处理时间为30s;
(6)在步骤(5)所述的晶圆表面,采用PECVD生长一层二氧化硅钝化层,生长温度为300℃,生长厚度为300 nm;
(7)在步骤(6)所述的晶圆表面,通过紫外光刻定义出器件的阳极区域,本实施例的阳极区域面积为100×100 μm2。并采用缓冲氧化刻蚀剂(市售BOE溶液HF:NH4F=1:6)腐蚀去除阳极区域的二氧化硅钝化层,腐蚀时间为3min;
(8)在步骤(7)所述的晶圆表面,通过电子束蒸发设备沉积阳极金属,本实施例中阳极金属结构为Ni(10 nm)/Au(10 nm),将晶圆浸泡在丙酮中对金属进行超声剥离清洗,时间为5 min;
本实施例制备的基于氮化镓异质结薄膜的光电二极管所具有的性能特点与实施例1类似,在此不再赘述。
实施例3
具体实施步骤如下:
(1)在6-inch Si(111)衬底上采用MOCVD生长GaN异质结外延片,结构包括:100 nm非掺杂AlN层,200 nm非掺杂Al0.8Ga0.2N层,400 nm非掺杂Al0.6Ga0.4N层,400 nm非掺杂Al0.4Ga0.6N层,500 nm非掺杂Al0.2Ga0.8N层,1.2 μm非掺杂GaN层,0.7nm非掺杂AlN层,15 nm非掺杂Al0.25Ga0.75N层,5 nm非掺杂GaN层,3nmSiN层;
(2)在步骤(1)所述的晶圆表面,通过紫外光刻定义出器件的工作区域,本实施例的工作区域面积为100×230 μm2。然后通过氯气(Cl2)感应耦合等离子体(ICP)对工作区域之外的区域进行干法刻蚀,Cl2流量为15 sccm,功率为150W,刻蚀深度为150 nm,实现单个器件的隔离;
(3)对步骤(2)所得的晶圆进行去胶清洗,清洗步骤为:去胶液(市售NMP溶液)80℃加热超声清洗5min,丙酮超声清洗5min,异丙醇浸泡2min,去离子水冲洗3min,高纯氮气吹干;
(4)在步骤(3)所述晶圆表面采用紫外光刻在器件工作区域定义出阴极区域,本实施例的阴极区域面积为100×100 μm2。然后采用电子束蒸发设备沉积阴极金属,阴极金属结构为Ti(10 nm)/Al(80 nm)/Ni(30 nm)/Au(50 nm),然后将晶圆浸泡在丙酮中对金属进行超声剥离清洗,时间为10 min;
(5)将步骤(4)所述晶圆置于快速退火炉中进行快速热退火处理,温度为850℃,处理时间为30s;
(6)在步骤(5)所述的晶圆表面,采用PECVD生长一层二氧化硅钝化层,生长温度为300℃,生长厚度为100 nm;
(7)在步骤(6)所述的晶圆表面,通过紫外光刻定义出器件的阳极区域,本实施例的阳极区域面积为100×100 μm2。并采用缓冲氧化刻蚀剂(市售BOE溶液HF:NH4F=1:6)腐蚀去除阳极区域的二氧化硅钝化层,腐蚀时间为1 min;
(8)在步骤(7)所述的晶圆表面,通过电子束蒸发设备沉积阳极金属,本实施例中阳极金属采用10 nm金属铂,将晶圆浸泡在丙酮中对金属进行超声剥离清洗,时间为3min;
本实施例制备的基于氮化镓异质结薄膜的光电二极管所具有的性能特点与实施例1类似,在此不再赘述。
本发明采用上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于氮化镓异质结薄膜的双极型光电二极管的制备方法,其特征在于,包括以下步骤:
(1)采用金属有机化学气相沉积法MOCVD在Si(111)衬底上依次外延生长AlxGa1-xN外延缓冲层,非掺杂GaN沟道层,非掺杂AlN插入层,非掺杂AlyGa1-yN势垒层,0.15≤y≤0.35,非掺杂GaN帽层和SiN介电层,得到氮化镓异质结外延片;
(2)在步骤(1)所得的晶圆表面,通过紫外光刻定义出器件的工作区域,然后通过氯气Cl2感应耦合等离子体ICP对工作区域之外的区域进行干法刻蚀,实现单个器件的隔离;
(3)对步骤(2)所得的晶圆进行去胶清洗,然后通过紫外光刻在器件工作区域定义出阴极电极区域,通过电子束蒸发设备沉积阴极金属,并对晶圆进行剥离清洗;
(4)对步骤(3)所得的晶圆进行快速热退火处理形成阴极欧姆接触;
(5)在步骤(4)所得的晶圆表面生长一层二氧化硅钝化层;
(6)在步骤(5)所得的晶圆表面,通过紫外光刻定义出器件的阳极区域,并采用缓冲氧化刻蚀剂去除阳极区域的二氧化硅钝化层;
(7)在步骤(6)所得的晶圆表面,通过电子束蒸发设备沉积阳极金属,并对晶圆进行剥离清洗,得到双极型光电二极管。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,Si(111)衬底为晶面高阻硅衬底;AlxGa1-xN外延缓冲层包括非掺杂AlN层,非掺杂Al0.8Ga0.2N层、非掺杂Al0.6Ga0.4N层、Al0.4Ga0.6N层和非掺杂Al0.2Ga0.8N层;其中,非掺杂AlN层的厚度为100-200 nm,非掺杂Al0.8Ga0.2N层的厚度为200-300 nm,非掺杂Al0.6Ga0.4N层的厚度为300-500 nm,非掺杂Al0.4Ga0.6N层的厚度为300-500 nm,非掺杂Al0.2Ga0.8N层的厚度为200-300 nm;非掺杂GaN沟道层的厚度为1-2μm;非掺杂AlN插入层的厚度为0.5-1nm;非掺杂AlyGa1-yN势垒层的厚度为20-30nm;非掺杂GaN帽层的厚度为2-5 nm;SiN介电层的厚度为3~5 nm。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,ICP刻蚀深度是100~200nm。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,阴极金属结构为Ti/Al/Ni/Au四层金属,其中,Ti的厚度为10-30 nm,Al的厚度为60~150 nm,Ni的厚度为30~60 nm,Au的厚度为30~100 nm。
5.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,快速热退火温度为800~900℃,时间为30~60 s。
6.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,二氧化硅钝化层采用等离子增强化学气相沉积法PECVD生长,生长温度为200~300℃;二氧化硅钝化层的厚度为50~300 nm。
7.根据权利要求1所述的制备方法,其特征在于,步骤(6)中,缓冲氧化刻蚀剂的成分为体积比为1:6的HF和NH4F的混合溶液,湿法腐蚀时间为1~3 min。
8.根据权利要求1所述的制备方法,其特征在于,步骤(7)中,阳极金属采用高功函数金属,阳极金属的厚度为5~20 nm。
9.根据权利要求8所述的制备方法,其特征在于,步骤(7)中,阳极金属选自铂Pt、镍Ni或金Au中的一种或几种。
10.一种根据权利要求1-9之一所述的制备方法制得的基于氮化镓异质结薄膜的双极型光电二极管,其特征在于,阴极与异质结界面的二维电子气形成欧姆接触,在SiN介电层上的半透明金属阳极与氮化镓异质结形成金属-绝缘体-半导体MIS结构;其在不同波长紫外光激发下产生双向光电流,实现光电二极管的双极性。
CN202210279033.9A 2022-03-21 2022-03-21 基于氮化镓异质结薄膜的双极型光电二极管及其制备方法 Active CN114744076B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210279033.9A CN114744076B (zh) 2022-03-21 2022-03-21 基于氮化镓异质结薄膜的双极型光电二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210279033.9A CN114744076B (zh) 2022-03-21 2022-03-21 基于氮化镓异质结薄膜的双极型光电二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN114744076A true CN114744076A (zh) 2022-07-12
CN114744076B CN114744076B (zh) 2023-12-08

Family

ID=82277443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210279033.9A Active CN114744076B (zh) 2022-03-21 2022-03-21 基于氮化镓异质结薄膜的双极型光电二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN114744076B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162849A (ja) * 1997-12-02 1999-06-18 Showa Denko Kk 積層構造体及びその製造方法
JP2006179546A (ja) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd 半導体電子装置
JP2009231561A (ja) * 2008-03-24 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体結晶薄膜およびその作製方法、半導体装置およびその製造方法
JP2011228428A (ja) * 2010-04-19 2011-11-10 Toyoda Gosei Co Ltd Iii族窒化物半導体からなる半導体装置およびその製造方法、電力変換装置
CN108598182A (zh) * 2018-05-22 2018-09-28 西安电子科技大学 一种部分本征GaN帽层RESURF GaN基肖特基势垒二极管
CN108831932A (zh) * 2018-06-27 2018-11-16 电子科技大学 一种氮化镓横向mis-肖特基混合阳极二极管
US20200220036A1 (en) * 2019-01-08 2020-07-09 Analog Devices, Inc Semiconductor photodetector assembly
CN114023808A (zh) * 2021-11-04 2022-02-08 西安电子科技大学 带P型终端的AlGaN/GaN异质结多沟道功率二极管及制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162849A (ja) * 1997-12-02 1999-06-18 Showa Denko Kk 積層構造体及びその製造方法
JP2006179546A (ja) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd 半導体電子装置
JP2009231561A (ja) * 2008-03-24 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体結晶薄膜およびその作製方法、半導体装置およびその製造方法
JP2011228428A (ja) * 2010-04-19 2011-11-10 Toyoda Gosei Co Ltd Iii族窒化物半導体からなる半導体装置およびその製造方法、電力変換装置
CN108598182A (zh) * 2018-05-22 2018-09-28 西安电子科技大学 一种部分本征GaN帽层RESURF GaN基肖特基势垒二极管
CN108831932A (zh) * 2018-06-27 2018-11-16 电子科技大学 一种氮化镓横向mis-肖特基混合阳极二极管
US20200220036A1 (en) * 2019-01-08 2020-07-09 Analog Devices, Inc Semiconductor photodetector assembly
CN114023808A (zh) * 2021-11-04 2022-02-08 西安电子科技大学 带P型终端的AlGaN/GaN异质结多沟道功率二极管及制作方法

Also Published As

Publication number Publication date
CN114744076B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
JP6321861B2 (ja) ワイドバンドギャップ半導体材料含有のエミッタ領域を有する太陽電池
Dong et al. Germanium-tin on Si avalanche photodiode: device design and technology demonstration
CN106784123B (zh) 单行载流子光电探测器及其制作方法
CN111403505B (zh) 一种双极型可见光探测器及其制备方法
JP6091273B2 (ja) 半導体装置とその製造方法
EP2973745B1 (en) Compound semiconductor photovoltaic cell and manufacturing method of the same
CN113972262B (zh) 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法
US10957808B2 (en) Flexible double-junction solar cell
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
Li et al. High gain, broadband p-WSe2/n-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector
JP2014082285A (ja) 太陽電池およびその製造方法、太陽電池モジュール
Ang et al. High-performance waveguided Ge-on-SOI metal–semiconductor–metal photodetectors with novel silicon–carbon (Si: C) Schottky barrier enhancement layer
CN110190150A (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN114744076B (zh) 基于氮化镓异质结薄膜的双极型光电二极管及其制备方法
KR101372305B1 (ko) 태양전지 셀 및 이의 제조방법
JP6990764B2 (ja) 太陽電池およびその製造方法
Lee et al. Performance Improvement of AlGaAs/GaAs QWIP by ${\rm NH} _ {3} $ Plasma Treatment
CN116666500B (zh) 锗光电探测器及通过热失配应力提高其长波响应的方法
Zhu et al. Sputtering-grown undoped GeSn/Ge multiple quantum wells on n-Ge for low-cost visible/shortwave infrared dual-band photodetection
RU2589464C1 (ru) Способ изготовления многопереходного солнечного элемента
CN114420784B (zh) 一种基于二硒化铂和硅的异质结结构及光电探测器、及其制备方法
RU220600U1 (ru) Гетероструктурный фотодиод для ближнего и среднего ИК-диапазона на основе нитевидных нанокристаллов арсенида-фосфида-висмутида индия на подложках кремния
CN216648333U (zh) 一种基于二硒化铂和硅的异质结结构的光电探测器
TWI780861B (zh) 光電二極體及其用途
Lin et al. Germanium Photodetector with Enhanced Photo-Response at the L-Band and Beyond for Integrated Photonic Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant