CN114709257A - 一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法 - Google Patents

一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法 Download PDF

Info

Publication number
CN114709257A
CN114709257A CN202210197028.3A CN202210197028A CN114709257A CN 114709257 A CN114709257 A CN 114709257A CN 202210197028 A CN202210197028 A CN 202210197028A CN 114709257 A CN114709257 A CN 114709257A
Authority
CN
China
Prior art keywords
ferroelectric
substrate
graphene
gase
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210197028.3A
Other languages
English (en)
Other versions
CN114709257B (zh
Inventor
刘富才
马博文
卞仁吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210197028.3A priority Critical patent/CN114709257B/zh
Publication of CN114709257A publication Critical patent/CN114709257A/zh
Application granted granted Critical
Publication of CN114709257B publication Critical patent/CN114709257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提出一种基于Ⅲ‑Ⅵ族材料(GaSe)层间滑移铁电场效应晶体管器件,利用该类材料中电场控制层间滑移实现极化翻转的特性,可以实现对沟道费米能级和电导率的调控,与传统铁电场效应晶体管相比,二维超薄铁电体可以显著缩小器件尺寸,增加有效栅电场,翻转或极化所需的电压可以进一步降低,从而可以实现低功耗存储。这种外加电场调控层间滑移的新型铁电场效应晶体管器件为实现高性能的铁电存储及高集成度的存储芯片提供了新平台。

Description

一种基于二维层间滑移铁电半导体的场效应晶体管器件及其 制备方法
技术领域:
本发明涉及半导体技术领域,特别涉及一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法。
背景技术:
在如今的大数据时代,面对迫切高性能计算需求,尤其是在处理复杂的实时的图形识别以及自然语言处理程序时,当前的冯·诺依曼(Von Neumann)体系性能很难与平均人脑水平匹配。器件的缩小可以驱动计算能力的提升,同时设备尺寸的减小使得速度和功率得以改善。伴随着摩尔定理的终结,制造成本的增加和基本物理原理的局限性,使得器件缩小本身不能再提供所期望的性能改善。所以,创新性的器件变得尤为重要,更是满足我们对不断增长的数据和信息的强烈需求。
石墨烯的发现为科学家和半导体工程师们开拓了一个全新的二维材料的世界,自此,二维材料如雨后春笋般蓬勃发展,包括过渡金属硫族化物、黑鳞和氮化硼等许多体系,为了发现更多的现象和实现更好的器件性能,通常不仅研究单个的材料,还将不同的二维材料组合到一起,搭建出范德华异质结。由于基于二维材料的范德华异质结不受晶格失配的限制,因此,可以任意组合成多种多样的异质结构。异质结构被广泛应用于电子器件中,在现代半导体工业中起着重要作用,如场效应晶体管、光探测器以及发光二极管等,为新功能、高性能的新型光电子器件的发展提供了一种全新的思路。而二维铁电材料具有两种可切换的稳定极化状态,十分适用于随机存取存储器的应用,这就要求其在两种稳定态之间容易切换以实现存储。近年来,人们对二维铁电场效应晶体管的微型化和低功耗进行了大量的研究,在一些二维范德华铁电材料中存在着较强的面外极化,有望能够大幅提高极化翻转的次数,增加二维铁电场效应晶体管的使用寿命。
发明内容:
本发明提供了一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法,利用Ⅲ-Ⅵ族化合物GaSe作为铁电介质层,通过电场调控层间滑移的方法实现铁电极化和翻转,从而实现对沟道电导率的调控,实现室温下低功耗存储;
利用室温干法转移能有效避免空气氧化的影响,极大地保留GaSe的物性,保证了器件的性能。
本发明的技术解决措施如下:一种基于二维层间滑移铁电半导体的场效应晶体管器件,包括由下至上依次叠置的支撑衬底、背栅电极、铁电介质层、绝缘介质层和源漏电极,所述源漏电极包括源极电极和漏极电极,所述源极电极和漏极电极之间设置有导电沟道,所述导电沟道为石墨烯材料,所述铁电介质层为层状二维层间滑移铁电半导体材料GaSe,所述绝缘介质层为h-BN材料,所述源极电极和漏极电极分别与导电沟道两端连接,并形成含有洁净范德华界面的肖特基接触或欧姆接触。
一种基于二维层间滑移铁电半导体的场效应晶体管器件的制备方法,其具体加工步骤如下:
S1、绝缘介质层材料h-BN的制备:选用PDMS为支撑衬底,采用机械剥离法从h-BN晶体中获得少层的h-BN样品;
S2、铁电介质层材料GaSe的制备:从GaSe晶体中获得少层的GaSe样品,在显微镜辅助下找到合适的样品并做好位置标记;
S3、导电沟道材料石墨烯的制备:选用SiO2为支撑衬底,采用机械剥离法从层状石墨晶体中获得少层及单层的石墨烯样品,在显微镜辅助下找到合适样品并做好标记;
S4、铁电介质层的转移:室温下,在显微镜和三维位移台辅助下,将带有GaSe的PDMS衬底缓慢均匀地贴附到SiO2衬底的少层石墨烯上,并使GaSe对准少层石墨烯的相应位置,并缓慢抬起玻璃片,实现铁电介质层GaSe到SiO2衬底的转移;
S5、绝缘介质层的转移:室温下,在显微镜和三维位移台辅助下,将带有h-BN的PDMS衬底缓慢均匀地贴附到SiO2衬底的少层石墨烯上,并使h-BN对准少层石墨烯的相应位置,并缓慢抬起玻璃片,可以实现绝缘介质层h-BN到SiO2衬底的转移;
S6、沟道石墨烯的转移:先将样品台加热至60℃,在显微镜和三维位移台辅助下,利用PC干法转移膜的一角缓慢均匀地贴附到带有单层石墨烯的SiO2衬底,待冷却至室温,缓慢抬起玻璃片,PC膜将石墨烯提起,实现沟道石墨烯到PC膜的转移,然后,缓慢均匀地压到上一步制得的介质层上,最后得到附有PC膜的器件样品;
S7、金属引出电极的制备:先将步骤S6制得的器件样品置于氯仿中,50℃加热半小时,取出后用氮气吹干去除PC薄膜;然后采用电子束光刻机,原位曝光显影制备出引出电极光刻图形;再利用热蒸发镀膜设备以
Figure BDA0003526274510000031
的速率沉积制备出Ti(5nm)/Au(50nm)的金属薄膜;随后将样品浸入丙酮溶液lift-off制得图形化的金属引出电极;最后利用银胶和金线引出源漏电极和背栅电极,完成器件制备。
步骤S6中的所述PC干法转移膜的制备方法为:取2ml的10wt%PC溶液滴于清洗干净的玻璃片衬底,然后将其置于温度为50℃的加热板烘1h,得到PC膜;然后用刀片划取3mm×3mm的PC膜,平整面朝上地放置粘附于PDMS衬底上,获得PC干法转移膜。
本发明的有益效果在于:设计一种基于Ⅲ-Ⅵ族材料(GaSe)层间滑移铁电场效应晶体管器件,利用该类材料中电场控制层间滑移实现极化翻转的特性,可以实现对沟道费米能级和电导率的调控,与传统铁电场效应晶体管相比,二维超薄铁电体可以显著缩小器件尺寸,增加有效栅电场,翻转或极化所需的电压可以进一步降低,从而可以实现低功耗存储。这种外加电场调控层间滑移的新型铁电场效应晶体管器件为实现高性能的铁电存储及高集成度的存储芯片提供了新平台。
附图说明:
图1为本发明场效应晶体管器件的结构示意图;
图2为本发明中GaSe层间滑移铁电场效应晶体管器件输出特性曲线;
图3为本发明中GaSe层间滑移铁电场效应晶体管器件转移特性曲线;
图4为本发明中GaSe层间滑移铁电场效应晶体管器件存储特性曲线。
图中:1、支撑衬底;2、背栅电极;3、铁电介质层;4、绝缘介质层;5、导电沟道;6、源极电极;7、漏极电极。
具体实施方式:
结合附图对本发明一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法,做进一步说明。
本发明的一种基于二维层间滑移铁电半导体的场效应晶体管器件,包括由下至上依次叠置的支撑衬底 1、背栅电极 2、铁电介质层 3、绝缘介质层4和源漏电极,所述源漏电极包括源极电极6和漏极电极7,所述源极电极6和漏极电极7之间设置有导电沟道5,所述导电沟道5为石墨烯材料,所述铁电介质层3为层状二维层间滑移铁电半导体材料GaSe,所述绝缘介质层4为h-BN材料,所述源极电极6和漏极电极6分别与导电沟道5两端连接,并形成含有洁净范德华界面的肖特基接触或欧姆接触。
一种基于二维层间滑移铁电半导体的场效应晶体管器件的制备方法,其具体加工步骤如下:
S1、绝缘介质层材料h-BN的制备:选用PDMS为支撑衬底,采用机械剥离法从h-BN晶体中获得少层的h-BN样品;
S2、铁电介质层材料GaSe的制备:从GaSe晶体中获得少层的GaSe样品,在显微镜辅助下找到合适的样品并做好位置标记;
S3、导电沟道材料石墨烯的制备:选用SiO2为支撑衬底,采用机械剥离法从层状石墨晶体中获得少层及单层的石墨烯样品,在显微镜辅助下找到合适样品并做好标记;
S4、铁电介质层3的转移:室温下,在显微镜和三维位移台辅助下,将带有GaSe的PDMS衬底缓慢均匀地贴附到SiO2衬底的少层石墨烯上,并使GaSe对准少层石墨烯的相应位置,并缓慢抬起玻璃片,实现铁电介质层GaSe到SiO2衬底的转移;
S5、绝缘介质层4的转移:室温下,在显微镜和三维位移台辅助下,将带有h-BN的PDMS衬底缓慢均匀地贴附到SiO2衬底的少层GaSe上,并使h-BN对准少层石墨烯的相应位置,并缓慢抬起玻璃片,可以实现绝缘介质层h-BN到SiO2衬底的转移;
S6、沟道石墨烯的转移:先将样品台加热至60℃,在显微镜和三维位移台辅助下,利用PC干法转移膜的一角缓慢均匀地贴附到带有单层石墨烯的SiO2衬底,待冷却至室温,缓慢抬起玻璃片,PC膜将石墨烯提起,实现沟道石墨烯到PC膜的转移,然后,缓慢均匀地压到上一步制得的介质层上,最后得到附有PC膜的器件样品;
S7、金属引出电极的制备:先将步骤S6制得的器件样品置于氯仿中,50℃加热半小时,取出后用氮气吹干去除PC薄膜;然后采用电子束光刻机,原位曝光显影制备出引出电极光刻图形;再利用热蒸发镀膜设备以
Figure BDA0003526274510000061
的速率沉积制备出Ti(5nm)/Au(50nm)的金属薄膜;随后将样品浸入丙酮溶液lift-off制得图形化的金属引出电极;最后利用银胶和金线引出源漏电极和背栅电极,完成器件制备。
步骤S6中的所述PC干法转移膜的制备方法为:取2ml的10wt%PC溶液滴于清洗干净的玻璃片衬底,然后将其置于温度为50℃的加热板烘1h,得到PC膜;然后用刀片划取3mm×3mm的PC膜,平整面朝上地放置粘附于PDMS衬底上,获得PC干法转移膜。
测试不同试验条件下GaSe层间滑移铁电场效应晶体管器件性能:
得到GaSe层间滑移铁电场效应晶体管器件输出特性曲线,如附图2所示,表明沟道材料与金属电极实现了良好的欧姆接触;
得到GaSe层间滑移铁电场效应晶体管器件转移特性曲线,如附图3所示,表现出了明显的铁电回滞信号;
得到GaSe层间滑移铁电场效应晶体管器件存储特性曲线,如附图4所示,在0-1000s的时间内,其具有优异的铁电保持特性。
以上所述仅为本发明的较佳实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (5)

1.一种基于二维层间滑移铁电半导体的场效应晶体管器件,其特征在于,包括由下至上依次叠置的支撑衬底、背栅电极、铁电介质层、绝缘介质层和源漏电极,所述源漏电极包括源极电极和漏极电极,所述源极电极和漏极电极之间设置有导电沟道,所述导电沟道为石墨烯材料,所述铁电介质层为层状二维层间滑移铁电半导体材料GaSe,所述绝缘介质层为h-BN材料,所述源极电极和漏极电极分别与导电沟道两端连接,并形成含有洁净范德华界面的肖特基接触或欧姆接触。
2.根据权利要求1所述的一种基于二维层间滑移铁电半导体的场效应晶体管器件的制备方法,其特征在于,具体加工步骤如下:
S1、绝缘介质层材料h-BN的制备:选用PDMS为支撑衬底,采用机械剥离法从h-BN晶体中获得少层的h-BN样品;
S2、铁电介质层材料GaSe的制备:从GaSe晶体中获得少层的GaSe样品,在显微镜辅助下找到合适的样品并做好位置标记;
S3、导电沟道材料石墨烯的制备:选用SiO2为支撑衬底,采用机械剥离法从层状石墨晶体中获得少层及单层的石墨烯样品,在显微镜辅助下找到合适样品并做好标记;
S4、铁电介质层的转移:室温下,在显微镜和三维位移台辅助下,将带有GaSe的PDMS衬底缓慢均匀地贴附到SiO2衬底的少层石墨烯上,并使GaSe对准少层石墨烯的相应位置,并缓慢抬起玻璃片,实现铁电介质层GaSe到SiO2衬底的转移;
S5、绝缘介质层的转移:室温下,在显微镜和三维位移台辅助下,将带有h-BN的PDMS衬底缓慢均匀地贴附到SiO2衬底的少层石墨烯上,并使h-BN对准少层铁电介质层GaSe的相应位置,并缓慢抬起玻璃片,可以实现绝缘介质层h-BN到SiO2衬底的转移;
S6、沟道石墨烯的转移:先将样品台加热至60℃,在显微镜和三维位移台辅助下,利用PC干法转移膜的一角缓慢均匀地贴附到带有单层石墨烯的SiO2衬底,待冷却至室温,缓慢抬起玻璃片,PC膜将石墨烯提起,实现沟道石墨烯到PC膜的转移,然后,缓慢均匀地压到上一步制得的介质层上,最后得到附有PC膜的器件样品;
S7、金属引出电极的制备:先将步骤S6制得的器件样品置于氯仿中,50℃加热半小时,取出后用氮气吹干去除PC薄膜;然后采用电子束光刻机,原位曝光显影制备出引出电极光刻图形;再利用热蒸发镀膜设备制得金属薄膜;随后将样品浸入丙酮溶液lift-off制得图形化的金属引出电极;最后利用银胶和金线引出源漏电极和背栅电极,完成器件制备。
3.根据权利要求2所述的一种基于二维层间滑移铁电半导体的场效应晶体管器件的制备方法,其特征在于,步骤S6中的所述PC干法转移膜的制备方法为:取2ml的PC溶液滴于清洗干净的玻璃片衬底,然后将其置于温度为50℃的加热板烘1h,得到PC膜;然后用刀片划取3mm×3mm的PC膜,平整面朝上地放置粘附于PDMS衬底上,获得PC干法转移膜。
4.根据权利要求3所述的一种基于二维层间滑移铁电半导体的场效应晶体管器件的制备方法,其特征在于,所述PC溶液浓度为10wt%。
5.根据权利要求2所述的一种基于二维层间滑移铁电半导体的场效应晶体管器件的制备方法,其特征在于,步骤S7中利用热蒸发镀膜设备以
Figure FDA0003526274500000021
的速率沉积制备出Ti(5nm)/Au(50nm)的金属薄膜。
CN202210197028.3A 2022-03-01 2022-03-01 一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法 Active CN114709257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210197028.3A CN114709257B (zh) 2022-03-01 2022-03-01 一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210197028.3A CN114709257B (zh) 2022-03-01 2022-03-01 一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法

Publications (2)

Publication Number Publication Date
CN114709257A true CN114709257A (zh) 2022-07-05
CN114709257B CN114709257B (zh) 2023-04-21

Family

ID=82166611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210197028.3A Active CN114709257B (zh) 2022-03-01 2022-03-01 一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法

Country Status (1)

Country Link
CN (1) CN114709257B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116206981A (zh) * 2023-05-04 2023-06-02 北京大学 一种规模化制备全二维短沟道场效应晶体管的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460756A (zh) * 2009-04-11 2012-05-16 拜尔材料科学股份公司 可电转换的聚合物膜构造及其用途
CN102870245A (zh) * 2010-05-07 2013-01-09 独立行政法人科学技术振兴机构 功能设备的制造方法、铁电体材料层的制造方法、场效应晶体管的制造方法和薄膜晶体管、场效应晶体管以及压电式喷墨头
CN105047728A (zh) * 2015-06-11 2015-11-11 上海电力学院 增强二维半导体晶体材料光吸收效率的探测器及制作方法
EP3128534A2 (en) * 2015-08-07 2017-02-08 IMEC vzw Ferroelectric memory device and fabrication method thereof
US20180374962A1 (en) * 2017-06-22 2018-12-27 The Penn State Research Foundation Two-dimensional electrostrictive field effect transistor (2d-efet)
CN110061056A (zh) * 2019-06-06 2019-07-26 湘潭大学 一种新型铁电场效应晶体管单元及其写入和读取方法
CN110943128A (zh) * 2018-09-21 2020-03-31 中国科学院半导体研究所 二维mosfet/mfis多功能开关存储器件及其制备方法
US20200204139A1 (en) * 2018-12-20 2020-06-25 Mitsubishi Electric Research Laboratories, Inc. Virtual Inductors Using Ferroelectric Capacitance and the Fabrication Method Thereof
CN112968055A (zh) * 2021-02-23 2021-06-15 电子科技大学 二维铁电半导体沟道铁电介电层场效应管及其制备方法
CN113140675A (zh) * 2021-04-16 2021-07-20 西安电子科技大学 基于铁电掺杂的pn结存储器件
CN113161412A (zh) * 2020-01-23 2021-07-23 三星电子株式会社 场效应晶体管及其制造方法
CN113497063A (zh) * 2020-04-01 2021-10-12 电子科技大学 一种基于二维铁电半导体的异源突触电子器件及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460756A (zh) * 2009-04-11 2012-05-16 拜尔材料科学股份公司 可电转换的聚合物膜构造及其用途
CN102870245A (zh) * 2010-05-07 2013-01-09 独立行政法人科学技术振兴机构 功能设备的制造方法、铁电体材料层的制造方法、场效应晶体管的制造方法和薄膜晶体管、场效应晶体管以及压电式喷墨头
CN105047728A (zh) * 2015-06-11 2015-11-11 上海电力学院 增强二维半导体晶体材料光吸收效率的探测器及制作方法
EP3128534A2 (en) * 2015-08-07 2017-02-08 IMEC vzw Ferroelectric memory device and fabrication method thereof
US20180374962A1 (en) * 2017-06-22 2018-12-27 The Penn State Research Foundation Two-dimensional electrostrictive field effect transistor (2d-efet)
CN110943128A (zh) * 2018-09-21 2020-03-31 中国科学院半导体研究所 二维mosfet/mfis多功能开关存储器件及其制备方法
US20200204139A1 (en) * 2018-12-20 2020-06-25 Mitsubishi Electric Research Laboratories, Inc. Virtual Inductors Using Ferroelectric Capacitance and the Fabrication Method Thereof
CN110061056A (zh) * 2019-06-06 2019-07-26 湘潭大学 一种新型铁电场效应晶体管单元及其写入和读取方法
CN113161412A (zh) * 2020-01-23 2021-07-23 三星电子株式会社 场效应晶体管及其制造方法
CN113497063A (zh) * 2020-04-01 2021-10-12 电子科技大学 一种基于二维铁电半导体的异源突触电子器件及其制备方法
CN112968055A (zh) * 2021-02-23 2021-06-15 电子科技大学 二维铁电半导体沟道铁电介电层场效应管及其制备方法
CN113140675A (zh) * 2021-04-16 2021-07-20 西安电子科技大学 基于铁电掺杂的pn结存储器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116206981A (zh) * 2023-05-04 2023-06-02 北京大学 一种规模化制备全二维短沟道场效应晶体管的方法
CN116206981B (zh) * 2023-05-04 2023-06-30 北京大学 一种规模化制备全二维短沟道场效应晶体管的方法

Also Published As

Publication number Publication date
CN114709257B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
Troughton et al. Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status
CN107749433B (zh) 一种二维范德华异质结光电探测器及其制备方法
CN112582542B (zh) 一种基于二维范德华异质结构的单分子场效应晶体管及其制备方法
Yuan et al. High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers
Petti et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits
CN112582541B (zh) 一种基于二维叠层异质结构的垂直单分子膜场效应晶体管及其制备方法
Jo et al. Flexible metal oxide semiconductor devices made by solution methods
KR102212999B1 (ko) 질소-도핑된 그래핀층을 활성층으로 포함하는 그래핀 기반의 tft
Chung et al. Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks
CN114709257B (zh) 一种基于二维层间滑移铁电半导体的场效应晶体管器件及其制备方法
CN107464847A (zh) 基于碱金属溶液掺杂的二硫化钼晶体管及制备方法
Sun et al. One-Volt Oxide Thin-Film Transistors on Paper Substrates Gated by $\hbox {SiO} _ {2} $-Based Solid Electrolyte With Controllable Operation Modes
Chang et al. Low-Temperature Solution-Processed n-Channel SnO2 Thin-Film Transistors and High-Gain Zero-V GS-Load Inverter
You Transistor characteristics of zinc oxide active layers at various zinc acetate dihydrate solution concentrations of zinc oxide thin-film
CN108417636A (zh) 一种二维相变场效应晶体管及其制备方法
Yang et al. Two-dimensional layered materials meet perovskite oxides: A combination for high-performance electronic devices
Nketia-Yawson et al. High-mobility electrolyte-gated perovskite transistors on flexible plastic substrate via interface and composition engineering
Lu et al. Freestanding Crystalline β-Ga2O3 Flexible Membrane Obtained via Lattice Epitaxy Engineering for High-Performance Optoelectronic Device
CN111987173B (zh) 一种可集成的二维光电突触器件阵列及其制备方法
Dondapati et al. High-performance chemical-bath deposited CdS thin-film transistors with ZrO2 gate dielectric
CN110646490A (zh) 一种基于二硒化钨的离子敏场效应晶体管传感器及其制备方法
CN102449771A (zh) 烷基硅烷层叠体及其制造方法、以及薄膜晶体管
CN109300989A (zh) 一种硒化铟晶体管及其制造方法
CN113675336A (zh) 忆阻器制备方法、忆阻器及设备
CN113823697A (zh) 基于二维尺寸裁剪的肖特基栅场效应晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant