CN114703224A - 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法 - Google Patents

一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法 Download PDF

Info

Publication number
CN114703224A
CN114703224A CN202210370248.1A CN202210370248A CN114703224A CN 114703224 A CN114703224 A CN 114703224A CN 202210370248 A CN202210370248 A CN 202210370248A CN 114703224 A CN114703224 A CN 114703224A
Authority
CN
China
Prior art keywords
mt1t2
seq
gene editing
pbue411
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210370248.1A
Other languages
English (en)
Other versions
CN114703224B (zh
Inventor
宋广树
吕庆雪
周迎鑫
孙蕾
周德龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Academy of Agricultural Sciences
Original Assignee
Jilin Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Academy of Agricultural Sciences filed Critical Jilin Academy of Agricultural Sciences
Priority to CN202210370248.1A priority Critical patent/CN114703224B/zh
Publication of CN114703224A publication Critical patent/CN114703224A/zh
Application granted granted Critical
Publication of CN114703224B publication Critical patent/CN114703224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1071,4-Alpha-glucan branching enzyme (2.4.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010181,4-Alpha-glucan branching enzyme (2.4.1.18), i.e. glucan branching enzyme

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,属于基因工程技术领域。本发明公开的一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,通过CRISPR/Cas9技术对玉米ZmSu1、ZmIsa2、ZmIsa3和ZmZpu1基因同时进行基因编辑,并进一步筛选获得含目的基因突变片段的突变体材料,这些籽粒变甜、类胡萝卜素含量提高的材料具有重要的育种价值。

Description

一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法
技术领域
本发明涉及基因工程技术领域,更具体的说是涉及一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法。
背景技术
甜玉米是食用玉米的主要来源,甜玉米根据遗传特性,可分为4种类型:普甜、超甜、脆甜和加强甜。其中,普甜受单隐性基因Zmsu1控制,其胚乳总含糖量是普通玉米的2-3倍,且水溶性多糖(WSP)含量较高。甜玉米营养丰富,维生素、游离氨基酸和矿物质等含量较高,氨基酸组成较平衡,赖氨酸含量相当于高赖氨酸玉米。提高甜玉米的类胡萝卜素含量,可以有效增强甜玉米的营养品质。
类胡萝卜素是一类具有独特结构和功能的重要天然色素,在光养和非光养生物中广泛分布,目前已经有超过700种天然类胡萝卜素被鉴定,其化学多样性非常丰富。类胡萝卜素通过化学或酶转化成其他衍生物,如维生素A、植物激素或芳香类化合物等;维生素A缺乏症是全世界主要微量营养素缺乏症之一。研究表明富含类胡萝卜素的饮食(主要由水果和蔬菜组成)具有促进健康作用,同时有助于降低患某些癌症及心血管、眼睛、皮肤或骨骼疾病的风险。由于类胡萝卜素无法通过人体自身合成,而是在食物中与其他分子如糖类、蛋白质或脂肪酸相结合从而被人体摄取,因此研究人体从膳食中摄取及吸收类胡萝卜素的效率及其影响因素至关重要。
传统高胡萝卜素甜玉米材料的创制主要是通过回交转育的方法,往往需要经过6个回交世代,不仅耗时长,同时经常伴随基因冗余,导致一些非目标性状的导入,限制了改良材料的应用效果。
类胡萝卜素是人类发现的第一种天然色素,类胡萝卜素长链分子的主链通常是由9~11个共轭C=C键构成,其线性链的长度对应于分子铆钉穿透膜的疏水区的厚度,从而在某些真菌与动物体内起到增强细胞膜脂质功能的作用。类胡萝卜素通常根据分子组成分为两类:一类指在多烯主链的一端或两端有碳氢环的非极性类胡萝卜素(如β-胡萝卜素、番茄红素);另一类是指结构中具有含氧基团-OH(如叶黄素),=O(如斑蝥黄素),OH与=O的结合(如虾青素),或醇酯(如岩藻黄素)的极性类胡萝卜素。在生物体所含天然磷脂双分子层膜中,分子两端带有羟基和/或氧基的极性类胡萝卜素如叶黄素,以垂直于磷脂膜表面的长轴方向定位于磷脂的极性头,将导致脂质烷基链的运动自由度降低,模型膜和生物膜中水和氧的通透性降低,这些效应被称为膜中的固化效应;而不含氧的β-胡萝卜素中对称的脂肪链与磷脂的非极性部分发生非共价结合,增加磷脂头极性基团的运动自由度,导致膜结构的流动性增强,因此类胡萝卜素的数量与种类是影响膜功能的重要参数。类胡萝卜素的机械特性在进化后期用于保护蛋白质的相关结构,暴露的类胡萝卜素外部结构能够与蛋白质相互结合,从而对环境条件产生一定抵抗性。
因此,提供一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法。
为了实现上述目的,本发明采用如下技术方案:
一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,具体步骤如下:
(1)针对基因Zmsu1、ZmIsa2设计基于CRISPR/Cas9的sgRNA作用位点;
所述sgRNA作用位点的核苷酸序列为:
Zmsu1:5’-GCCTTTGATGAACTGACGCACGG-3’;SEQ ID NO.5;和
ZmIsa2:5’-GCGGAGATACGGACACACCGCGG-3’;SEQ ID NO.6;
(2)以pCBC-MT1T2质粒为模板,MT1T2-F,MT1T2-F0,MT1T2-R0,MT1T2-R为引物,PCR扩增目的片段;
所述引物序列如下:
MT1T2-F:5’-AATAATGGTCTCAGGCGCCTTTGATGAACTGACGCA-3’;SEQ ID NO.7;
MT1T2-F0:5’-GCCTTTGATGAACTGACGCAGTTTTAGAGCTAGAAATAGC-3’;SEQ ID NO.8;
MT1T2-R0:5’-CGGTGTGTCCGTATCTCCGCGCTTCTTGGTGCC-3’;SEQ ID NO.9;
MT1T2-R:5’-ATTATTGGTCTCTAAACCGGTGTGTCCGTATCTCCG-3’;SEQ ID NO.10;
(3)针对基因ZmIsa3、ZmZpu1设计基于CRISPR/Cas9的sgRNA作用位点;
所述sgRNA作用位点的核苷酸序列为:
ZmIsa3:5’-ACCACGACGAAAGTTCAGAGCGG-3’;SEQ ID NO.11;和
ZmZpu1:5’-TGGTCAGACTGAGAACAGCGCGG-3’;SEQ ID NO.12;
(4)以pCBC-MT1T2质粒为模板,MT1T2-F’,MT1T2-F0’,MT1T2-R0’,MT1T2-R’为引物,PCR扩增目的片段;
所述引物序列如下:
MT1T2-F’:5’-AATAATGGTCTCAGGCGCCACGACGAAAGTTCAGAG-3’;SEQ ID NO.13;
MT1T2-F0’:5’-GCCACGACGAAAGTTCAGAGGTTTTAGAGCTAGAAATAGC-3’;SEQ IDNO.14;
MT1T2-R0’:5’-CGCTGTTCTCAGTCTGACCCGCTTCTTGGTGCC-3’;SEQ ID NO.15;
MT1T2-R’:5’-ATTATTGGTCTCTAAACCGCTGTTCTCAGTCTGACC-3’;SEQ ID NO.16;
(5)将步骤(2)和步骤(4)获得的目的片段分别与载体pBUE411进行酶切连接,分别构建得到Zmsu1、ZmIsa2基因编辑载体pBUE411-2gR-Zmsu1-ZmIsa2和ZmIsa3、ZmZpu1基因编辑载体pBUE411-2gR-ZmIsa3-ZmZpu1;
(6)将步骤(5)获得的基因编辑载体pBUE411-2gR-Zmsu1-ZmIsa2和pBUE411-2gR-ZmIsa3-ZmZpu1分别单独转入农杆菌LBA4404,进行玉米遗传转化,获得pBUE411-2gR-ZmSu1-ZmIsa2载体阳性植株和pBUE411-2gR-ZmIsa3-ZmZpu1载体阳性植株;经杂交和自交以及筛选鉴定获得类胡萝卜素含量高的甜玉米材料。
进一步,步骤(2)所述PCR扩增反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F 0.5μl,MT1T2-F00.5μl,MT1T2-R00.5μl,MT1T2-R 0.5μl,2×Mix 10μl,ddH2O 7μl;PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。
进一步,步骤(4)所述PCR扩增反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F’0.5μl,MT1T2-F0’0.5μl,MT1T2-R0’0.5μl,MT1T2-R’0.5μl,2×Mix 10μl,ddH2O 7μl;PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。
进一步,步骤(5)所述酶切连接反应体系如下:目的片段2μl,pBUE4112μl,10xNEBT4 Buffer 1.5μl,10xBSA 1.5μl,BsaI 1μl,T4 Ligase 1μl,ddH2O 6μl,Total 15μl。
将每两个sgRNA作用位点通过不同表达盒串联到同一基因编辑载体上。
携带Cas9的载体为pBUE411。
所述玉米为自交系C01。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,基因编辑技术能精准对目的基因进行编辑,并且没有外缘基因的导入,本发明通过基因编辑技术精准编辑淀粉合成相关基因ZmSu1、ZmIsa2、ZmIsa3和ZmZpu1,可以精准提高玉米籽粒类胡萝卜素含量和甜度,并且不改变其它农艺性状。
本发明首次揭示了玉米ZmSu1、ZmIsa2、ZmIsa3和ZmZpu1基因共同作用的生物学功能,通过CRISPR/Cas9技术对玉米ZmSu1、ZmIsa2、ZmIsa3和ZmZpu1基因进行基因编辑,并进一步筛选获得含目的基因片段缺失的突变体材料,这些类胡萝卜素含量提高的材料具有重要的育种价值。本发明创制的高玉米类胡萝卜素甜玉米材料属于类胡萝卜素含量显著提高的普通甜玉米材料,其它形态学性状无显著变化,通过合理的栽培管理措施可以应用于杂交甜玉米生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明野生型和突变型测序比对结果;
图2附图为本发明野生型和突变型玉米籽粒中类胡萝卜素含量检测结果。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明利用基因编辑技术创制高类胡萝卜素甜玉米材料,针对玉米中的目标基因ZmSu1,ZmIsa2,ZmIsa3和ZmZpu1分别设计基于CRISPR/Cas9的sgRNA序列,将含有编码所述sgRNA序列的DNA片段连接到携带Cas9的载体中,用构建的载体转化玉米(如农杆菌介导法),实现对基因ZmSu1,ZmIsa2,ZmIsa3和ZmZpu1的定点突变,进而获得ZmSu1,ZmIsa2,ZmIsa3和ZmZpu1基因功能缺失的玉米植株。
实施例1基因编辑载体的构建
(1)淀粉去分支酶基因ZmSu1,其核苷酸序列如下:
ATGGCGCAGCAGCTCCCCTGCGTCTCGTCGCCGCGCCCGCTGCTCGCCGTGCCCGCGGGCCGGTGGCGCGCCGGCGTGCGGGGCCGGCCCAATGTGGCGGGACTGGGGCGGGGGCGGCTGTCTCTCCACGCCGCCGCCGCGCGGCCCGTGGCCGAGGCGGTGCAGGCGGAGGAGGACGACGACGACGACGACGAGGAGGTGGCCGAGGAGAGGTTCGCGCTGGGCGGCGCGTGCCGGGTGCTCGCGGGAATGCCCGCGCCGCTCGGCGCCACCGCGCTCCGCGGCGGTGTCAACTTCGCCGTCTACTCCAGCGGTGCCTCCGCCGCGTCGCTGTGCCTCTTCGCTCCCGGCGACCTCAAGGCGGATAGGGTGACCGAGGAGGTGCCCCTCGATCCCCTGCTCAACCGAACGGGAAACGTGTGGCACGTGTTCATCCACGGGGACCAGCTGCACGGCATGCTCTACGGATACAGGTTCGATGGCGTGTTCGCCCCTGAGCGCGGACAGTACTACGATGTGTCCAACGTTGTGGTGGATCCATACGCTAAGGCAGTGGTAAGCCGAGGTGAATATGGTGTGCCTGCGCCTGGTGGTAGTTGTTGGCCTCAAATGGCTGGTATGATCCCTCTTCCCTATAATAAGTTTGATTGGCAAGGTGACCTACCCCTTGGGTACCATCAGAAGGACCTTGTCATATATGAAATGCATTTGCGTGGATTCACAAAGCACAACTCAAGCAAGACAAAACACCCAGGAACTTACATTGGTGCTGTGTCAAAGCTTGACCATCTAAAGGAACTTGGAGTGAACTGTATAGAGCTAATGCCCTGCCATGAGTTCAATGAGCTAGAGTACTTCAGCTCCTCTTCGAAGATGAACTTCTGGGGATATTCCACAATAAATTTTTTCTCACCAATGGCAAGATATTCTTCAAGTGGCATAAGAGACTCTGGATGTGGTGCCATAAATGAATTTAAAGCTTTTGTAAGGGAGGCCCACAAACGGGGAATTGAGGTGATCATGGATGTTGTCTTCAATCATACAGCTGAAGGTAATGAGAAAGGCCCAATATTATCCTTTAGGGGGATAGATAATAGTACATACTACATGCTTGCACCTAAGGGAGAGTTTTATAATTATTCTGGTTGTGGAAATACCTTCAATTGTAATCATCCTGTAGTCCGTGAATTTATAGTGGATTGCTTGAGATACTGGGTAACAGAAATGCATGTTGATGGTTTTCGTTTTGACCTTGCATCTATACTGACCAGAGGATGCAGTCTATGGGATCCAGTTAATGTGTATGGAAGTCCAATGGAAGGTGACATGATTACGACAGGGACACCTCTTGTTGCCCCACCACTTATTGACATGATTAGCAATGACCCAATTCTTGGAAATGTCAAGCTCATTGCTGAAGCATGGGATGCAGGAGGTCTCTATCAAGTTGGTCAGTTTCCTCACTGGAACGTTTGGTCAGAGTGGAATGGAAAGTATCGCGATACCGTGCGTCAGTTCATCAAAGGCACAGATGGATTTGCTGGTGCTTTTGCTGAATGCCTATGTGGAAGTCCACAGTTATACCAGGCAGGGGGGAGGAAGCCTTGGCACAGTATCAACTTTGTATGTGCACACGATGGATTTACACTGGCTGATTTGGTCACATACAATAGCAAGTACAACTTGTCAAATGGTGAGGACAACAGAGATGGGGAAAATCATAATCTTAGCTGGAATTGTGGGGAGGAAGGAGAATTTGCAAGTCTGTCAGTCCGAAGATTAAGGAAGAGGCAAATGCGCAATTTCTTTGTTTGTCTTATGGTTTCTCAGGGAGTTCCAATGTTCTACATGGGCGATGAATATGGTCACACAAAGGGAGGGAACAACAATACGTACTGCCATGACCATTATGTCAATTATTTCCGTTGGGATAAGAAGGAAGAACAATCCTCTGATTTGTACAGATTCTGCCGTCTCATGACCAAATTCCGCAAAGAATGTGAATCTCTTGGCCTTGAGGACTTCCCGACTTCAGAACGGTTGAAATGGCACGGTCATCAGCCCGGGAAGCCTGACTGGTCAGAGGCAAGCCGATTCGTTGCCTTCACCATGAAGGACGAAACCAAAGGCGAGATCTACGTGGCCTTCAACACCAGTCACCTTCCGGTGGTTGTTGGGCTTCCAGAGCGCTCTGGGTTCCGATGGGAGCCGGTGGTGGACACCGGCAAGGAGGCACCATATGACTTCCTCACCGATGGCCTGCCAGATCGTGCTGTCACCGTCTACCAGTTCTCTCATTTCCTCAACTCCAATCTCTATCCTATGCTCAGCTACTCCTCCATCATCCTTGTATTGCGCCCTGATGTCTGA;SEQ ID NO.1。
(2)淀粉去分支酶基因ZmISA2,其核苷酸序列如下:
ATGGCCTCCTCCCTCCCCGCGCCGCCGGCCTCGCCCTCTTCCTCCTGGCGCGGACTCACGCCCCGCTGCCCTCCGCCTCGCTGCGGTCCCCTCCTCGCCCGCGCGGTAGCGCGTTCTTACCGTTACCGCTTCCGAACCGACGACGACGGCGTGGTGGACGTGGCCGTCGCCGGGAAAGACGGCGATGCGGGGTATGTGGTCGCTATCGAGGCTCCTACCCATGGACAGAGGGGCGGTCTTGTGCTCCGCCCCGCCGGCTCCGGCGAGGGCGTCCCTCTGGCCCCAGCCGCGCCGGGAGGTGCCCTCGTGGCTGAGTTGTCCTACGACGTGGCCCGCGCGCCGTTCCACGTCTCGTTCACGCTGGCCGACGCGATGGGAGCGGAGATACGGACACACCGCGGGACGAGCTTCCGCGTGCCTGTTGGCGTCGGACGGGGCTGCCCCTCGCCGCTCGGCCTGTCCCAGTCCAAGGATGGGGCCGCTAACTTCGCGGTTTACAGCAAGATCGCCAAGGGCATGGTGCTCTGCCTCTTCGGTGGTGGCGGCGGGGACGGACCCGCGCTGGAGATTGAGCTCGACCCGTACGTCCACCGGACCGGCGATGTCTGGCACGTCTCGATGGAGAGCGTGGAGGGGTACGCCCGCTACGGCTTCCGCAGCGGGCTGTTCGCAATGTTTGGCATTGACCGCCCGCTACTCGACCCGTACGCCAAGGTGATCGGGGACTTCGTCGCTGGCGACTCTGTTGATGAGGATGGGCTAGCTGTGCCATCCATAAGGTGTCTCGCGTCCTTGAAGAATGCACCCAACTACGATTGGGGCAGGGACAAGCACCCATGCTTGCCATTGGAGAAGCTGGTGGTCTACCGGGCAAATGTGGCTTTGTTCACCAAGGATAGGTCGAGTCGGCTGGCAGACAATGCCGCTGGTACTTTCTCCGGCATGTCTGCAAAGGTGGAACACTTCAGGCATCTTGGTGTCAATGCAGTTTTGCTGGAGCCAGTTTTCCCATTCCACCAAGTGAAGGGACCATATTTTCCATACCATTTTTTTTCACCTATGAGCTTGTATAGCAGTGAATGCTCCAGTGTTTCAGCTATCAAGTCTATGAAGGATATGGTCAAAACAATGCACAGAAATGGGATAGAGGTTCTCTTGGAGGTTGTTTTCACGCATACTGCTGAAGGAGGGGCGGAGTGTCAGATGATATCACTTCGAGGCATCGATGGTTCCTCGTACTACATTGCTGATGGAATCGCTGGATGCAAGGCAAGTGTGTTGAATTGCAACCATCCAGTGACTCAGAAGCTGATTTTGGACAGCCTCCGCCATTGGGTGCTCGACTTCCATGTTGATGGGTTCTGCTTCATCAATGCTCCTTTCCTCGTCAGAGGTCCACGTGGTGAGGGCCTCTCACGGCCTCCACTTCTGGAAGCCATAGCATTTGATCCTGTTCTTTCAAAGACTAAGATCATTGCAGATCCTTGGTCTCCGCTTGACATATCTAATGTGCAATTTCCATTCCCTCATTGGAAAAGATGGGCTGAGATGAACACAAGATTCTCTATGGATGTGCGCAAGTTTCTTAAGGGAGAAGCACTTATCAGTGATCTTGCTACACGTTTGTGTGGCAGTGGGGACTTATTTTCCTCAAGGGCCCCAGCATTTTCGTTCAATTATGTATCCAGGAATTCTGGACTCACTCTTGTTGATCTAGTGAGCTTCAGCAGTGATGAGCTTGCTTCTGAGTTCAGCTGGAATTGTGGTGAAGAAGGACCATCGGAGAACAACGCAGTCCTTCAAACCAGGCTAAGACAGATACGCAACTTCTTGTTTATTCTATTCATTTCCCTTGGTATTCCTGTTCTTAACATGGGGGATGAATGTGGAAACTCAGCTGCTGGTTCAACATCATACAAGGATAGAGGGCCTCTGAACTGGAAAGCCTTGAAGACCGCTTTTGTTAAGGAAGTTACCGGGTTTATTTCGTTTCTATCTGCACTAAGGAGTCGACGAGCAGACATTTTCCAGAGATGCGAGTTTCTAAAACTTGAAAATATACATTGGTATGGGAGTGATTTATCTGAGCCATGTTGGGAGGATCCTACTAGCAACTTTCTTTGCTTGCACATAAATGCAGAGCTGGACGAGAAGCTACCAGATTCGACTGGAGGTGATTTGTATATCTGTTTCAATGCAAACGAGGAGTCAGCGAGTGCTACTTTACCAGCTATTGCAGAAGGATCCATGTGGCTGCGCTTGGTTGATACATCACTTGCATTTCCAGGTTTCTTTTCCAGAGGGTCTAGTCATGAAACACACCAGGTGCTAGGATTTTCCTCATATCAAGTGAAGGCACATAGCTGTGTTCTGTTCGAATCCAAGAGGGTTCTTTCATAG;SEQ ID NO.2。
(3)淀粉去分支酶基因ZmISA3,其核苷酸序列如下:
ATGGATTCCGTCGGTACAAATCGGCCCCCGCTGCGCCCCGTTGCCGCCGCAGCTACTCGACGCAGCGCGCTCCTGCGCCCCCCTAGCCACCTCGGGCTCGGCAATCGTTTTGCGGAGACTAAGCTTGGGATCGCGTCAGGGTGTGGAGGAGGAGGAGGGTATTTTGGAAAGGTACAGGGATTTGATGCCTTGCGGAGTACCACGACGAAAGTTCAGAGCGGGAAGGCGGGGAGGAGTGTGACCAAGGAAATGGGACACACTTCATCTGGCAATGAAGTGCCCTTGAAATATTCTTCAGGCAAAGCCTTCCCCCTAGGAGTGTCACAAGTTGACGATGGGTTAAATTTTGCAATATTCTCACAACATGCTTCTTCTGTCACCCTTTGCTTGAATTTTCCTGAGAGAGGCAACCAAGATGATGTGGACATTGTAGAGTTTGCTTTAGACCGCCAGAAGAACAAAACTGGAGATATATGGCATGTGTCAGTGGAGGGTTTGCCTGCTTCTGGTGTTCTTTATGGGTATCGCATTAATGGTCCTCAAGGGTGGCAACAAGGTCATAGATTTGATGACAGCGTTATTCTTCTGGACCCCTATGCAAAATTAGTTTATGGTCGAAAGCACTTTGCTGTTGAAAAAGAGAAGCCAAGCCAGCTTTTCGGAACATATGATTTCGATAGCTCACCTTTTGACTGGGGTGACAATTATAAGCTTCCTAATTTGCCTGAGACAGATCTTGTTATATATGAAATGAATGTCCGTGCCTTCACTGCCGACGAGTCAAGCAGGCTTGCTCCAGCTATTCGTGGAAGTTACCTTGGTGTCATTGATAAAATTCCTCATTTGCTGGAACTTGGCGTTAATGCAGTGGAACTACTTCCTGTTTTTGAGTTCGATGAGCTGGAGTTGAAGAGGTTCCCTAACCCAAGGGACCACATGGTAAATACATGGGGATATTCTACAATCAACTTTTTTGCGCCCATGAGTCGTTATGCTAGTGCTGGTGGTGGACCTGTGGCTGCTTCCAAAGAGCTCAAACAGATGGTCAAGGCATTTCATAATTCTGGAATTGAGGTTATTTTGGATGTAGTTTACAACCATACAAATGAAGCTGATGATGTTAACCCTTACATGACTTCCTTTCGTGGTATTGATAACAAGGTCTATTACATGTTAGATCTCAACAACAGTGCACAGCTGCTGAACTTCTCGGGTTGCGGGAATACACTAAACTGCAACCATCCTGTTGTCAAGGAGCTTGTACTTGACAGTTTAAGACATTGGGTTAAGGAGTATCACATAGATGGATTTCGGTTTGACCTTGCGAGTGTTCTTTGTCGTGGACCAGATGGCAGTCCTCTTGATGCACCTCCACTTATTAAGGAAATTGCCAAAGACTCTGTATTGTCTAGATGTAAGATCATTGCTGAACCTTGGGACTGTGGTGGCCTTTATCTAGTAGGGAGGTTCCCTAATTGGGACAGGTGGGCTGAATGGAACGGGAAGTACAGAGATGATATTCGAAGATTTATTAAGGGAGATCCTGGTATGAAGGGGGTGTTTGCAACTCGCGTTTCTGGTTCTGCAGATCTCTACCAGGTGAACAATCGGAAGCCTTACCATAGTGTGAACTTTGTAATTGCTCATGATGGATTTACTTTATGTGACCTTGTTTCATATAACTCCAAGCACAATGATGCAAATGGAGAAGGTGGTCGTGATGGGTGCAATGACAACTACAGCTGGAACTGTGGCATTGAAGGAGAAACAAATGATTTGAATGTGCTAAGTCTTCGTTCAAGGCAAATGAAGAACTTCCATGTGGCATTAATGATTTCCCAGGGTACTCCAATGATGCTGATGGGAGATGAATATGGTCACACACGTTATGGAAACAACAATAGCTATGGACATGATACTCACATAAATAATTTTCAGTGGGGCCAGTTGGAAGAAAGGAAGGATGGCCATTTCAGGTTTTTCTCAGAGATGATCAAGTTTCGGCATAACCATCCTATATTGAGACGAGACAGGTTTCTCAACAAAAATGATGTCACTTGGCATGAAAATCGTTGGGAGAACCAGGACAGCAAATTTTTGGCATTTACGATACATGATCACAGTTCTGGTGGAGACATCTATTTGGCATTCAATGCTCATGAGTATTTTGTGGATGCTGTAATTCCCCCACCACCACACCATAAATCTTGGAGTCGTGTGGTGGATACCAACCTGGAATCACCAAAGGATATTGTCCCAGAAGGGGTGCCATTCACAGGTTCAGGGTACAGGATTGCTCCCTACTCTTCCATCTTGCTTAAGGCAAAGCCTTAG;SEQ ID NO.3。
(4)淀粉去分支酶基因ZmZpu1,其核苷酸序列如下:
ATGTTGCTCCACGCCGGTCCCTCGTTCCTGCTCGCACCACCTCCGCGCTTTGCCGCCGCTCCGTCGTCAGCTTCGCCGAGGCGATCCAGGACACCGCAATCCTCGCCGCCGACGTCGCATTTCGCGCGCCCCGCTGATCCCGTGGCCCAAAGGGTGCGTCCCGTCGCGCCGAGGCCCCCCATGGCGACGGCGGAGGAGGGCGCCAGCTCTGACGTCGGCGTCGCCGTCGCCGAGTCCGCACAGGGGTTCTTGTTGGATGCGAGGGCTTACTGGGTGACAAAATCCTTGATTGCATGGAATATCAGTGATCAGAAAACTTCTCTCTTCTTATATGCAAGCAGAAATGCTACAATGTGCATGTCGAGTCAGGATATGAAAGGTTATGATTCCAAAGTTGAGCTGCAACCAGAAAATGATGGACTTCCATCCAGTGTGACCCAGAAATTCCCTTTTATCAGCTCTTATAGAGCCTTCAGAATTCCGAGCTCCGTTGATGTTGCCACCTTGGTGAAATGTCAACTTGCTGTTGCTTCATTTGATGCTCATGGGAACAGGCAAGATGTTACTGGGTTGCAACTACCTGGAGTATTGGATGACATGTTCGCCTACACTGGACCGCTTGGTACTATTTTTAGTGAAGAAGCTGATGTAAGTGTGAGCTTCTATGATGGTCCAGCTGGCCCTTTACTGGAAACAGTTCAACTCAACGAGTTAAATGGTGTTTGGAGTGTTACTGGTCCAAGGAACTGGGAGAACCGGTATTATCTATATGAAGTCACAGTATATCATCAAACTACAGGAAACATTGAGAAATGTTTAGCCGCTGATCCTTATGCTAGAGGGCTTTCTGCAAATAGCACACGAACTTGGTTGGTTGATATTAATAATGAAACATTAAAGCCACTTGCCTGGGATGGATTGGCGGCTGAAAAGCCAAGGCTTGATTCCTTCTCTGACATAAGCATATATGAATTGCACATTCGTGATTTCAGTGCCCATGATAGCACAGTGGACTGTCCTTTCCGAGGAGGTTTCTGTGCATTTACATTTCAGGATTCTGTAGGCATAGAACACCTAAAGAAACTATCTGATGCCGGTTTGACTCATGTCCATTTGTTGCCAAGCTTTCAATTTGGTGGTGTTGATGACATAAAGAGCAATTGGAAATGTGTTGATGAGATTGAACTGTCAAAACTCCCTCCAGGGTCAGATTTGCAACAAGCTGCAATTGTGGCTATTCAGGAAGAGGACCCTTATAATTGGGGGTATAACCCTGTGGTTTGGGGCGTTCCAAAAGGAAGCTATGCAAGTAACCCAGATGGTCCAAGTCGTATCATTGAGTACCGGCTGATGGTGCAGGCCTTGAATCGCTTAGGTCTTCGAGTTGTCATGGATGTTGTATACAATCATCTATACTCAAGTGGCCCTTTTGCCATCACTTCCGTGCTTGACAAGATTGTACCTGGATACTACCTCAGAAGGGACTCTAATGGTCAGACTGAGAACAGCGCGGCTGTGAACAATACAGCAAGTGAGCATTTCATGGTTGATAGATTAATCGTGGATGACCTTCTGAATTGGGCAGTAAATTACAAAGTTGACGGGTTCAGATTTGATCTAATGGGACATATCATGAAAAAGACAATGATTAGAGCAAAATCGGCTCTTCAAAGCCTTACAATTGATGAACATGGAGTAGATGGTTCAAAGATATACTTGTATGGTGAAGGATGGAACTTCGGTGAAGTTGCGGAAAATCAACGTGGGATAAATGGATCCCAGCTAAATATGAGTGGCACTGGGATTGGTAGTTTCAACGATAGAATCCGTGATGCTATAAATGGTGGCAGTCCGTTTGGGAATCCACTGCAACAAGGTTTCTCTACTGGATTGTTCTTAGAGCCAAATGGATTTTATCAGGGCAATGAAACAGAGACAAGGCTCACGCTTGCTACATACGCTGACCATATACAGATTGGATTAGCTGGCAATTTGAAGGACTATGTAGTTATATCTCATACTGGAGAAGCTAGAAAAGGATCTGAAATTCGCACCTTCGATGGCTCACCAGTTGGCTATGCTTCATCCCCTATAGAAACAATAAACTACGCCTCTGCTCATGACAATGAAACACTATTTGATATTATTAGTCTAAAGACTCCGATGGACCTCTCAATTGACGAGCGATGCAGGATAAATCATTTGTCCACAAGCATGATTGCATTATCCCAGGGAATACCATTTTTTCATGCTGGTGATGAGATACTACGATCTAAGTCGCTTGATCGAGATTCATATGACTCTGGTGATTGGTTTAACAAGATTGATTTTACCTATGAAACAAACAATTGGGGTGTTGGGCTTCCACCAAGAGAAAAGAACGAAGGGAGCTGGCCTTTGATGAAGCCAAGATTGGAGAACCCGTCGTTCAAACCTGCAAAACATGACATTATTGCTGCCTTAGACAAATTTATTGATATCCTCAAGATCAGATACTCATCACCTCTCTTTCGCCTAACTACAGCAAGTGATATTGTGCAAAGGGTTCACTTTCACAACACAGGGCCCTCCTTGGTTCCAGGAGTTATTGTCATGAGCATCGAAGATGCACGAAATGATAGGCATGATATGGCCCAGATAGATGAAACATTCTCTTGTGTCGTTACAGTCTTCAATGTATGTCCGTACGAAGTGTCTATAGAAATCCCTGATCTTGCATCACTGCGGCTTCAGTTGCATCCAGTGCAGGTGAATTCATCGGATGCGTTAGCCAGGCAGTCTGCGTACGACACCGCCACAGGTCGATTCACCGTGCCGAAAAGGACAGCAGCAGTGTTCGTGGAACCCAGGTGCTGA;SEQ ID NO.4。
(一)构建基因编辑载体pBUE411-2gR-ZmSu1-ZmIsa2
1)针对基因Zmsu1、ZmIsa2设计基于CRISPR/Cas9的sgRNA作用位点;
所述sgRNA作用位点的核苷酸序列为:
Zmsu1:5’-GCCTTTGATGAACTGACGCACGG-3’;SEQ ID NO.5;和
ZmIsa2:5’-GCGGAGATACGGACACACCGCGG-3’;SEQ ID NO.6;
2)以pCBC-MT1T2质粒为模板,MT1T2-F,MT1T2-F0,MT1T2-R0,MT1T2-R为引物,PCR扩增目的片段;
所述引物序列如下:
MT1T2-F:5’-AATAATGGTCTCAGGCGCCTTTGATGAACTGACGCA-3’;SEQ ID NO.7;
MT1T2-F0:5’-GCCTTTGATGAACTGACGCAGTTTTAGAGCTAGAAATAGC-3’;SEQ ID NO.8;
MT1T2-R0:5’-CGGTGTGTCCGTATCTCCGCGCTTCTTGGTGCC-3’;SEQ ID NO.9;
MT1T2-R:5’-ATTATTGGTCTCTAAACCGGTGTGTCCGTATCTCCG-3’;SEQ ID NO.10;
3)用一轮PCR方法扩增目的片段,PCR反应使用两对引物MT1T2-F,MT1T2-F0,MT1T2-R0,MT1T2-R,以pCBC-MT1T2质粒为模板扩增。
PCR扩增反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F 0.5μl,MT1T2-F00.5μl,MT1T2-R00.5μl,MT1T2-R 0.5μl,2×Mix 10μl,ddH2O 7μl。
PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。
将获得的目的片段与载体pBUE411进行酶切连接,反应体系如下:
目的片段(964bp)2μl,pBUE4112μl,10xNEB T4 Buffer 1.5μl,10xBSA 1.5μl,BsaI(NEB)1μl,T4 Ligase(NEB)/高浓度1μl,ddH2O 6μl,Total 15μl。
反应条件:37℃5h,50℃5min,80℃10min。
构建得到ZmSu1、ZmIsa2基因编辑载体pBUE411-2gR-ZmSu1-ZmIsa2。
(二)构建基因编辑载体pBUE411-2gR-ZmIsa3-ZmZpu1
1)针对基因ZmIsa3、ZmZpu1设计基于CRISPR/Cas9的sgRNA作用位点;
所述sgRNA作用位点的核苷酸序列为:
ZmIsa3:5’-ACCACGACGAAAGTTCAGAGCGG-3’;SEQ ID NO.11;和
ZmZpu1:5’-TGGTCAGACTGAGAACAGCGCGG-3’;SEQ ID NO.12;
2)以pCBC-MT1T2质粒为模板,MT1T2-F’,MT1T2-F0’,MT1T2-R0’,MT1T2-R’为引物,PCR扩增目的片段;
所述引物序列如下:
MT1T2-F’:5’-AATAATGGTCTCAGGCGCCACGACGAAAGTTCAGAG-3’;SEQ ID NO.13;
MT1T2-F0’:5’-GCCACGACGAAAGTTCAGAGGTTTTAGAGCTAGAAATAGC-3’;SEQ IDNO.14;
MT1T2-R0’:5’-CGCTGTTCTCAGTCTGACCCGCTTCTTGGTGCC-3’;SEQ ID NO.15;
MT1T2-R’:5’-ATTATTGGTCTCTAAACCGCTGTTCTCAGTCTGACC-3’;SEQ ID NO.16;
3)用一轮PCR方法扩增目的片段,PCR反应使用两对引物MT1T2-F’,MT1T2-F0’,MT1T2-R0’,MT1T2-R’,以pCBC-MT1T2质粒为模板扩增。
PCR扩增反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F’0.5μl,MT1T2-F0’0.5μl,MT1T2-R0’0.5μl,MT1T2-R’0.5μl,2×Mix 10μl,ddH2O 7μl。
PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。
将获得的目的片段与载体pBUE411进行酶切连接,反应体系如下:
目的片段(964bp)2μl,pBUE4112μl,10xNEB T4 Buffer 1.5μl,10xBSA 1.5μl,BsaI(NEB)1μl,T4 Ligase(NEB)/高浓度1μl,ddH2O 6μl,Total 15μl。
反应条件:37℃5h,50℃5min,80℃10min。
构建得到ZmIsa3、ZmZpu1基因编辑载体pBUE411-2gR-ZmIsa3-ZmZpu1。
实施例2基因编辑载体转入农杆菌LBA4404
1)CaCl2法制备根癌农杆菌感受态细胞
(1)从YEP平板(RifR,StrR)上挑取新鲜的LBA4404单菌落接种于含50mg/L Str和25mg/L Rif的YEP液体培养基中,28℃,220rpm振荡培养过夜24~36h;
(2)取2ml过夜活化的对数生长期的菌液,接种于50mL YEP液体培养基中,20℃培养菌液OD600至0.4~0.6左右;
(3)将菌液转移到冰预冷的50mL无菌离心管中,冰浴30min,4℃,4,000×g离心10min,富集菌体;
(4)用10mL冰预冷0.05M CaCl2悬浮菌体,冰浴30min,4℃,4,000×g离心10min,富集菌体;
(5)用1mL冰预冷0.05M CaCl2重悬菌体,将制备好的感受态细胞于4℃保存,24~48h内使用转化效率最高,也可按每管100μL分装于无菌管中,加入终浓度20%甘油,并用液氮速冻后置于-80℃保存。
2)冻融法转化根癌农杆菌感受态细胞
(1)取出农杆菌感受态(200μL),置于冰上,待刚解冻时加入1μg质粒DNA,放入液氮中1min,而后放入37℃金属浴中5min;质粒DNA pBUE411-2gR-ZmSu1-ZmIsa2和pBUE411-2gR-ZmIsa3-ZmZpu1分别转化农杆菌感受态;
(2)取出离心管,加入1mL YEB液体培养基(不含抗生素),置于摇床上,28℃,180r/min培养35h;
(3)3000rpm离心1min,取出多余上清液,保留100μL,重悬,倒入YEB平板培养基(kan,rif)上,涂抹均匀,在恒温培养箱中28℃培养36-48h;
(4)挑取单克隆,检测,保留阳性菌落。利用引物OsU3-FD3/TaU3-RD进行菌液PCR鉴定。
其中,OsU3-FD3/TaU3-RD引物序列如下:
OsU3-FD3:5’-GACAGGCGTCTTCTACTGGTGCTAC-3’;SEQ ID NO.17;
TaU3-RD:5’-CTCACAAATTATCAGCACGCTAGTC-3’;SEQ ID NO.18。
反应体系:
菌液1μl,OsU3-FD31μl,TaU3-RD 1μl,2×mix 10μl,ddH2O 7μl,Total 20μl。
PCR扩增反应程序为:98℃3min;98℃30s,57℃45s,72℃1min,35个循环;72℃5min,4℃∞。
菌落PCR产物大小为831bp。
鉴定正确后,获得含有pBUE411-2gR-ZmSu1-ZmIsa2的根癌农杆菌,以及含有pBUE411-2gR-ZmIsa3-ZmZpu1的根癌农杆菌。
实施例3玉米遗传转化
(1)取胚材料为玉米自交系C01,在授粉后第九天开始观察玉米幼胚,待其长到1.5mm左右时,将果穗取回实验室进行取胚工作。
(2)准备农杆菌侵染液,经过活化的农杆菌(含有pBUE411-2gR-ZmSu1-ZmIsa2的根癌农杆菌,或含有pBUE411-2gR-ZmIsa3-ZmZpu1的根癌农杆菌)在YEB液体培养基中摇菌至特定浓度时(OD550=0.5),低速离心收集菌体沉淀,然后用inf(每升组成:N6盐和维生素(sigma)2克,蔗糖68.5克,葡萄糖36克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-D 1.5ml)+AS(Acetosyringone,(100mM),1ml))液体培养基重悬,25℃75r/min摇菌24h,至浓度为OD550=0.3-0.4即可。
(3)将步骤(1)中取出的幼胚用inf+AS(同上)液体培养基洗涤2次,然后加入农杆菌侵染液,侵染20min-30min。
(4)将侵染过后的幼胚转移到共培养培养基(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,琼脂糖(低EEO)5g,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g)中,幼胚的盾片朝上,胚轴与培养基表面接触,用封口膜封住培养皿,在20℃培养箱中暗培养3天。
(5)把幼胚从共培养培养基转移到静息培养基(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g,Timentin(蒂门汀,Sigma)100mg)中,用封口膜封住培养皿,放在28℃条件下暗培养7天。
(6)再将所有的幼胚转移到选择培养基Ⅰ(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g,Timentin 100mg,3mg/ml Bialaphos0.5ml)上,28℃暗培养两周。
(7)将所有的幼胚转移到选择培养基Ⅱ(每升组成:N6盐和维生素4克,蔗糖40克,葡萄糖30克,L-proline 0.7克,MES 0.5g,1mg/ml 2,4-d 1.5ml,8.5mg/ml硝酸银0.1ml,100mg/ml L-半胱氨酸0.4g,0.5M/L DTT 0.154g,Timentin 100mg,3mg/ml Bialaphos1ml)上,此时可以进行挑选,挑选颜色鲜艳的幼胚28℃暗培养两周。
(8)经过两次选择之后,开始进行再生,在再生培养基I(每升组成:MS(Murashigeand Skoog)盐(sigma)4.3g,蔗糖60g,凝胶2.5克,2mg/ml甘氨酸1ml,Timentin 100mg)中进行发芽生根,待见到明显叶片及根生长出来时转移到再生培养基Ⅱ(每升组成:MS salts2.9g,蔗糖30g,凝胶2.5g,2mg/ml甘氨酸1ml,Timentin 100mg)上。从此步骤开始,进行光照培养。
(9)待再生苗长出3-4片叶时,将其转移至温室,并进行检查,阳性植株(pBUE411-2gR-ZmSu1-ZmIsa2载体阳性植株和pBUE411-2gR-ZmIsa3-ZmZpu1载体阳性植株)保留,缓苗2-3天后转移到土中,而后进行正常的玉米生长管理。
实施例4发生编辑的转基因玉米植株的鉴定
转移到土中一周后,进行草铵膦筛选,经过草铵膦筛选后成活的玉米叶片采用CTAB法提取DNA,pBUE411-2gR-ZmSu1-ZmIsa2载体阳性植株用ZmSu1和ZmIsa2基因特异引物进行PCR鉴定;pBUE411-2gR-ZmIsa3-ZmZpu1载体阳性植株用ZmIsa3和ZmZpu1基因特异性引物进行PCR鉴定,扩增产物用1%琼脂糖凝胶电泳进行检测。
ZmSu1、ZmIsa2、ZmIsa3和ZmZpu1基因特异性引物序列如下:
ZmSu1-CRISPR-F1:5’-AGGACTTCCCAGCCCAAC-3’;SEQ ID NO.19;
ZmSu1-CRISPR-R1:5’-CACCGTGCTCATTGATGG-3’;SEQ ID NO.20;
ZmIsa2-CRISPR-F2:5’-TACCGTTACCGCTTCCGA-3’;SEQ ID NO.21;
ZmIsa2-CRISPR-R2:5’-CCATCCTTGGACTGGGAC-3’;SEQ ID NO.22;
ZmIsa3-CRISPR-F3:5’-TGTGCTCGCTGTGAGTCT-3’;SEQ ID NO.23;
ZmIsa3-CRISPR-R3:5’-CCAGATGAAGTGTGTCCC-3’;SEQ ID NO.24;
ZmZpu1-CRISPR-F4:5’-GATTGCTTTGTTCATTGGC-3’;SEQ ID NO.25;
ZmZpu1-CRISPR-R4:5’-AACCCGTCAACCTAAGGC-3’;SEQ ID NO.26。
反应体系为:
DNA 1μl,ZmSu1-CRISPR-F1/ZmIsa2-CRISPR-F2/ZmIsa3-CRISPR-F3/ZmZpu1-CRISPR-F41μl,ZmSu1-CRISPR-R1/ZmIsa2-CRISPR-R2/ZmIsa3-CRISPR-R3/ZmZpu1-CRISPR-R41μl,2×mix 10μl,ddH2O 7μl,Total 20μl。
反应程序为:94℃5min;98℃30s,58℃30s,72℃1min,35个循环;72℃延伸10min,4℃∞。
引物对(ZmSu1-CRISPR-F1/R1)用于扩增ZmSu1基因突变,产物大小约为0.5Kb;引物对(ZmIsa2-CRISPR-F2/R2)用于扩增ZmIsa2基因突变,产物大小约为0.4Kb;引物对(ZmIsa3-CRISPR-F3/R3)用于扩增ZmIsa3基因突变,产物大小约为0.5Kb;引物对(ZmZpu1-CRISPR-F4/R4)用于扩增ZmZpu1基因突变,产物大小约为0.5Kb;
分别将扩增产物条带大小正确的PCR产物送去测序,测序结果与野生型进行比对,结果见图1(仅显示突变位点)。
pBUE411-2gR-ZmSu1-ZmIsa2和pBUE411-2gR-ZmIsa3-ZmZpu1两个载体靶点均编辑的植株相互授粉进行杂交,然后自交,筛选4个靶点均被编辑的纯合突变体。即获得高类胡萝卜素甜玉米。
筛选到4个基因编辑的突变体株系。发生编辑的纯合甜玉米突变体材料明显比野生型的类胡萝卜素高。这个高类胡萝卜素甜玉米材料具有重要的育种价值。
授粉23天后测量籽粒可溶性糖,野生型含量为4.2%,突变型为12.5%,二者差异显著。
收获后对野生型和突变型玉米籽粒的类胡萝卜素含量进行测定,结果见图2;结果显示,野生型(Wildtype)玉米籽粒平均类胡萝卜素含量为2.34mg/100g,突变型(Mutant)玉米籽粒平均类胡萝卜素含量为3.67mg/100g,二者差异显著。
本发明提供一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,按照上述方法制备目的基因编辑的玉米材料,然后基因编辑玉米材料进行杂交、回交、自交或无性繁殖,从而创制高类胡萝卜素甜玉米材料。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
序列表
<110> 吉林省农业科学院
<120> 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法
<160> 26
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2370
<212> DNA
<213> Artificial Sequence
<400> 1
atggcgcagc agctcccctg cgtctcgtcg ccgcgcccgc tgctcgccgt gcccgcgggc 60
cggtggcgcg ccggcgtgcg gggccggccc aatgtggcgg gactggggcg ggggcggctg 120
tctctccacg ccgccgccgc gcggcccgtg gccgaggcgg tgcaggcgga ggaggacgac 180
gacgacgacg acgaggaggt ggccgaggag aggttcgcgc tgggcggcgc gtgccgggtg 240
ctcgcgggaa tgcccgcgcc gctcggcgcc accgcgctcc gcggcggtgt caacttcgcc 300
gtctactcca gcggtgcctc cgccgcgtcg ctgtgcctct tcgctcccgg cgacctcaag 360
gcggataggg tgaccgagga ggtgcccctc gatcccctgc tcaaccgaac gggaaacgtg 420
tggcacgtgt tcatccacgg ggaccagctg cacggcatgc tctacggata caggttcgat 480
ggcgtgttcg cccctgagcg cggacagtac tacgatgtgt ccaacgttgt ggtggatcca 540
tacgctaagg cagtggtaag ccgaggtgaa tatggtgtgc ctgcgcctgg tggtagttgt 600
tggcctcaaa tggctggtat gatccctctt ccctataata agtttgattg gcaaggtgac 660
ctaccccttg ggtaccatca gaaggacctt gtcatatatg aaatgcattt gcgtggattc 720
acaaagcaca actcaagcaa gacaaaacac ccaggaactt acattggtgc tgtgtcaaag 780
cttgaccatc taaaggaact tggagtgaac tgtatagagc taatgccctg ccatgagttc 840
aatgagctag agtacttcag ctcctcttcg aagatgaact tctggggata ttccacaata 900
aattttttct caccaatggc aagatattct tcaagtggca taagagactc tggatgtggt 960
gccataaatg aatttaaagc ttttgtaagg gaggcccaca aacggggaat tgaggtgatc 1020
atggatgttg tcttcaatca tacagctgaa ggtaatgaga aaggcccaat attatccttt 1080
agggggatag ataatagtac atactacatg cttgcaccta agggagagtt ttataattat 1140
tctggttgtg gaaatacctt caattgtaat catcctgtag tccgtgaatt tatagtggat 1200
tgcttgagat actgggtaac agaaatgcat gttgatggtt ttcgttttga ccttgcatct 1260
atactgacca gaggatgcag tctatgggat ccagttaatg tgtatggaag tccaatggaa 1320
ggtgacatga ttacgacagg gacacctctt gttgccccac cacttattga catgattagc 1380
aatgacccaa ttcttggaaa tgtcaagctc attgctgaag catgggatgc aggaggtctc 1440
tatcaagttg gtcagtttcc tcactggaac gtttggtcag agtggaatgg aaagtatcgc 1500
gataccgtgc gtcagttcat caaaggcaca gatggatttg ctggtgcttt tgctgaatgc 1560
ctatgtggaa gtccacagtt ataccaggca ggggggagga agccttggca cagtatcaac 1620
tttgtatgtg cacacgatgg atttacactg gctgatttgg tcacatacaa tagcaagtac 1680
aacttgtcaa atggtgagga caacagagat ggggaaaatc ataatcttag ctggaattgt 1740
ggggaggaag gagaatttgc aagtctgtca gtccgaagat taaggaagag gcaaatgcgc 1800
aatttctttg tttgtcttat ggtttctcag ggagttccaa tgttctacat gggcgatgaa 1860
tatggtcaca caaagggagg gaacaacaat acgtactgcc atgaccatta tgtcaattat 1920
ttccgttggg ataagaagga agaacaatcc tctgatttgt acagattctg ccgtctcatg 1980
accaaattcc gcaaagaatg tgaatctctt ggccttgagg acttcccgac ttcagaacgg 2040
ttgaaatggc acggtcatca gcccgggaag cctgactggt cagaggcaag ccgattcgtt 2100
gccttcacca tgaaggacga aaccaaaggc gagatctacg tggccttcaa caccagtcac 2160
cttccggtgg ttgttgggct tccagagcgc tctgggttcc gatgggagcc ggtggtggac 2220
accggcaagg aggcaccata tgacttcctc accgatggcc tgccagatcg tgctgtcacc 2280
gtctaccagt tctctcattt cctcaactcc aatctctatc ctatgctcag ctactcctcc 2340
atcatccttg tattgcgccc tgatgtctga 2370
<210> 2
<211> 2400
<212> DNA
<213> Artificial Sequence
<400> 2
atggcctcct ccctccccgc gccgccggcc tcgccctctt cctcctggcg cggactcacg 60
ccccgctgcc ctccgcctcg ctgcggtccc ctcctcgccc gcgcggtagc gcgttcttac 120
cgttaccgct tccgaaccga cgacgacggc gtggtggacg tggccgtcgc cgggaaagac 180
ggcgatgcgg ggtatgtggt cgctatcgag gctcctaccc atggacagag gggcggtctt 240
gtgctccgcc ccgccggctc cggcgagggc gtccctctgg ccccagccgc gccgggaggt 300
gccctcgtgg ctgagttgtc ctacgacgtg gcccgcgcgc cgttccacgt ctcgttcacg 360
ctggccgacg cgatgggagc ggagatacgg acacaccgcg ggacgagctt ccgcgtgcct 420
gttggcgtcg gacggggctg cccctcgccg ctcggcctgt cccagtccaa ggatggggcc 480
gctaacttcg cggtttacag caagatcgcc aagggcatgg tgctctgcct cttcggtggt 540
ggcggcgggg acggacccgc gctggagatt gagctcgacc cgtacgtcca ccggaccggc 600
gatgtctggc acgtctcgat ggagagcgtg gaggggtacg cccgctacgg cttccgcagc 660
gggctgttcg caatgtttgg cattgaccgc ccgctactcg acccgtacgc caaggtgatc 720
ggggacttcg tcgctggcga ctctgttgat gaggatgggc tagctgtgcc atccataagg 780
tgtctcgcgt ccttgaagaa tgcacccaac tacgattggg gcagggacaa gcacccatgc 840
ttgccattgg agaagctggt ggtctaccgg gcaaatgtgg ctttgttcac caaggatagg 900
tcgagtcggc tggcagacaa tgccgctggt actttctccg gcatgtctgc aaaggtggaa 960
cacttcaggc atcttggtgt caatgcagtt ttgctggagc cagttttccc attccaccaa 1020
gtgaagggac catattttcc ataccatttt ttttcaccta tgagcttgta tagcagtgaa 1080
tgctccagtg tttcagctat caagtctatg aaggatatgg tcaaaacaat gcacagaaat 1140
gggatagagg ttctcttgga ggttgttttc acgcatactg ctgaaggagg ggcggagtgt 1200
cagatgatat cacttcgagg catcgatggt tcctcgtact acattgctga tggaatcgct 1260
ggatgcaagg caagtgtgtt gaattgcaac catccagtga ctcagaagct gattttggac 1320
agcctccgcc attgggtgct cgacttccat gttgatgggt tctgcttcat caatgctcct 1380
ttcctcgtca gaggtccacg tggtgagggc ctctcacggc ctccacttct ggaagccata 1440
gcatttgatc ctgttctttc aaagactaag atcattgcag atccttggtc tccgcttgac 1500
atatctaatg tgcaatttcc attccctcat tggaaaagat gggctgagat gaacacaaga 1560
ttctctatgg atgtgcgcaa gtttcttaag ggagaagcac ttatcagtga tcttgctaca 1620
cgtttgtgtg gcagtgggga cttattttcc tcaagggccc cagcattttc gttcaattat 1680
gtatccagga attctggact cactcttgtt gatctagtga gcttcagcag tgatgagctt 1740
gcttctgagt tcagctggaa ttgtggtgaa gaaggaccat cggagaacaa cgcagtcctt 1800
caaaccaggc taagacagat acgcaacttc ttgtttattc tattcatttc ccttggtatt 1860
cctgttctta acatggggga tgaatgtgga aactcagctg ctggttcaac atcatacaag 1920
gatagagggc ctctgaactg gaaagccttg aagaccgctt ttgttaagga agttaccggg 1980
tttatttcgt ttctatctgc actaaggagt cgacgagcag acattttcca gagatgcgag 2040
tttctaaaac ttgaaaatat acattggtat gggagtgatt tatctgagcc atgttgggag 2100
gatcctacta gcaactttct ttgcttgcac ataaatgcag agctggacga gaagctacca 2160
gattcgactg gaggtgattt gtatatctgt ttcaatgcaa acgaggagtc agcgagtgct 2220
actttaccag ctattgcaga aggatccatg tggctgcgct tggttgatac atcacttgca 2280
tttccaggtt tcttttccag agggtctagt catgaaacac accaggtgct aggattttcc 2340
tcatatcaag tgaaggcaca tagctgtgtt ctgttcgaat ccaagagggt tctttcatag 2400
<210> 3
<211> 2334
<212> DNA
<213> Artificial Sequence
<400> 3
atggattccg tcggtacaaa tcggcccccg ctgcgccccg ttgccgccgc agctactcga 60
cgcagcgcgc tcctgcgccc ccctagccac ctcgggctcg gcaatcgttt tgcggagact 120
aagcttggga tcgcgtcagg gtgtggagga ggaggagggt attttggaaa ggtacaggga 180
tttgatgcct tgcggagtac cacgacgaaa gttcagagcg ggaaggcggg gaggagtgtg 240
accaaggaaa tgggacacac ttcatctggc aatgaagtgc ccttgaaata ttcttcaggc 300
aaagccttcc ccctaggagt gtcacaagtt gacgatgggt taaattttgc aatattctca 360
caacatgctt cttctgtcac cctttgcttg aattttcctg agagaggcaa ccaagatgat 420
gtggacattg tagagtttgc tttagaccgc cagaagaaca aaactggaga tatatggcat 480
gtgtcagtgg agggtttgcc tgcttctggt gttctttatg ggtatcgcat taatggtcct 540
caagggtggc aacaaggtca tagatttgat gacagcgtta ttcttctgga cccctatgca 600
aaattagttt atggtcgaaa gcactttgct gttgaaaaag agaagccaag ccagcttttc 660
ggaacatatg atttcgatag ctcacctttt gactggggtg acaattataa gcttcctaat 720
ttgcctgaga cagatcttgt tatatatgaa atgaatgtcc gtgccttcac tgccgacgag 780
tcaagcaggc ttgctccagc tattcgtgga agttaccttg gtgtcattga taaaattcct 840
catttgctgg aacttggcgt taatgcagtg gaactacttc ctgtttttga gttcgatgag 900
ctggagttga agaggttccc taacccaagg gaccacatgg taaatacatg gggatattct 960
acaatcaact tttttgcgcc catgagtcgt tatgctagtg ctggtggtgg acctgtggct 1020
gcttccaaag agctcaaaca gatggtcaag gcatttcata attctggaat tgaggttatt 1080
ttggatgtag tttacaacca tacaaatgaa gctgatgatg ttaaccctta catgacttcc 1140
tttcgtggta ttgataacaa ggtctattac atgttagatc tcaacaacag tgcacagctg 1200
ctgaacttct cgggttgcgg gaatacacta aactgcaacc atcctgttgt caaggagctt 1260
gtacttgaca gtttaagaca ttgggttaag gagtatcaca tagatggatt tcggtttgac 1320
cttgcgagtg ttctttgtcg tggaccagat ggcagtcctc ttgatgcacc tccacttatt 1380
aaggaaattg ccaaagactc tgtattgtct agatgtaaga tcattgctga accttgggac 1440
tgtggtggcc tttatctagt agggaggttc cctaattggg acaggtgggc tgaatggaac 1500
gggaagtaca gagatgatat tcgaagattt attaagggag atcctggtat gaagggggtg 1560
tttgcaactc gcgtttctgg ttctgcagat ctctaccagg tgaacaatcg gaagccttac 1620
catagtgtga actttgtaat tgctcatgat ggatttactt tatgtgacct tgtttcatat 1680
aactccaagc acaatgatgc aaatggagaa ggtggtcgtg atgggtgcaa tgacaactac 1740
agctggaact gtggcattga aggagaaaca aatgatttga atgtgctaag tcttcgttca 1800
aggcaaatga agaacttcca tgtggcatta atgatttccc agggtactcc aatgatgctg 1860
atgggagatg aatatggtca cacacgttat ggaaacaaca atagctatgg acatgatact 1920
cacataaata attttcagtg gggccagttg gaagaaagga aggatggcca tttcaggttt 1980
ttctcagaga tgatcaagtt tcggcataac catcctatat tgagacgaga caggtttctc 2040
aacaaaaatg atgtcacttg gcatgaaaat cgttgggaga accaggacag caaatttttg 2100
gcatttacga tacatgatca cagttctggt ggagacatct atttggcatt caatgctcat 2160
gagtattttg tggatgctgt aattccccca ccaccacacc ataaatcttg gagtcgtgtg 2220
gtggatacca acctggaatc accaaaggat attgtcccag aaggggtgcc attcacaggt 2280
tcagggtaca ggattgctcc ctactcttcc atcttgctta aggcaaagcc ttag 2334
<210> 4
<211> 2856
<212> DNA
<213> Artificial Sequence
<400> 4
atgttgctcc acgccggtcc ctcgttcctg ctcgcaccac ctccgcgctt tgccgccgct 60
ccgtcgtcag cttcgccgag gcgatccagg acaccgcaat cctcgccgcc gacgtcgcat 120
ttcgcgcgcc ccgctgatcc cgtggcccaa agggtgcgtc ccgtcgcgcc gaggcccccc 180
atggcgacgg cggaggaggg cgccagctct gacgtcggcg tcgccgtcgc cgagtccgca 240
caggggttct tgttggatgc gagggcttac tgggtgacaa aatccttgat tgcatggaat 300
atcagtgatc agaaaacttc tctcttctta tatgcaagca gaaatgctac aatgtgcatg 360
tcgagtcagg atatgaaagg ttatgattcc aaagttgagc tgcaaccaga aaatgatgga 420
cttccatcca gtgtgaccca gaaattccct tttatcagct cttatagagc cttcagaatt 480
ccgagctccg ttgatgttgc caccttggtg aaatgtcaac ttgctgttgc ttcatttgat 540
gctcatggga acaggcaaga tgttactggg ttgcaactac ctggagtatt ggatgacatg 600
ttcgcctaca ctggaccgct tggtactatt tttagtgaag aagctgatgt aagtgtgagc 660
ttctatgatg gtccagctgg ccctttactg gaaacagttc aactcaacga gttaaatggt 720
gtttggagtg ttactggtcc aaggaactgg gagaaccggt attatctata tgaagtcaca 780
gtatatcatc aaactacagg aaacattgag aaatgtttag ccgctgatcc ttatgctaga 840
gggctttctg caaatagcac acgaacttgg ttggttgata ttaataatga aacattaaag 900
ccacttgcct gggatggatt ggcggctgaa aagccaaggc ttgattcctt ctctgacata 960
agcatatatg aattgcacat tcgtgatttc agtgcccatg atagcacagt ggactgtcct 1020
ttccgaggag gtttctgtgc atttacattt caggattctg taggcataga acacctaaag 1080
aaactatctg atgccggttt gactcatgtc catttgttgc caagctttca atttggtggt 1140
gttgatgaca taaagagcaa ttggaaatgt gttgatgaga ttgaactgtc aaaactccct 1200
ccagggtcag atttgcaaca agctgcaatt gtggctattc aggaagagga cccttataat 1260
tgggggtata accctgtggt ttggggcgtt ccaaaaggaa gctatgcaag taacccagat 1320
ggtccaagtc gtatcattga gtaccggctg atggtgcagg ccttgaatcg cttaggtctt 1380
cgagttgtca tggatgttgt atacaatcat ctatactcaa gtggcccttt tgccatcact 1440
tccgtgcttg acaagattgt acctggatac tacctcagaa gggactctaa tggtcagact 1500
gagaacagcg cggctgtgaa caatacagca agtgagcatt tcatggttga tagattaatc 1560
gtggatgacc ttctgaattg ggcagtaaat tacaaagttg acgggttcag atttgatcta 1620
atgggacata tcatgaaaaa gacaatgatt agagcaaaat cggctcttca aagccttaca 1680
attgatgaac atggagtaga tggttcaaag atatacttgt atggtgaagg atggaacttc 1740
ggtgaagttg cggaaaatca acgtgggata aatggatccc agctaaatat gagtggcact 1800
gggattggta gtttcaacga tagaatccgt gatgctataa atggtggcag tccgtttggg 1860
aatccactgc aacaaggttt ctctactgga ttgttcttag agccaaatgg attttatcag 1920
ggcaatgaaa cagagacaag gctcacgctt gctacatacg ctgaccatat acagattgga 1980
ttagctggca atttgaagga ctatgtagtt atatctcata ctggagaagc tagaaaagga 2040
tctgaaattc gcaccttcga tggctcacca gttggctatg cttcatcccc tatagaaaca 2100
ataaactacg cctctgctca tgacaatgaa acactatttg atattattag tctaaagact 2160
ccgatggacc tctcaattga cgagcgatgc aggataaatc atttgtccac aagcatgatt 2220
gcattatccc agggaatacc attttttcat gctggtgatg agatactacg atctaagtcg 2280
cttgatcgag attcatatga ctctggtgat tggtttaaca agattgattt tacctatgaa 2340
acaaacaatt ggggtgttgg gcttccacca agagaaaaga acgaagggag ctggcctttg 2400
atgaagccaa gattggagaa cccgtcgttc aaacctgcaa aacatgacat tattgctgcc 2460
ttagacaaat ttattgatat cctcaagatc agatactcat cacctctctt tcgcctaact 2520
acagcaagtg atattgtgca aagggttcac tttcacaaca cagggccctc cttggttcca 2580
ggagttattg tcatgagcat cgaagatgca cgaaatgata ggcatgatat ggcccagata 2640
gatgaaacat tctcttgtgt cgttacagtc ttcaatgtat gtccgtacga agtgtctata 2700
gaaatccctg atcttgcatc actgcggctt cagttgcatc cagtgcaggt gaattcatcg 2760
gatgcgttag ccaggcagtc tgcgtacgac accgccacag gtcgattcac cgtgccgaaa 2820
aggacagcag cagtgttcgt ggaacccagg tgctga 2856
<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 5
gcctttgatg aactgacgca cgg 23
<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 6
gcggagatac ggacacaccg cgg 23
<210> 7
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 7
aataatggtc tcaggcgcct ttgatgaact gacgca 36
<210> 8
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 8
gcctttgatg aactgacgca gttttagagc tagaaatagc 40
<210> 9
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 9
cggtgtgtcc gtatctccgc gcttcttggt gcc 33
<210> 10
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 10
attattggtc tctaaaccgg tgtgtccgta tctccg 36
<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 11
accacgacga aagttcagag cgg 23
<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 12
tggtcagact gagaacagcg cgg 23
<210> 13
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 13
aataatggtc tcaggcgcca cgacgaaagt tcagag 36
<210> 14
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 14
gccacgacga aagttcagag gttttagagc tagaaatagc 40
<210> 15
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 15
cgctgttctc agtctgaccc gcttcttggt gcc 33
<210> 16
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 16
attattggtc tctaaaccgc tgttctcagt ctgacc 36
<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 17
gacaggcgtc ttctactggt gctac 25
<210> 18
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 18
ctcacaaatt atcagcacgc tagtc 25
<210> 19
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 19
aggacttccc agcccaac 18
<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 20
caccgtgctc attgatgg 18
<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 21
taccgttacc gcttccga 18
<210> 22
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 22
ccatccttgg actgggac 18
<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 23
tgtgctcgct gtgagtct 18
<210> 24
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 24
ccagatgaag tgtgtccc 18
<210> 25
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 25
gattgctttg ttcattggc 19
<210> 26
<211> 18
<212> DNA
<213> Artificial Sequence
<400> 26
aacccgtcaa cctaaggc 18

Claims (4)

1.一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,其特征在于,具体步骤如下:
(1)针对基因Zmsu1、ZmIsa2设计基于CRISPR/Cas9的sgRNA作用位点;
所述sgRNA作用位点的核苷酸序列为:
Zmsu1:5’-GCCTTTGATGAACTGACGCACGG-3’;SEQ ID NO.5;和
ZmIsa2:5’-GCGGAGATACGGACACACCGCGG-3’;SEQ ID NO.6;
(2)以pCBC-MT1T2质粒为模板,MT1T2-F,MT1T2-F0,MT1T2-R0,MT1T2-R为引物,PCR扩增目的片段;
所述引物序列如下:
MT1T2-F:5’-AATAATGGTCTCAGGCGCCTTTGATGAACTGACGCA-3’;SEQ ID NO.7;
MT1T2-F0:5’-GCCTTTGATGAACTGACGCAGTTTTAGAGCTAGAAATAGC-3’;SEQ ID NO.8;
MT1T2-R0:5’-CGGTGTGTCCGTATCTCCGCGCTTCTTGGTGCC-3’;SEQ ID NO.9;
MT1T2-R:5’-ATTATTGGTCTCTAAACCGGTGTGTCCGTATCTCCG-3’;SEQ ID NO.10;
(3)针对基因ZmIsa3、ZmZpu1设计基于CRISPR/Cas9的sgRNA作用位点;
所述sgRNA作用位点的核苷酸序列为:
ZmIsa3:5’-ACCACGACGAAAGTTCAGAGCGG-3’;SEQ ID NO.11;和
ZmZpu1:5’-TGGTCAGACTGAGAACAGCGCGG-3’;SEQ ID NO.12;
(4)以pCBC-MT1T2质粒为模板,MT1T2-F’,MT1T2-F0’,MT1T2-R0’,MT1T2-R’为引物,PCR扩增目的片段;
所述引物序列如下:
MT1T2-F’:5’-AATAATGGTCTCAGGCGCCACGACGAAAGTTCAGAG-3’;SEQ ID NO.13;
MT1T2-F0’:5’-GCCACGACGAAAGTTCAGAGGTTTTAGAGCTAGAAATAGC-3’;SEQ ID NO.14;
MT1T2-R0’:5’-CGCTGTTCTCAGTCTGACCCGCTTCTTGGTGCC-3’;SEQ ID NO.15;
MT1T2-R’:5’-ATTATTGGTCTCTAAACCGCTGTTCTCAGTCTGACC-3’;SEQ ID NO.16;
(5)将步骤(2)和步骤(4)获得的目的片段分别与载体pBUE411进行酶切连接,分别构建得到Zmsu1、ZmIsa2基因编辑载体pBUE411-2gR-Zmsu1-ZmIsa2和ZmIsa3、ZmZpu1基因编辑载体pBUE411-2gR-ZmIsa3-ZmZpu1;
(6)将步骤(5)获得的基因编辑载体pBUE411-2gR-Zmsu1-ZmIsa2和pBUE411-2gR-ZmIsa3-ZmZpu1分别单独转入农杆菌LBA4404,进行玉米遗传转化,获得pBUE411-2gR-ZmSu1-ZmIsa2载体阳性植株和pBUE411-2gR-ZmIsa3-ZmZpu1载体阳性植株;经杂交和自交以及筛选鉴定获得类胡萝卜素含量高的甜玉米材料。
2.根据权利要求1所述的一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,其特征在于,步骤(2)所述PCR扩增反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F 0.5μl,MT1T2-F00.5μl,MT1T2-R00.5μl,MT1T2-R 0.5μl,2×Mix 10μl,ddH2O 7μl;PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。
3.根据权利要求1所述的一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,其特征在于,步骤(4)所述PCR扩增反应体系为:pCBC-MT1T2质粒1μl,MT1T2-F’0.5μl,MT1T2-F0’0.5μl,MT1T2-R0’0.5μl,MT1T2-R’0.5μl,2×Mix 10μl,ddH2O 7μl;PCR扩增反应程序为:98℃3min;98℃30s,57℃30s,72℃1min,35个循环;72℃5min,4℃∞。
4.根据权利要求1所述的一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法,其特征在于,步骤(5)所述酶切连接反应体系如下:目的片段2μl,pBUE4112μl,10xNEB T4Buffer 1.5μl,10xBSA 1.5μl,BsaI 1μl,T4 Ligase 1μl,ddH2O 6μl,Total 15μl。
CN202210370248.1A 2022-04-09 2022-04-09 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法 Active CN114703224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210370248.1A CN114703224B (zh) 2022-04-09 2022-04-09 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210370248.1A CN114703224B (zh) 2022-04-09 2022-04-09 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法

Publications (2)

Publication Number Publication Date
CN114703224A true CN114703224A (zh) 2022-07-05
CN114703224B CN114703224B (zh) 2023-06-20

Family

ID=82172314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210370248.1A Active CN114703224B (zh) 2022-04-09 2022-04-09 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法

Country Status (1)

Country Link
CN (1) CN114703224B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053070A2 (en) * 2002-12-05 2004-06-24 University Of Florida Research Foundation, Inc. Genetic modification of carotenoid content in plants
WO2019014917A1 (zh) * 2017-07-21 2019-01-24 中国科学院遗传与发育生物学研究所 一种基因编辑系统及应用其对植物基因组进行编辑的方法
CN112626113A (zh) * 2020-12-22 2021-04-09 吉林省农业科学院 一种利用基因编辑技术创制玉米矮化材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053070A2 (en) * 2002-12-05 2004-06-24 University Of Florida Research Foundation, Inc. Genetic modification of carotenoid content in plants
WO2019014917A1 (zh) * 2017-07-21 2019-01-24 中国科学院遗传与发育生物学研究所 一种基因编辑系统及应用其对植物基因组进行编辑的方法
CN112626113A (zh) * 2020-12-22 2021-04-09 吉林省农业科学院 一种利用基因编辑技术创制玉米矮化材料的方法

Also Published As

Publication number Publication date
CN114703224B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN108864267B (zh) 甘薯类胡萝卜素合成和耐盐抗旱相关蛋白IbARF5及其编码基因与应用
Yang et al. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.)
CN102933072A (zh) 大麦及其用途
CN112626113B (zh) 一种利用基因编辑技术创制玉米矮化材料的方法
CN112575029B (zh) 一种利用基因编辑技术创制玉米高杆材料的方法
PL158090B1 (pl) Sposób przenoszenia genów u roslin PL
LU503408B1 (en) Application of ibccd4 gene in regulating carotenoid content in root tubers of sweet potato
CN108882691A (zh) 具有增厚的糊粉层的水稻谷粒
Rustgi et al. Use of microspore-derived calli as explants for biolistic transformation of common wheat
CN111926036B (zh) 一种联合表达载体及其在玉米籽粒表达虾青素中的应用
CN111118059B (zh) 一种包括虾青素合成酶融合基因、无筛选标记基因nptⅱ的重组质粒、重组菌及应用
CN114703224B (zh) 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法
CN107641155A (zh) 一种在植物中表达重组人血清白蛋白的方法
CA2385763C (fr) Promoteurs specifiques de l&#39;albumen des graines de vegetaux
CN114703225B (zh) 一种利用基因编辑技术提高玉米籽粒类胡萝卜素含量的方法
CN114752607B (zh) 香蕉MtLUT5基因、克隆方法、表达载体及应用
CN114181966B (zh) 一种基于Zm00001d008708基因创制玉米矮化材料的方法
CN112391408B (zh) 一种利用基因编辑技术选育高类胡萝卜素油菜种子的方法
CN111808181B (zh) 马铃薯液泡膜单糖转运蛋白StTMT2基因的应用
CN110669788B (zh) 一种紫球藻叶绿体表达系统及其应用
WO2006057306A1 (ja) ストレス耐性及び/又は生産性を改良したイネ科植物、及びその作出方法
US8569582B2 (en) Method for transformation of grasses
CN114150014B (zh) 一种基于ZmEMF2b/2-2基因创制玉米矮化材料的方法
CN110387371A (zh) 利用转录激活因子样效应物核酸酶技术培育软米的方法
CN114990133B (zh) 一个烟草类胡萝卜素代谢相关的基因及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant