CN114706432B - 一种基于跨介质时延的随机微振动主动隔振控制方法 - Google Patents

一种基于跨介质时延的随机微振动主动隔振控制方法 Download PDF

Info

Publication number
CN114706432B
CN114706432B CN202210552264.2A CN202210552264A CN114706432B CN 114706432 B CN114706432 B CN 114706432B CN 202210552264 A CN202210552264 A CN 202210552264A CN 114706432 B CN114706432 B CN 114706432B
Authority
CN
China
Prior art keywords
vibration
medium
control
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210552264.2A
Other languages
English (en)
Other versions
CN114706432A (zh
Inventor
杨柳
李东洁
徐东昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202210552264.2A priority Critical patent/CN114706432B/zh
Publication of CN114706432A publication Critical patent/CN114706432A/zh
Application granted granted Critical
Publication of CN114706432B publication Critical patent/CN114706432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

一种基于跨介质时延的随机微振动主动隔振控制方法,涉及微振动隔振技术领域,针对现有技术中采用反馈控制方法难以实现较好的振动消纳性能的问题,本申请通建立跨介质传播时延特性模型,实现对于随机微振动通过慢速介质前后波动特性变化关系的准确描述。本申请通过建立包含慢速缓冲介质和压电堆叠的新型混合作动机构“电压‑力”直接逆模型,实现对于迟滞等与内部状态变量强相关非线性特性影响的准确描述,以及对模型参数与外部环境参数相关时变特性的自适应跟踪。本申请通过利用慢速介质引入的振动波传播时延,实现实时前馈消纳与反馈控制残差抑制相结合的主动隔振控制。

Description

一种基于跨介质时延的随机微振动主动隔振控制方法
技术领域
本发明涉及微振动隔振技术领域,具体为一种基于跨介质时延的随机微振动主动隔振控制方法。
背景技术
在航天、半导体、微纳加工与测量等领域的高精密仪器设备中,振动控制是系统设计的关键技术之一。目前的振动控制方法逐渐向主动、主被动一体的隔振控制发展,且集中于处理力矩陀螺、循环泵、风机等频率特征明显、振动能量频率分布集中的振动源,对于残余的能量低、随机性强、频率分布宽的微振动,研究仍较少。目前应用到微振动主动隔振的控制方法主要包括PID控制、鲁棒控制、自适应控制、智能控制、最优控制等,均为常规反馈控制系统设计思路,即采用负位移、负速度作为跟踪信号,设计反馈控制系统使隔振器在频率响应特性上体现出期望的抑制效果。该思路对于力矩陀螺、循环泵等频率特征明显、振动能量频率分布集中的振动源主动隔振效果较好,但由于反馈控制系统固有的滞后特性,难以实现宽频带的振动抑制效果;并且,经过被动、主被动隔振设计过滤之后,残余的微振动具有频率分布、振幅分布均随机分布的非周期性特点,所以采用反馈控制方法难以实现较好的振动消纳性能。
发明内容
本发明的目的是:针对现有技术中采用反馈控制方法难以实现较好的振动消纳性能的问题,提出一种基于跨介质时延的随机微振动主动隔振控制方法。
本发明为了解决上述技术问题采取的技术方案是:
一种基于跨介质时延的随机微振动主动隔振控制方法,所述控制方法包括准备阶段和控制阶段;
所述准备阶段包括:
获取数据集,并以数据集中慢速介质的类型和进入慢速介质前的振动波形信号与慢速介质输出的振动波形信号的映射关系,建立时延特性模型的步骤;
建立输出抵消力与其控制信号之间的非线性映射关系的直接逆模型的步骤;
所述控制阶段包括:
获取待测慢速介质的类型以及进入待测慢速介质前的振动波形信号,并根据时延特性模型得到待测慢速介质的类型以及进入待测慢速介质前的振动波形信号对应的待测慢速介质输出的振动波形信号的步骤;
根据待测慢速介质输出的振动波形信号以及直接逆模型得到输出抵消力与待测慢速介质输出力相等时对应的控制信号及控制信号作用时间,并根据控制信号及控制信号作用时间完成主动隔振控制的步骤。
进一步的,所述控制信号为电压信号,建立输出抵消力与其控制信号之间的非线性映射关系的直接逆模型的步骤具体为:
获取压电堆叠输出抵消力与其控制电压之间的非线性映射关系建立压电堆叠非线性特性的直接逆模型,并将压电堆叠非线性特性的直接逆模型作为直接逆模型。
进一步的,所述控制信号为电压信号,建立输出抵消力与其控制信号之间的非线性映射关系的直接逆模型的步骤具体为:
获取压电堆叠输出抵消力与其控制电压之间的非线性映射关系建立压电堆叠非线性特性的直接逆模型;
基于压电堆叠非线性特性的直接逆模型,然后采用特征建模、快速自适应神经网络引入快速自适应修正项,利用压电堆叠期望输出抵消力与压电堆叠实际输出抵消力之间偏差的变化信息构建快速自适应模型,最后将快速自适应模型作为直接逆模型。
进一步的,所述根据待测慢速介质输出的振动波形信号以及直接逆模型得到输出抵消力与待测慢速介质输出力相等时对应的控制信号及控制信号作用时间,并根据控制信号及控制信号作用时间完成主动隔振控制的步骤具体包括;
将待测慢速介质输出的振动波形信号反相后作为控制跟踪指令信号的步骤;
将控制跟踪指令信号输入直接逆模型得到抵消待测慢速介质输出振动加速度信号所需电压以及施加电压的时间,然后根据该电压构建前向控制通道的步骤;
根据所需电压得到施加电压时压电堆叠的实际位移数据和实际加速度数据,之后将实际位移数据和实际加速度数据引入反馈回路,然后结合前向控制通道设计基于误差观测器的反馈控制器的步骤。
进一步的,所述振动波形信号为振动加速度信号
进一步的,所述振动加速度信号通过三轴加速度传感器获取。
进一步的,所述慢速介质为橡胶。
进一步的,所述时延特性模型为神经网络模型。
本发明的有益效果是:
本申请通建立跨介质传播时延特性模型,实现对于随机微振动通过慢速介质前后波动特性变化关系的准确描述。
本申请通过建立包含慢速缓冲介质和压电堆叠的新型混合作动机构“电压-力”直接逆模型,实现对于迟滞等与内部状态变量强相关非线性特性影响的准确描述,以及对模型参数与外部环境参数相关时变特性的自适应跟踪。
本申请通过利用慢速介质引入的振动波传播时延,实现实时前馈消纳与反馈控制残差抑制相结合的主动隔振控制。
附图说明
图1为本申请的控制流程图;
图2为混合作动器振动数据采集装置示意图。
具体实施方式
需要特别说明的是,在不冲突的情况下,本申请公开的各个实施方式之间可以相互组合。
具体实施方式一:参照图1具体说明本实施方式,本实施方式所述的一种基于跨介质时延的随机微振动主动隔振控制方法,所述控制方法包括准备阶段和控制阶段;
所述准备阶段包括:
获取数据集,并以数据集中慢速介质的类型和进入慢速介质前的振动波形信号与慢速介质输出的振动波形信号的映射关系,建立时延特性模型的步骤;
建立输出抵消力与其控制信号之间的非线性映射关系的直接逆模型的步骤;
所述控制阶段包括:
获取待测慢速介质的类型以及进入待测慢速介质前的振动波形信号,并根据时延特性模型得到待测慢速介质的类型以及进入待测慢速介质前的振动波形信号对应的待测慢速介质输出的振动波形信号的步骤;
根据待测慢速介质输出的振动波形信号以及直接逆模型得到输出抵消力与待测慢速介质输出力相等时对应的控制信号及控制信号作用时间,并根据控制信号及控制信号作用时间完成主动隔振控制的步骤。
本申请具体应用在随机微振动的主动隔振控制领域。利用振动波在慢速介质中传播速度与电信号的传播速度差,采用传感器前置加实时波形预测的方案,实现对于随机振动波形的前馈补偿控制,从原理上大幅提升非周期性随机微振动的主动隔振控制效果。
振动波在橡胶等介质中传播速度较慢,通过利用减慢的振动波波速与电信号速度差带来的时延,使得能够提前预测即将到来的振动波形并实现前馈抵消,从而可以大幅提升非周期性随机微振动的主动隔振控制效果。
本申请针对随机微振动主动隔振控制问题,提出一种基于跨介质时延的控制方法。通过利用慢速介质引入的振动波传播时延,实现准实时前馈消纳与反馈控制残差抑制相结合的主动隔振控制,使得能够大幅提升随机微振动隔振效果。
实施例:
步骤一:设计基于跨介质时延的混合作动机构。通过测量进入慢速介质前的振动加速度信号,准确计算经过慢速介质之后的振动波形,揭示慢速介质材料属性、分界面形状、连接方式等因素对跨介质随机微振动波形变化的影响。
搭建的新型混合作动器振动数据采集装置,其中拟选择橡胶柱作为慢速缓冲介质,该装置的示意图如图2所示沿振动传播路径方向,在单自由度压电堆叠前方连接两段一定长度的橡胶柱,并在两端以及两段之间串入三轴加速度传感器,在各段中部位置侧面贴壁安装三轴加速度传感器,从而实现对于振动波在慢速缓冲介质内纵波、横波波形传播与变化数据的全面测量。
步骤二:建立跨介质传播时延特性模型。基于上一步骤中对随机微振动跨介质传播机理的分析,采集慢速介质前后的振动测量数据,建立并验证微振动波的跨介质传播时延特性模型。
基于上述数据采集装置,首先对所采用的慢速介质内的振动波波速进行分析与测量,同步采集橡胶柱相连的各个三轴加速度信息;根据已知的振源信号与各位置加速度测量信号的相位差分析得到波速;研究不同橡胶柱材质、外形、长度、连接方式对于波速、波形变化的影响规律,探索能够使得波速最慢、波形变化最小的橡胶材质、外形与连接方式。进而,采用振动频率振幅随机变化的振源信号,分析随机微振动跨介质传播时的波速、波形变化机理,以传播时延为核心,建立适用于随机微振动跨介质传播过程的时延特性模型。
步骤三:建立压电堆叠非线性特性的直接逆模型。建立基于加速度测量数据的“电压-力”直接逆模型,得到能够精确描述压电堆叠期望输出力与其控制电压之间的非线性映射关系。
首先,基于上述数据采集装置,设计固定频率点采样、Chirp信号采样、随机信号采样等实验,采集“电压-力”特性数据;其次,开展基于数据的“力-电压”直接逆模型建模研究;最后,利用数据采集装置验证与修正所得到的模型,得到“期望输出力”与“应加载电压”之间关系的准确描述。
步骤四:建立混合作动机构时变动态特性的快速自适应模型。将压电堆叠作动器与慢速介质缓冲部分沿振动传播路径串联,组成混合作动机构,建立由叠加慢速介质所引入的不确定弹簧阻尼特性与其它非线性特性的混合作动机构精确模型。
采用特征建模、快速自适应神经网络等方法,在上述直接逆模型建模的基础上引入快速自适应修正项,利用期望输出力与实际输出力之间偏差的变化信息,得到更加精确的混合作动机构时变动态特性的快速自适应模型。
步骤五:设计基于传播时延的主动隔振控制方法。根据跨介质传播时延特性模型以及慢速介质前的t时刻振动测量信号,计算得到即将到达压电堆叠处t+Δt时刻的振动信号,反相后作为控制系统跟踪指令信号,代入混合作动机构的逆模型得到压电堆叠的控制电压量,构成控制系统前向控制通道。将压电堆叠输出的末端加速度、位移测量数据引入反馈回路,设计基于误差观测器的反馈控制器,实现良好的主动隔振控制效果。
设计基于传播时延的主动隔振控制方法。一方面,基于微振动时延特性模型,使用数据采集装置对固定周期振动、随机振动下的波形预测进行验证与修正,实现对于慢速介质与压电堆叠作动器连接处振动波形的准确预测;另一方面,基于混合作动机构的动态特性模型,设计基于逆模型前馈与残差反馈补偿的力跟踪控制方法,实现对于随机力信号的精确跟踪。最后,综合两方面内容,设计主动隔振控制方法,通过控制混合作动机构来跟踪波形预测的反相信号,同时基于误差观测器技术,加入对于残余振动测量信号的反馈补偿控制量,实现对于随机微振动的阻断。
本申请的核心思想在于采用慢速介质对振动波进行减速,从而使得提前预测慢速介质之后的波形成为可能,进而实现对于随机振动波形的前馈补偿控制,最终获得好的主动隔振控制效果。基于上述步骤,本申请可以按照如下步骤具体实施:
需要注意的是,具体实施方式仅仅是对本发明技术方案的解释和说明,不能以此限定权利保护范围。凡根据本发明权利要求书和说明书所做的仅仅是局部改变的,仍应落入本发明的保护范围内。

Claims (6)

1.一种基于跨介质时延的随机微振动主动隔振控制方法,其特征在于所述控制方法包括准备阶段和控制阶段;
所述准备阶段包括:
获取数据集,并以数据集中慢速介质的类型和进入慢速介质前的振动波形信号与慢速介质输出的振动波形信号的映射关系,建立时延特性模型的步骤;
建立输出抵消力与其控制信号之间的非线性映射关系的直接逆模型的步骤;
所述控制阶段包括:
获取待测慢速介质的类型以及进入待测慢速介质前的振动波形信号,并根据时延特性模型得到待测慢速介质的类型以及进入待测慢速介质前的振动波形信号对应的待测慢速介质输出的振动波形信号的步骤;
根据待测慢速介质输出的振动波形信号以及直接逆模型得到输出抵消力与待测慢速介质输出力相等时对应的控制信号及控制信号作用时间,并根据控制信号及控制信号作用时间完成主动隔振控制的步骤;
所述控制信号为电压信号,建立输出抵消力与其控制信号之间的非线性映射关系的直接逆模型的步骤具体为:
获取压电堆叠输出抵消力与其控制电压之间的非线性映射关系建立压电堆叠非线性特性的直接逆模型,并将压电堆叠非线性特性的直接逆模型作为直接逆模型;
所述根据待测慢速介质输出的振动波形信号以及直接逆模型得到输出抵消力与待测慢速介质输出力相等时对应的控制信号及控制信号作用时间,并根据控制信号及控制信号作用时间完成主动隔振控制的步骤具体包括;
将待测慢速介质输出的振动波形信号反相后作为控制跟踪指令信号的步骤;
将控制跟踪指令信号输入直接逆模型得到抵消待测慢速介质输出振动加速度信号所需电压以及施加电压的时间,然后根据该电压构建前向控制通道的步骤;
根据所需电压得到施加电压时压电堆叠的实际位移数据和实际加速度数据,之后将实际位移数据和实际加速度数据引入反馈回路,然后结合前向控制通道设计基于误差观测器的反馈控制器的步骤。
2.根据权利要求1所述的一种基于跨介质时延的随机微振动主动隔振控制方法,其特征在于所述控制信号为电压信号,建立输出抵消力与其控制信号之间的非线性映射关系的直接逆模型的步骤具体为:
获取压电堆叠输出抵消力与其控制电压之间的非线性映射关系建立压电堆叠非线性特性的直接逆模型;
基于压电堆叠非线性特性的直接逆模型,然后采用特征建模、快速自适应神经网络引入快速自适应修正项,利用压电堆叠期望输出抵消力与压电堆叠实际输出抵消力之间偏差的变化信息构建快速自适应模型,最后将快速自适应模型作为直接逆模型。
3.根据权利要求1所述的一种基于跨介质时延的随机微振动主动隔振控制方法,其特征在于所述振动波形信号为振动加速度信号。
4.根据权利要求3所述的一种基于跨介质时延的随机微振动主动隔振控制方法,其特征在于所述振动加速度信号通过三轴加速度传感器获取。
5.根据权利要求1所述的一种基于跨介质时延的随机微振动主动隔振控制方法,其特征在于所述慢速介质为橡胶。
6.根据权利要求1所述的一种基于跨介质时延的随机微振动主动隔振控制方法,其特征在于所述时延特性模型为神经网络模型。
CN202210552264.2A 2022-05-20 2022-05-20 一种基于跨介质时延的随机微振动主动隔振控制方法 Active CN114706432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210552264.2A CN114706432B (zh) 2022-05-20 2022-05-20 一种基于跨介质时延的随机微振动主动隔振控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210552264.2A CN114706432B (zh) 2022-05-20 2022-05-20 一种基于跨介质时延的随机微振动主动隔振控制方法

Publications (2)

Publication Number Publication Date
CN114706432A CN114706432A (zh) 2022-07-05
CN114706432B true CN114706432B (zh) 2023-04-28

Family

ID=82175852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210552264.2A Active CN114706432B (zh) 2022-05-20 2022-05-20 一种基于跨介质时延的随机微振动主动隔振控制方法

Country Status (1)

Country Link
CN (1) CN114706432B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116951052A (zh) * 2023-09-20 2023-10-27 浙江大学 自适应调控的主动软弹性波声子晶体隔振系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824351A (zh) * 2021-08-23 2021-12-21 哈尔滨工业大学 一种尺蠖型压电推杆电机及其迟滞特性补偿方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739214B1 (fr) * 1995-09-27 1997-12-19 Technofirst Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
JP2010208928A (ja) * 2009-03-07 2010-09-24 Hidekazu Nishikawa カーボンナノチューブの製造方法
CN106094519A (zh) * 2016-06-27 2016-11-09 哈尔滨理工大学 一种基于神经网络算法的桥式起重机防摇摆控制方法
CN106980264B (zh) * 2017-05-12 2019-10-18 南京理工大学 基于神经网络的压电驱动器的动态迟滞建模方法
CN109213220A (zh) * 2018-08-06 2019-01-15 上海大学 一种基于压电堆的三自由度微振动主动控制实验系统
CN110398995B (zh) * 2019-07-12 2021-04-13 北京控制工程研究所 一种压电陶瓷作动器的无模型跟踪控制方法及介质
CN111413869A (zh) * 2020-03-18 2020-07-14 紫光云技术有限公司 一种基于模型的压电陶瓷驱动器迟滞补偿方法
CN111857202B (zh) * 2020-07-30 2022-09-13 中国电子工程设计院有限公司 主动隔振控制方法、装置、系统、控制设备及存储介质
CN114077196B (zh) * 2021-11-16 2023-06-06 哈尔滨工业大学(深圳) 一种基于改进Prandtl-Ishlinskii模型的压电驱动器复合控制方法
CN114035627B (zh) * 2021-11-17 2022-06-21 上海大学 基于单自由度隔振平台的主动复合控制系统及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824351A (zh) * 2021-08-23 2021-12-21 哈尔滨工业大学 一种尺蠖型压电推杆电机及其迟滞特性补偿方法

Also Published As

Publication number Publication date
CN114706432A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Zheng et al. Active disturbance rejection control for MEMS gyroscopes
Paranjape et al. PDE boundary control for flexible articulated wings on a robotic aircraft
Hassan et al. Active vibration control of a flexible one-link manipulator using a multivariable predictive controller
CN104589359B (zh) 一种基于振动观测器的柔性机械臂振动控制方法
Lee et al. Multi-input noncertainty-equivalent adaptive control of an aeroelastic system
CN114706432B (zh) 一种基于跨介质时延的随机微振动主动隔振控制方法
Wang et al. Adaptive terminal sliding mode control for motion tracking of a micropositioning system
Tai et al. Control of an electromechanical actuator for camless engines
Kim et al. A design of bilateral teleoperation systems using composite adaptive controller
Ghorbani et al. Near-time-optimal motion control for flexible-link systems using absolute nodal coordinates formulation
Xing et al. State-estimator-based robust vibration control of crane bridge system with trolley via PDE model
Dong et al. The adaptive control system of a MEMS gyroscope with time-varying rotation rate
CN107608216B (zh) 基于平行估计模型的mems陀螺仪复合学习控制方法
Zhang et al. Model algorithm control for path tracking of wheeled mobile robots
Post et al. A robust nonlinear observation strategy for the control of flexible manipulators
CN110262242B (zh) 一种微陀螺仪自适应分数阶滑模控制方法
Fei et al. The Comparative study of vibration control of flexible structure using smart materials
Aschauer et al. Realtime-capable FE-based railway catenary emulation via pantograph test rig impedance control
Akın Active neuro-adaptive control of a smart beam having uncertainties in structural dynamics
Sheng et al. Active damping and disturbance rejection control of a six-axis magnetic levitation stage
Chenghu et al. A practical compound control strategy for electro-hydraulic load simulator
CN104038132A (zh) 一种具有时变测量延迟输出和噪声的伺服电机的状态观测方法
Fei et al. Robust adaptive neural sliding mode control of MEMS triaxial gyroscope with angular velocity estimation
Wang et al. Development of Transient Basis Functions to Improve Basis Function Iterative Learning Control
Dueck et al. Transversal surface wave control by gain switching iterative learning improving research on active turbulent flow control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant