CN114736031A - 一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法 - Google Patents
一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN114736031A CN114736031A CN202210272969.9A CN202210272969A CN114736031A CN 114736031 A CN114736031 A CN 114736031A CN 202210272969 A CN202210272969 A CN 202210272969A CN 114736031 A CN114736031 A CN 114736031A
- Authority
- CN
- China
- Prior art keywords
- ceramic
- casting
- pore
- pyroelectric
- thick film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/02—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/29—Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/243—Setting, e.g. drying, dehydrating or firing ceramic articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/003—Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/005—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0022—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
- C04B38/0025—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明提出了一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法,用以解决目前热释电厚膜材料原料浪费严重、极化时易击穿、热释电性能低的技术问题,步骤如下:将锆钛酸铅粉体、溶剂和不同含量的造孔剂分别混合均匀,加入胶粘剂制备得到流延浆料;流延浆料在玻璃板上流延,流延后平放静置,待条带干燥后,获得流延带;具有不同造孔剂含量的流延带进行叠放,将叠放好的流延带先进行热压成型,然后通过冷等静压成型制得陶瓷厚膜生坯;将陶瓷厚膜生坯采用两次热压烧结法进行烧结,得到热释电陶瓷。本发明所制备的热释电陶瓷厚膜一体成型,制备精度高,通过孔隙渐变梯度的引入,降低了热导率和介电常数,改善了陶瓷厚膜的热释电性能。
Description
技术领域
本发明属于热释电陶瓷材料的技术领域,尤其涉及一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法。
背景技术
目前主要的热释电材料包括无铅铁电陶瓷热释电陶瓷材料和钙钛矿铅基热释电陶瓷材料,其中无铅热释电陶瓷材料包括:钨青铜结构的铌酸锶钡系列铁电陶瓷、钙钛矿结构的钛酸钡基、钛酸铋钠基、铌酸钾钠基、铌酸银基等热释电陶瓷,当前无铅热释电陶瓷的制备工艺相比铅基热释电材料均面临着制备工艺复杂、烧结温区窄、成本高、产品质量难以控制等问题。而目前商用的热释电陶瓷一般都为钙钛矿结构的铅基热释电陶瓷材料体系,如锆钛酸铅陶瓷、钙改性钛酸铅陶瓷以及铌镁酸铅-钛酸铅陶瓷等陶瓷材料。热释电红外探测器使用的热释电陶瓷敏厚膜材料一般为80-100um的厚膜。目前的热释电红外探测器用陶瓷厚膜制备工艺是利用传统陶瓷烧结工艺先制备出大尺寸的陶瓷块体,之后经过切割、抛光、磨光等一系列复杂的加工工艺,将其加工成80-100um陶瓷厚膜材料。这种工序存在以下缺点:1)陶瓷厚膜材料需要高度精确的切割、抛光、磨光等加工设备,导致其制造成本增加;2)此过程属于减材制造,材料浪费严重,从大尺寸陶瓷块体加工成最后的陶瓷厚膜材料,在较理想的情况下,材料的成品利用率也仅为10%;3)制备出的陶瓷厚膜材料成分均一,难以调控其微观结构成分。
随着电子信息技术的集成化、微型化和智能化发展趋势,推动着电子元件日益向微型、轻量、薄型、多功能、高可靠和高稳定方向发展。因此开发高性能热释电陶瓷厚膜材料具有重要的意义。高性能的热释电器件需要材料同时具备高热释电系数、低介电常数和介电损耗、低比热容、高居里温度等。而影响热释电厚膜材料性能的主要因素包括组分、微观结构、极化条件等。通过调控陶瓷厚膜材料的成分和结构,可以获得高性能的热释电厚膜材料。而梯度功能材料是一种成分、组成、密度和结构及功能在宏观上不均匀、但又连续变化的新型材料,梯度功能材料是组分和结构呈连续变化的先进材料,由于它具有优异的性能和特殊的功能,例如专利CN 100428517C公开了一种多孔压电陶瓷及其制备方法,通过逐层改变造孔剂含量形成多层复合的、孔隙率梯度变化的多孔压电陶瓷,使压电陶瓷具有依次递减的声阻抗。基于梯度功能材料的特性和优点,按增材制造原理,无需切抛磨等复杂的加工工艺,直接制备出微观结构、组分可控的热释电陶瓷梯度渐变厚膜材料,则可以解决传统工艺制备热释电厚膜材料过程中存在的成品率低、微观组分难以调控、极化时易击穿、热释电性能低等问题。
发明内容
针对目前热释电厚膜材料原料浪费严重、极化时易击穿、热释电性能低的技术问题,本发明提出大尺寸夹心梯度结构的热释电陶瓷及其制备方法,实现了大尺寸热释电陶瓷厚膜的一体成型,高精度制备,通过孔隙渐变梯度的引入,降低了热导率和介电常数,改善了陶瓷厚膜的热释电性能。
为了达到上述目的,本发明的技术方案是这样实现的:
一种大尺寸夹心梯度结构的热释电陶瓷,包括上层、下层和中间层,上层和下层为致密层,中间层为隔热层,隔热层为多孔结构,所述热释电陶瓷为圆形薄片,直径为30-50mm、厚度为70-100um。
所述隔热层的孔隙率在纵向呈梯度变化,隔热层的孔隙率也可以为由中心向两侧递减分布,或者由中心向两侧递增分布。
一种大尺寸夹心梯度结构的热释电陶瓷的制备方法,制备步骤如下:
(1)将锆钛酸铅粉体、溶剂和不同含量的造孔剂分别混合,然后加入锆球搅拌均匀,再加入胶粘剂继续搅拌,制备得到一系列造孔剂含量不同的流延浆料;
(2)将步骤(1)制备的流延浆料分别在玻璃板上流延,流延后平放静置,待条带干燥后,获得造孔剂含量不同的流延带;
(3)将步骤(2)制备的造孔剂含量不同的流延带按要求进行叠放,对叠放的流延带先进行热压成型,然后通过冷等静压成型制得陶瓷厚膜生坯;
(4)将步骤(3)制备的陶瓷厚膜生坯采用两次热压烧结法进行烧结,冷却之后得到热释电陶瓷。
所述步骤(1)中造孔剂为碳酸铵或碳酸氢铵,锆钛酸铅粉体与造孔剂的质量比为100:(0-8)。
所述步骤(1)中溶剂为质量比为(1.2-1.6):1的甲苯和乙醇的混合溶剂,混合溶剂与锆钛酸铅粉体的质量比为(2-3.5):1。
所述步骤(1)中胶粘剂为神州Ⅲ号胶粘剂,胶粘剂的添加量为锆钛酸铅粉体和造孔剂质量和的20%-30%。
所述步骤(2)中流延工艺的流延速率为15-30cm/min。
所述步骤(3)中流延带的叠放要求为上层和下层选用无造孔剂的流延带,隔热层中按流延带中造孔剂含量逐渐升高进行铺放;冷等静压成型过程中的压强为255-300MPa。
所述步骤(3)中隔热层的流延带叠加层数为3-5层。
所述步骤(4)中两次压力烧结的工艺为:首先在550-650℃的温度下烧结时间30-60min,升温速率为0.5-2℃/min;随后将温度升温至850-960℃,升温速率为2-5℃/min,烧结时间30-60min,之后自然降至室温;第二次压力烧结温度为1100-1180℃,升温速率为1-3℃/min,烧结时间30-60min;两次压力烧结过程中陶瓷厚膜生坯单位面积上施加的压力为500-1300N。
本发明的有益效果:
(1)此工艺无需切抛磨加工工艺可直接获得直径为30-50mm、厚度为70-100um夹心梯度渐变厚膜材料,可以有效解决传统陶瓷材料的切磨抛加工难题,避免切磨抛过程产生的应力对厚膜材料的影响,防止厚膜表面微裂纹的产生,抑制切磨抛工艺对陶瓷厚膜的损伤、破损,提升陶瓷厚膜材料的品质。
(2)低温度、短时烧结工艺可以抑制晶粒尺寸的生长,获得损耗更低、介电常数适合、热释电性能优异的锆钛酸铅组分梯度渐变厚膜材料;各层采用相同的原料,保证在热压烧结过程中各层能相互粘结,避免分层、破裂现象的发生。
(3)梯度渐变的孔隙结构一方面可以改善陶瓷厚膜内电场分布情况,提高其耐击穿性能,防止热释电材料在高温极化过程中击穿,另外,由于空气的介电常数为1,因此可以大幅度降低材料的介电常数和热导率,提高其热释电优值,改善陶瓷厚膜的热释电性能;上下两侧采用致密结构,在极化作用时,便于电荷能均匀分布于材料表面。通过夹心梯度结构的设置,使高性能储能热释电厚膜在红外探测器、家电自动控制、安全警戒系统等现代化工业领域具有广泛的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1厚膜材料的断面扫描电子显微镜(SEM)图谱。
图2为实施例2厚膜材料的断面面扫描电子显微镜(SEM)图谱。
图3为实施例1厚膜材料的表面扫描电子显微镜(SEM)图谱。
图4为实施例1、2、3厚膜材料的介电常数随频率变化曲线。
图5为实施例1、2、3厚膜材料的介电损耗随频率变化曲线。
图6为实施例1、2、3厚膜材料的10kHz下介电常数随温度变化曲线。
图7为实施例1厚膜材料的P-E电滞回线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法,热释电陶瓷薄膜为直径30mm的圆形薄片,厚度为70um,其中,上下表面为致密结构,中间为具有孔隙的夹心层,夹心层的孔隙在纵深方向具有梯度变化。
具体制备步骤如下:
(1)将锆钛酸铅粉体、造孔剂混合,加入锆球及质量比为1.2:1的甲苯和乙醇的混合溶剂,混合溶剂与陶瓷粉料质量的比值为2:1,神州Ⅲ号胶粘剂的加入量为锆钛酸铅粉体和造孔剂质量和的20%,搅拌3h后再加入广州神州光电有限责任公司生产的神州Ⅲ号胶粘剂继续搅拌10h,获得具有一定粘性和流动性的流延浆料;分别配置不含有造孔剂和锆钛酸铅粉体与造孔剂两者之间的质量比为100:4、100:5、100:6的流延浆料。
(2)分别将含有不同造孔剂的流延浆料在玻璃板上流延,流延时控制流延速率为15cm/min,流延后平放静置,待条带干燥后,获得含有不同含量的造孔剂的流延带,之后按照上、下表面流延带中无造孔剂材料,中间层造孔剂含量逐渐升高的原则进行叠片,对叠片先进行热压成型、后经过冷等静压成型,压强300MPa,制得陶瓷厚膜生坯。
(3)将陶瓷厚膜生坯首先采用0.5℃/min升温至550℃,并保温30min,之后采用2℃/min升温至850℃,并保温30min,之后自然降到室温,第二次压力烧结采用1℃/min升温至1100℃,并保温30min,两次压力烧结的厚膜材料单位面积上施加的压力为500N,冷却之后制备得到直径为30mm,厚度为70um的热释电陶瓷。
该实施例制备的热释电陶瓷材料断面扫描电镜图如图1所示,从图中结果看到:最终制备出的厚膜材料厚度为70 um,厚膜材料的上、下表面为致密的热释电陶瓷层,中间通过引入造孔剂形成多孔隔热层,各层之间粘结紧密。图3为实施例1制备的锆钛酸铅组分梯度渐变的厚膜材料表面扫描电镜图,从图中可以看到厚膜材料表面呈现出没有空隙且非常致密的微观形貌结构,晶粒尺寸为2-4 um,晶粒分布均匀。
由图4-6可知,本实施例制备热释电陶瓷材料的居里温度Tc为240℃,室温1kHz时介电常数为339;介电损耗tanδ为2.2%;压电应变常数D33为58pC/N。热释电系数为17×10-8C/cm2·K,探测优值高于16×10-5Pa-1/2,制成的传感器探测距离:≧12米,噪声为40-60mV;灵敏度:≧5.0V。,
由图7可知,在外加电场为3kV/mm时,厚膜材料的电滯回线呈现正常“矩形”回线,并逐渐趋于饱和,说明实施例1厚膜材料具有较好的铁电性能。
实施例2
一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法,热释电陶瓷薄膜为直径50mm的圆形薄片,厚度为80um,其中,上下表面为致密结构,中间为具有孔隙的夹心层,夹心层的孔隙在纵深方向具有梯度变化。
具体制备步骤如下:
(1)将锆钛酸铅粉体、造孔剂混合,加入锆球及质量比为1.6:1的甲苯和乙醇的混合溶剂,混合溶剂与陶瓷粉料质量的比值为3:1,神州Ⅲ号胶粘剂的加入量为锆钛酸铅粉体和造孔剂质量和的30%,搅拌5h后再加入神州Ⅲ号胶粘剂继续搅拌15h,获得具有一定粘性和流动性的流延浆料;分别配置不含有造孔剂和锆钛酸铅粉体与造孔剂两者之间的质量比为100:6、100:7、100:8的流延浆料。
(2)分别将含有不同造孔剂的流延浆料在玻璃板上流延,流延时控制流延速率为30cm/min,流延后平放静置,待条带干燥后,获得含有不同含量的造孔剂的流延带,之后按照上、下表面流延带中无造孔剂材料,中间层造孔剂含量逐渐升高的原则进行叠片,对叠片先进行热压成型、后经过冷等静压成型,压强255MPa,制得陶瓷厚膜生坯。
(3)将陶瓷厚膜生坯首先采用2℃/min升温至650℃,并保温60min,之后采用5℃/min升温至960℃,并保温60min,之后自然降到室温,第二次压力烧结采用3℃/min升温至1180℃,并保温60min,两次压力烧结的厚膜材料单位面积上施加的压力为1300N,冷却之后制备得到直径为50mm,厚度为80um的热释电陶瓷。
制备的锆钛酸铅组分梯度渐变的厚膜材料断面扫描电镜图如图2所示,从图中结果看到:最终制备出的厚膜材料厚度为80um,厚膜材料的上、下表面为致密的热释电陶瓷层,中间通过引入造孔剂形成多孔隔热层。由图4-6可知,热释电陶瓷材料的居里温度Tc为240℃;室温1kHz时介电常数为283;介电损耗tanδ为2.0%;压电应变常数D33为56pC/N。制成的传感器探测距离:≧12米,噪声:40-60mV;灵敏度:≧5.0V。
实施例3
一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法,热释电陶瓷薄膜为直径35mm的圆形薄片,厚度为100um,其中,上下表面为致密结构,中间为具有孔隙的夹心层,夹心层的孔隙在纵深方向具有梯度变化。
具体制备步骤如下:
(1)将锆钛酸铅粉体、造孔剂混合,加入锆球及质量比为1.3:1的甲苯和乙醇的混合溶剂,混合溶剂与陶瓷粉料质量的比值为3.5:1,神州Ⅲ号胶粘剂的加入量为锆钛酸铅粉体和造孔剂质量和的25%,搅拌4h后再加入神州Ⅲ号胶粘剂继续搅拌11h,获得具有一定粘性和流动性的流延浆料;分别配置不含有造孔剂和锆钛酸铅粉体与造孔剂两者之间的质量比为100:4、100:6、100:8的流延浆料。
(2)分别将含有不同造孔剂的流延浆料在玻璃板上流延,流延时控制流延速率为20cm/min,流延后平放静置,待条带干燥后,获得含有不同含量的造孔剂的流延带,之后按照上、下表面流延带中无造孔剂材料,中间层造孔剂含量逐渐升高的原则进行叠片,对叠片先进行热压成型、后经过冷等静压成型,压强300MPa,制得陶瓷厚膜生坯。
(3)将陶瓷厚膜生坯首先采用1℃/min升温至600℃,并保温40min,之后采用3℃/min升温至900℃,并保温40min,之后自然降到室温,第二次压力烧结采用2℃/min升温至1150℃,并保温40min,两次压力烧结的厚膜材料单位面积上施加的压力为600N,冷却之后制备得到直径为35mm,厚度为100um的热释电陶瓷。
由图4-6可知,热释电陶瓷材料的居里温度Tc为240℃;1kHz时介电常数为272;介电损耗tanδ为2.1%;压电应变常数D33为56pC/N。制成的传感器探测距离:≧12米,噪声:40-60mV;灵敏度:≧5.0V。
实施例4
一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法,热释电陶瓷薄膜为直径45mm的圆形薄片,厚度为90um,其中,上下表面为致密结构,中间为具有孔隙的夹心层,夹心层的孔隙在纵深方向具有梯度变化。
具体制备步骤如下:
(1)将锆钛酸铅粉体、造孔剂混合,加入锆球及质量比为1.5:1的甲苯和乙醇的混合溶剂,混合溶剂与陶瓷粉料质量的比值为2:1,神州Ⅲ号胶粘剂的加入量为锆钛酸铅粉体和造孔剂质量和的25%,搅拌4.5h后再加入神州Ⅲ号胶粘剂继续搅拌13h,获得具有一定粘性和流动性的流延浆料;分别配置不含有造孔剂和锆钛酸铅粉体与造孔剂两者之间的质量比为100:5、100:6、100:7的流延浆料。
(2)分别将含有不同造孔剂的流延浆料在玻璃板上流延,流延时控制流延速率为25cm/min,流延后平放静置,待条带干燥后,获得含有不同含量的造孔剂的流延带,之后按照上、下表面流延带中无造孔剂材料,中间层造孔剂含量逐渐升高的原则进行叠片,对叠片先进行热压成型、后经过冷等静压成型,压强300MPa,制得陶瓷厚膜生坯。
(3)将陶瓷厚膜生坯首先采用1℃/min升温至620℃,并保温55min,之后采用4℃/min升温至920℃,并保温55min,之后自然降到室温,第二次压力烧结采用2℃/min升温至1170℃,并保温55min,两次压力烧结的厚膜材料单位面积上施加的压力为550N,冷却之后制备得到直径为45mm,厚度为90um的热释电陶瓷。
实施例5
一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法,热释电陶瓷薄膜为直径40mm的圆形薄片,厚度为95um,其中,上下表面为致密结构,中间为具有孔隙的夹心层,夹心层的孔隙在纵深方向具有中间高,向两侧递减的梯度变化。
具体制备步骤如下:
(1)将锆钛酸铅粉体、造孔剂混合,加入锆球及质量比为1.6:1的甲苯和乙醇的混合溶剂,混合溶剂与陶瓷粉料质量的比值为3:1,神州Ⅲ号胶粘剂的加入量为锆钛酸铅粉体和造孔剂质量和的27%,搅拌4h后再加入神州Ⅲ号胶粘剂继续搅拌14h,获得具有一定粘性和流动性的流延浆料;分别配置不含有造孔剂和锆钛酸铅粉体与造孔剂两者之间的质量比为100:5、100:7、100:8的流延浆料。
(2)分别将含有不同造孔剂的流延浆料在玻璃板上流延,流延时控制流延速率为27cm/min,流延后平放静置,待条带干燥后,获得含有不同含量的造孔剂的流延带,其中,锆钛酸铅粉体与造孔剂两者之间的质量比为100:5的两片,锆钛酸铅粉体与造孔剂两者之间的质量比为100:7的两片,锆钛酸铅粉体与造孔剂两者之间的质量比为100:8的一片,之后按照上、下表面流延带中无造孔剂材料,中间层造孔剂含量中间高,向两侧递减的梯度变化进行叠放,对叠片先进行热压成型、后经过冷等静压成型,压强300MPa,制得陶瓷厚膜生坯。
(3)将陶瓷厚膜生坯首先采用1℃/min升温至570℃,并保温45min,之后采用2℃/min升温至930℃,并保温45min,之后自然降到室温,第二次压力烧结采用2.5℃/min升温至1160℃,并保温45min,两次压力烧结的厚膜材料单位面积上施加的压力为900N,冷却之后制备得到直径为40mm,厚度为95um的热释电陶瓷。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种大尺寸夹心梯度结构的热释电陶瓷,包括上层、下层和中间层,其特征在于:上层和下层为致密层,中间层为隔热层,隔热层为多孔结构,所述热释电陶瓷为圆形薄片,直径为30-50mm、厚度为70-100um。
2.根据权利要求1所述的大尺寸夹心梯度结构的热释电陶瓷,其特征在于:所述隔热层的孔隙率在纵向呈梯度变化。
3.权利要求1或2所述的大尺寸夹心梯度结构的热释电陶瓷的制备方法,其特征在于,制备步骤如下:
(1)将锆钛酸铅粉体、溶剂和不同含量的造孔剂分别混合,然后加入锆球搅拌均匀,再加入胶粘剂继续搅拌,制备得到一系列造孔剂含量不同的流延浆料;
(2)将步骤(1)制备的流延浆料分别在玻璃板上流延,流延后平放静置,待条带干燥后,获得造孔剂含量不同的流延带;
(3)将步骤(2)制备的造孔剂含量不同的流延带按要求进行叠放,对叠放的流延带先进行热压成型,然后通过冷等静压成型制得陶瓷厚膜生坯;
(4)将步骤(3)制备的陶瓷厚膜生坯采用两次热压烧结法进行烧结,冷却之后得到热释电陶瓷。
4.根据权利要求3所述大尺寸夹心梯度结构的热释电陶瓷的制备方法,其特征在于:所述步骤(1)中造孔剂为碳酸铵或碳酸氢铵,锆钛酸铅粉体与造孔剂的质量比为100:(0-8)。
5.根据权利要求4所述大尺寸夹心梯度结构的热释电陶瓷的制备方法,其特征在于:所述步骤(1)中溶剂为质量比为(1.2-1.6):1的甲苯和乙醇的混合溶剂,混合溶剂与锆钛酸铅粉体的质量比为(2-3.5):1。
6.根据权利要求5所述大尺寸夹心梯度结构的热释电陶瓷的制备方法,其特征在于:所述步骤(1)中胶粘剂为神州Ⅲ号胶粘剂,胶粘剂的添加量为锆钛酸铅粉体和造孔剂质量和的20%-30%。
7.根据权利要求3所述具有夹心梯度结构的热释电陶瓷的制备方法,其特征在于:所述步骤(2)中流延工艺的流延速率为15-30cm/min。
8.根据权利要求3所述大尺寸夹心梯度结构的热释电陶瓷的制备方法,其特征在于:所述步骤(3)中流延带的叠放要求为上层和下层选用无造孔剂的流延带,隔热层中按流延带中造孔剂含量逐渐升高进行铺放;冷等静压成型过程中的压强为255-300MPa。
9.根据权利要求8所述大尺寸夹心梯度结构的热释电陶瓷的制备方法,其特征在于:所述步骤(3)中隔热层的流延带叠加层数为3-5层。
10.根据权利要求3所述大尺寸夹心梯度结构的热释电陶瓷的制备方法,其特征在于:所述步骤(4)中两次压力烧结的工艺为:首先在550-650℃的温度下烧结时间30-60min,升温速率为0.5-2℃/min;随后将温度升温至850-960℃,升温速率为2-5℃/min,烧结时间30-60min,之后自然降至室温;第二次压力烧结温度为1100-1180℃,升温速率为1-3℃/min,烧结时间30-60min;两次压力烧结过程中陶瓷厚膜生坯单位面积上施加的压力为500-1300N。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210272969.9A CN114736031B (zh) | 2022-03-18 | 2022-03-18 | 一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210272969.9A CN114736031B (zh) | 2022-03-18 | 2022-03-18 | 一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114736031A true CN114736031A (zh) | 2022-07-12 |
CN114736031B CN114736031B (zh) | 2023-09-29 |
Family
ID=82277482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210272969.9A Active CN114736031B (zh) | 2022-03-18 | 2022-03-18 | 一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114736031B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115959925A (zh) * | 2022-12-13 | 2023-04-14 | 深圳市吉迩科技有限公司 | 一种双层结构多孔陶瓷及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307295A (ja) * | 2005-04-28 | 2006-11-09 | National Institute Of Advanced Industrial & Technology | 多孔質金属又は多孔質セラミックス用粘土組成物、それを用いた多孔質金属又は多孔質セラミックスの製造方法 |
CN1953226A (zh) * | 2006-11-17 | 2007-04-25 | 清华大学 | 一种多孔压电陶瓷及其制备方法 |
CN101817083A (zh) * | 2010-04-06 | 2010-09-01 | 武汉理工大学 | 一种流延法制备Mg-Cu体系密度梯度材料的方法 |
CN103553601A (zh) * | 2013-11-11 | 2014-02-05 | 中国科学院上海硅酸盐研究所 | 一种三层结构锆钛酸铅铁电陶瓷材料及其制备方法 |
CN109984387A (zh) * | 2019-04-22 | 2019-07-09 | 深圳市合元科技有限公司 | 雾化组件及其制备方法 |
-
2022
- 2022-03-18 CN CN202210272969.9A patent/CN114736031B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307295A (ja) * | 2005-04-28 | 2006-11-09 | National Institute Of Advanced Industrial & Technology | 多孔質金属又は多孔質セラミックス用粘土組成物、それを用いた多孔質金属又は多孔質セラミックスの製造方法 |
CN1953226A (zh) * | 2006-11-17 | 2007-04-25 | 清华大学 | 一种多孔压电陶瓷及其制备方法 |
CN101817083A (zh) * | 2010-04-06 | 2010-09-01 | 武汉理工大学 | 一种流延法制备Mg-Cu体系密度梯度材料的方法 |
CN103553601A (zh) * | 2013-11-11 | 2014-02-05 | 中国科学院上海硅酸盐研究所 | 一种三层结构锆钛酸铅铁电陶瓷材料及其制备方法 |
CN109984387A (zh) * | 2019-04-22 | 2019-07-09 | 深圳市合元科技有限公司 | 雾化组件及其制备方法 |
Non-Patent Citations (2)
Title |
---|
CHRISTOPHER P. SHAW ET AL.: ""Porous, Functionally Gradient Pyroelectric Materials"", 《J. AM. CERAM. SOC.》 * |
HENGCHANG NIE ET AL.: "Enhanced performances of sandwich structure Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics for pulsed power application", MATERIALS RESEARCH BULLETIN * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115959925A (zh) * | 2022-12-13 | 2023-04-14 | 深圳市吉迩科技有限公司 | 一种双层结构多孔陶瓷及其制备方法和应用 |
CN115959925B (zh) * | 2022-12-13 | 2024-04-23 | 深圳市吉迩科技有限公司 | 一种双层结构多孔陶瓷及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114736031B (zh) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7365958B2 (en) | Dielectric ceramics, multilayer ceramic capacitor and method for manufacturing the same | |
Zhang et al. | Microstructure and electrical properties of (Pb0. 87Ba0. 1La0. 02)(Zr0. 68Sn0. 24Ti0. 08) O3 anti-ferroelectric ceramics fabricated by the hot-press sintering method | |
CN102503413B (zh) | 一种织构化的(1-x-y)BNT-xBKT-yKNN陶瓷材料及其制备方法 | |
CN103265293B (zh) | 陶瓷基片的制备方法 | |
CN108546125B (zh) | 一种面向高温环境应用的压电陶瓷材料及其制备方法 | |
CN110330332B (zh) | 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法 | |
US6097135A (en) | Shaped multilayer ceramic transducers and method for making the same | |
CN114736031B (zh) | 一种大尺寸夹心梯度结构的热释电陶瓷及其制备方法 | |
JP2014058418A (ja) | 積層構造体、半導体製造装置用部材及び積層構造体の製造方法 | |
CN107759215A (zh) | 制备巨介电常数低损耗陶瓷电容器的方法 | |
Chi et al. | Effect of particle size on the dielectric properties of 0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 8) TiO3/polyvinylidene fluoride hybrid films | |
CN104529447A (zh) | 铋层状复合结构压电陶瓷材料及其制备方法 | |
CN114180943A (zh) | 复合烧结体、半导体制造装置构件及复合烧结体的制造方法 | |
Yan et al. | Grain growth, densification and electrical properties of lead-free piezoelectric ceramics from nanocrystalline (Ba 0.85 Ca 0.15)(Ti 0.90 Zr 0.10) O 3 powder by sol–gel technique | |
CN102719793A (zh) | 一种具有高调谐率的钛酸锶铅铁电薄膜及其制备方法 | |
Wang et al. | Enhanced electrical properties of novel Pb (Ni1/3Nb2/3) O3–BiScO3–PbTiO3 ternary system near morphotropic phase boundary | |
US11551867B2 (en) | Dielectric composition, dielectric thin film, dielectric element, and electronic circuit board | |
CN111470866A (zh) | 金刚石-碳化硅复合材料及其制备方法、电子设备 | |
CN110563460A (zh) | 一种热释电传感器用敏感元材料大尺寸制备方法 | |
CN114149258B (zh) | 一种具有叠层结构的压电陶瓷及其制备方法和应用 | |
JP7521783B2 (ja) | AlN焼結部材の製造方法、電極埋設部材の製造方法および電極埋設部材 | |
CN114716241B (zh) | 一种高电压陶瓷介质材料及其制备方法与应用 | |
CN115959905B (zh) | 一种钛锆酸铅与氧化镁垂直自组装纳米复合介电储能薄膜及其制备方法 | |
CN115108826B (zh) | 一种低电场驱动高储能密度和超快放电速率的弛豫铁电陶瓷材料及其制备方法 | |
CN103214237A (zh) | 一种巨介电常数钛酸钡陶瓷的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |