CN114686216A - 双功能纳米润滑添加剂及其制备方法 - Google Patents

双功能纳米润滑添加剂及其制备方法 Download PDF

Info

Publication number
CN114686216A
CN114686216A CN202011637350.0A CN202011637350A CN114686216A CN 114686216 A CN114686216 A CN 114686216A CN 202011637350 A CN202011637350 A CN 202011637350A CN 114686216 A CN114686216 A CN 114686216A
Authority
CN
China
Prior art keywords
polyethyleneimine
polyethylene glycol
citric acid
quantum dots
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011637350.0A
Other languages
English (en)
Other versions
CN114686216B (zh
Inventor
唐文涛
肖玉鸿
李培礼
余凡
邢晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202011637350.0A priority Critical patent/CN114686216B/zh
Publication of CN114686216A publication Critical patent/CN114686216A/zh
Application granted granted Critical
Publication of CN114686216B publication Critical patent/CN114686216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Lubricants (AREA)

Abstract

本发明记载了一种双功能润滑添加剂及其制备方法。利用柠檬酸碳量子点表面丰富的化学基团接枝功能性聚合物聚乙二醇和聚乙烯亚胺得到一种基于碳量子点的纳米水基润滑添加剂。本发明通过水热法将聚乙二醇和聚乙烯亚胺对柠檬酸碳量子点进行修饰,制得的添加剂能够在水基润滑剂中稳定分散,且在不加入离子盐的条件下,能够有效提升水基润滑剂润滑性能,同时赋予润滑剂持久的抗菌性能。

Description

双功能纳米润滑添加剂及其制备方法
技术领域
本发明属于纳米水基润滑领域,涉及一种双功能纳米润滑添加剂,具体涉及双功能水基纳米润滑添加剂及其制备方法。
背景技术
随着环境保护意识的增强以及能源危机的到来,开发新型润滑剂来替代传统油基润滑剂的呼声日益强烈,水基润滑剂以其环保可再生、原料来源广泛、价格低廉等特点引起学者的注意。但是,水基润滑剂目前存在着比较多的问题,如摩擦性能较差,容易被微生物污染等。需要添加各种润滑添加剂来改善性能,传统润滑添加剂往往功能单一,考虑到多种成分的加入成本较高而且可能会相互影响,基于此寻找集两种或多种功能于一身的润滑添加剂对水基润滑的发展具有重要意义。
近年来,碳量子点凭借优异的物理化学性能备受各领域的学者关注。其中Mou等人(10.1016/j.carbon.2019.04.066)使用柠檬酸和聚乙烯亚胺为前驱体合成了碳量子点,紧接着通过离子交换将双三氟甲磺酰亚胺锂接枝到碳量子点表面,合成的产物作为聚乙二醇润滑剂的添加剂,该方法需要额外加入离子盐双三氟甲磺酰亚胺锂,才能有效减少基础液的摩擦系数和磨损量。
发明内容
本发明提供了一种双功能纳米润滑添加剂及其制备方法,应用于水基润滑领域,提高基础液润滑性能的同时赋予润滑剂优异的持久抗菌性能。
本发明的技术解决方案是:
上述双功能纳米润滑添加剂的制备方法,包括如下步骤:
(1)将柠檬酸碳量子点:聚乙二醇(PEG):聚乙烯亚胺(PEI)按质量比1:5:5称取,制成均匀的溶液;
(2)于160~220℃下水热反应240min,离心取上清透析纯化,冷冻干燥得到聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点(CPP-CDs)。
较佳的,柠檬酸碳量子点通过如下步骤制备:取柠檬酸粉末加入坩埚中,于200℃高温下热解480min,冷却后加入去离子水浸泡,研磨后离心取上清液,在去离子水中透析纯化,冷冻干燥得到柠檬酸碳量子点。
较佳的,聚乙二醇分子量为1k~6k,优选4k分子量;聚乙烯亚胺分子量为0.6k~10k,优选10k分子量。
本发明与现有技术相比,优点在于:
本发明通过水热法将聚乙二醇和聚乙烯亚胺接枝到柠檬酸碳量子点表面,制得的聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点能够在水基润滑剂中稳定分散,这也是作为润滑剂最重要的前提,且在不加入离子盐的条件下,能够有效提升水基润滑剂润滑性能,同时赋予润滑剂持久的抗菌性能。
附图说明
图1为实施例1中柠檬酸碳量子点的(a)TEM图,(b)粒径直方分布图和(c)HR-TEM图;聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点的(d)TEM图,(e)粒径直方分布图和(f)HR-TEM图。
图2为实施例1中所制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点以及原料的红外光谱对比图。
图3为实施例1~4中制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点在添加浓度为0.5wt%时,PEG基础液的(a)平均摩擦系数,(b)平均磨损量图。
图4为实施例1~4中所制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点的PEG分散液在(a)室温,(b)冰箱下层和(c)高速离心后静置一个月后的分散情况。
图5为持久抗菌稳定性实验图,(a)金黄色葡萄球菌和(c)大肠杆菌空白对照组30d内不同时期的细菌存活情况,(b)金黄色葡萄球菌和(d)大肠杆菌分别与实施例1中制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点共培养30d内不同时期的细菌存活情况。
具体实施方式
实施例1
第一步采用热解法合成柠檬酸碳量子点,在分析天平上称取2g无水柠檬酸加入方形坩埚中,分别设置管式炉目标温度200℃,升温速率5℃/min,保温时间480min。待温度冷却后,取出坩埚,加入适量去离子水将棕色固体冲洗出,在玛瑙研钵中充分研磨过后,10000rpm离心10min,取上层清液装入分子量为500Da的透析袋中,透析纯化,冻干后得到柠檬酸碳量子点待用。
第二步采用水热法对第一步的柠檬酸碳量子点进行修饰,具体地,柠檬酸碳量子点:PEG4k:PEI10k按质量比为1:5:5依次称取加入装有20mL去离子水的烧杯中,超声分散均匀后装入聚四氟乙烯水热釜中,目标温度160℃,升温速率5℃/min,保温时间240min,待冷却后取出装入分子量为13k Da的透析袋中,透析纯化,冻干后得到目标添加剂产物,聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点(CPP-CDs200)待用。
实施例2
其它步骤同实施例1,其中采用热解法合成柠檬酸碳量子点时热解温度为160℃。
实施例3
其它步骤同实施例1,其中采用热解法合成柠檬酸碳量子点时热解温度为180℃。
实施例4
其它步骤同实施例1,其中采用热解法合成柠檬酸碳量子点时热解温度为220℃。
在透射电子显微镜(TEM)下观察按照实施例1所制得样品的形貌特征。从图1可知,柠檬酸碳量子点平均粒径5.27nm,聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点分散性良好,整体外观呈微球状,平均粒径为13.96nm。
采用傅立叶变换红外光谱仪(FTIR)对实施例1中所制备的材料进行结构测试,发现在合成过程中PEI和PEG中的胺基和羟基通过与柠檬酸碳量子点表面基团反应结合到表面。
采用微纳米划痕检测仪对实施例1~4中所制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点作为润滑添加剂的润滑性能进行表征。在添加浓度为0.5wt%的时候,实施例1~4中所制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点均能有效提升基础液的润滑性能,其中热解温度为200℃时,平均摩擦系数和平均磨损量分别下降40.08%,49.8%,对基础液的润滑性能提升较为明显。
图4可以看出,按照实施例1~4中所制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点能够在不同环境下的基础液中稳定分散至少一个月。
图5可以看出,按实施例1所制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点至少能够在一个月内保持基础液稳定的抗菌性能。
表1中可以看出实施例1~4中所制得聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点对S.aureus和E.coli的最小抑菌浓度值(MIC)如下表:
表1
Figure BDA0002878881890000041

Claims (6)

1.一种双功能纳米润滑添加剂的制备方法,其特征在于,包括如下步骤:
(1)将柠檬酸碳量子点:聚乙二醇:聚乙烯亚胺按质量比1:5:5称取,制成均匀的溶液;
(2)于160~220℃下水热反应240 min,离心取上清透析纯化,冷冻干燥得到聚乙二醇/聚乙烯亚胺修饰柠檬酸碳量子点。
2. 如权利要求1所述的方法,其特征在于,柠檬酸碳量子点通过如下步骤制备:取柠檬酸粉末加入坩埚中,于200℃高温下热解480 min,冷却后加入去离子水浸泡,研磨后离心取上清液,在去离子水中透析纯化,冷冻干燥得到柠檬酸碳量子点。
3.如权利要求1所述的方法,其特征在于,聚乙二醇分子量为1k~6k,优选4k分子量。
4.如权利要求1所述的方法,其特征在于,聚乙烯亚胺分子量为0.6k~10k,优选10k分子量。
5.如权利要求1-4任一项方法制备的双功能纳米润滑添加剂。
6.如权利要求1-4任一项方法制备的双功能纳米润滑添加剂作为水基润滑剂中的用途。
CN202011637350.0A 2020-12-31 2020-12-31 双功能纳米润滑添加剂及其制备方法 Active CN114686216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011637350.0A CN114686216B (zh) 2020-12-31 2020-12-31 双功能纳米润滑添加剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011637350.0A CN114686216B (zh) 2020-12-31 2020-12-31 双功能纳米润滑添加剂及其制备方法

Publications (2)

Publication Number Publication Date
CN114686216A true CN114686216A (zh) 2022-07-01
CN114686216B CN114686216B (zh) 2023-06-09

Family

ID=82133822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011637350.0A Active CN114686216B (zh) 2020-12-31 2020-12-31 双功能纳米润滑添加剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114686216B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353922A (zh) * 2022-08-29 2022-11-18 攀枝花学院 氮化碳量子点基聚乙二醇润滑添加剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520354A (zh) * 2016-10-21 2017-03-22 青岛大学 一种基于二维材料纳米片/碳量子点的水基润滑液及其制备方法
CN108148650A (zh) * 2018-01-03 2018-06-12 清华大学 二维材料微纳片与碳量子点复合的润滑油及其制备方法
CN108359455A (zh) * 2018-04-27 2018-08-03 山西中谱能源科技有限公司 石墨烯量子点的提取方法及以其配制的润滑油改性添加剂
CN108795536A (zh) * 2018-06-26 2018-11-13 中国科学院兰州化学物理研究所 一种石墨烯/类石墨相氮化碳复合材料的制备和作为固体润滑剂的应用
CN109233951A (zh) * 2018-09-14 2019-01-18 大连理工大学 一步制备含碳点的水溶性润滑液方法
CN109399609A (zh) * 2018-11-13 2019-03-01 合肥学院 一种生物质荧光性碳量子点分散液的制备方法及应用
CN109504514A (zh) * 2019-01-07 2019-03-22 大连理工大学 一种便捷制备碳点基润滑液的方法
CN111471507A (zh) * 2020-05-27 2020-07-31 攀枝花学院 可回收利用的碳量子点纳米润滑油添加剂及其制备方法
CN111592883A (zh) * 2020-07-06 2020-08-28 凯盛石墨碳材料有限公司 一种镁离子掺杂碳量子点及其制备和应用方法
CN111944585A (zh) * 2020-08-28 2020-11-17 攀枝花学院 亲油型碳量子点基纳米润滑油添加剂及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520354A (zh) * 2016-10-21 2017-03-22 青岛大学 一种基于二维材料纳米片/碳量子点的水基润滑液及其制备方法
CN108148650A (zh) * 2018-01-03 2018-06-12 清华大学 二维材料微纳片与碳量子点复合的润滑油及其制备方法
CN108359455A (zh) * 2018-04-27 2018-08-03 山西中谱能源科技有限公司 石墨烯量子点的提取方法及以其配制的润滑油改性添加剂
CN108795536A (zh) * 2018-06-26 2018-11-13 中国科学院兰州化学物理研究所 一种石墨烯/类石墨相氮化碳复合材料的制备和作为固体润滑剂的应用
CN109233951A (zh) * 2018-09-14 2019-01-18 大连理工大学 一步制备含碳点的水溶性润滑液方法
CN109399609A (zh) * 2018-11-13 2019-03-01 合肥学院 一种生物质荧光性碳量子点分散液的制备方法及应用
CN109504514A (zh) * 2019-01-07 2019-03-22 大连理工大学 一种便捷制备碳点基润滑液的方法
CN111471507A (zh) * 2020-05-27 2020-07-31 攀枝花学院 可回收利用的碳量子点纳米润滑油添加剂及其制备方法
CN111592883A (zh) * 2020-07-06 2020-08-28 凯盛石墨碳材料有限公司 一种镁离子掺杂碳量子点及其制备和应用方法
CN111944585A (zh) * 2020-08-28 2020-11-17 攀枝花学院 亲油型碳量子点基纳米润滑油添加剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353922A (zh) * 2022-08-29 2022-11-18 攀枝花学院 氮化碳量子点基聚乙二醇润滑添加剂及其制备方法
CN115353922B (zh) * 2022-08-29 2023-11-14 攀枝花学院 氮化碳量子点基聚乙二醇润滑添加剂及其制备方法

Also Published As

Publication number Publication date
CN114686216B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
El-Nahrawy et al. Influences of Ag-NPs doping chitosan/calcium silicate nanocomposites for optical and antibacterial activity
Gao et al. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties
Seo et al. Preparation and properties of poly (propylene carbonate) and nanosized ZnO composite films for packaging applications
CN109836622B (zh) 一种有机无机杂化纳米抗菌材料及其制备方法和用途
Toyoshima et al. Preparation of glycopolymer‐substituted gold nanoparticles and their molecular recognition
Li et al. Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution
Mallakpour et al. Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli
Kaur et al. Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan–metal nanocomposites
Pozdnyakov et al. Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity
Yeamsuksawat et al. Characterization and antimicrobial performance of magnetic Fe3O4@ Chitosan@ Ag nanoparticles synthesized via suspension technique
Şen et al. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films
CN114686216B (zh) 双功能纳米润滑添加剂及其制备方法
Abdelghany et al. Antibacterial and energy gap correlation of PVA/SA biofilms doped with selenium nanoparticles
US8877861B2 (en) One-pot synthetic method for synthesizing silver-containing waterborne polyurethane
Venkatesan et al. Preparation, characterization and mechanical properties of k-Carrageenan/SiO _ 2 SiO 2 nanocomposite films for antimicrobial food packaging
Cabuk et al. Synthesis, characterization, and enhanced antibacterial activity of chitosan‐based biodegradable conducting graft copolymers
Chen et al. In situ synthesis and properties of Ag NPs/carboxymethyl cellulose/starch composite films for antibacterial application
Bajpai et al. In situ formation of silver nanoparticles in poly (methacrylic acid) hydrogel for antibacterial applications
CN107987439A (zh) 一种聚乙烯醇基抗菌水凝胶及其制备方法和应用
CN112029413A (zh) 一种用于铝合金表面的耐盐雾抗菌石墨烯涂料及其制备方法
Birtane et al. Antibacterial UV-photocured acrylic coatings containing quaternary ammonium salt
Sengupta et al. Comparative study on structure of exopolysaccharide and capsular polysaccharide produced by Southern ocean origin Pseudoalteromonas sp. MB-16
Jiang et al. Exopolysaccharide produced by Pediococcus pentosaceus E8: structure, bio-activities, and its potential application
Temel et al. Antibacterial activity of ZnO nanoflowers deposited on biodegradable acrylic acid hydrogel by chemical bath deposition
Mallakpour et al. Use of vitamin B 1 for the surface treatment of silica (SiO 2) and synthesis of poly (vinyl chloride)/SiO 2 nanocomposites with advanced properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant