CN114678573A - 一种具有能量回收的燃料电池系统及控制方法 - Google Patents

一种具有能量回收的燃料电池系统及控制方法 Download PDF

Info

Publication number
CN114678573A
CN114678573A CN202210380936.6A CN202210380936A CN114678573A CN 114678573 A CN114678573 A CN 114678573A CN 202210380936 A CN202210380936 A CN 202210380936A CN 114678573 A CN114678573 A CN 114678573A
Authority
CN
China
Prior art keywords
air
fuel cell
cell system
expander
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210380936.6A
Other languages
English (en)
Inventor
刘小青
邴黎明
邓佳
梁未栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dayang Electric Fuel Cell Technology Zhongshan Co ltd
Original Assignee
Dayang Electric Fuel Cell Technology Zhongshan Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dayang Electric Fuel Cell Technology Zhongshan Co ltd filed Critical Dayang Electric Fuel Cell Technology Zhongshan Co ltd
Priority to CN202210380936.6A priority Critical patent/CN114678573A/zh
Publication of CN114678573A publication Critical patent/CN114678573A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种具有能量回收的燃料电池系统及控制方法,包括燃料电池系统控制器、电堆模块、供氢系统,空气供应系统和冷却系统,还包括膨胀机组件,膨胀机组件包括发电机、膨胀机和发电机控制器,发电机控制器控制发电机工作,发电机和膨胀机耦合在一起,从电堆模块排出的尾排气进入中冷器并作为中冷器的冷却源,利用尾排气对进入中冷器的高温压缩空气进行热交换,经过热交换后的尾排气从中冷器排出并输入到膨胀机,通过膨胀机做功带动发电机转动进行发电提供电能,膨胀机不再连接空压机,减少膨胀机与空压机之间输送不稳定现象,结构简单,布局合理,有效解决燃料电池系统尾排气能量回收问题,能量利用率高,有效提高燃料电池系统效率。

Description

一种具有能量回收的燃料电池系统及控制方法
技术领域:
本发明涉及一种具有能量回收的燃料电池系统及控制方法。
背景技术:
燃料电池是一种通过氢气和氧气电化学反应产生电能的能量转换装置,具有能量转换效率高,结构简单、低噪音、无污染等优点。燃料电池一般需要供氢系统、空气供应系统和冷却系统三大辅助系统。在空气供应系统中,为了保证燃料电池电堆内空气的供应量,一般都会使用空压机对空气进行增压以提高供气效率,但空压机出口排出的空气温度高达170℃-180℃,而燃料电池电堆要求的进气温度一般不高于80℃。因此,在高温空气进入燃料电池电堆之前,一般需要使用中冷器,用于对高温空气进行降温,以满足燃料电池电堆的空气进气温度要求。中冷器将空压机出口排出的170℃-180℃高温空气降到至燃料电池电堆要求的温度,则需要消耗冷却系统中的冷却功耗,或者其它功耗。另外,燃料电池运行时会排放较高压力和温度的气体,这部分压力和温度高于大气的气体,携带有较高的能量,通常会直接排出,不对尾气做任何处理,如此,这一部分的能量将被白白浪费。
所以需要设计一种具有能量回收的燃料电池空气供应系统,空气供应系统中的中冷器不需要消耗冷却系统中的冷却功耗,也能将空压机出口排出的170℃-180℃高温空气降到至燃料电池电堆要求的温度,并且能够回收燃料电池尾排气体中所蕴含的能量。
现有技术中,空气供应系统大部分都是利用水冷中冷器,从冷却系统中引入冷却液进入中冷器中,与空压机出口的高温空气进行热交换,将空压机出口的空气温度降至燃料电池电堆要求的温度,此方法将冷却系统的冷却负担,增加冷却系统中散热器的功耗。另外,在专利CN113809354A中,膨胀机与空压机的转轴连接于一体,因燃料电池尾排气体的气流和压力是不稳定,造成膨胀机内旋转叶片转动也是不稳定,进而造成空压机的转动时将会出现不稳定的抖动,难以有效精准的控制空压机的稳定转动,输出稳定的气流,但是燃料电池送入的空气必须精准的控制它的流量和压力,才能保证燃料电池的正常运行,输出稳定的电流。
发明内容:
本发明的目的是提供一种具有能量回收的燃料电池系统及控制方法,能解决现有技术中燃料电池的电堆模块排出的尾排气输入到膨胀机,膨胀机与空压机的转轴连接于一体,因燃料电池尾排气体的气流和压力是不稳定,造成膨胀机内旋转叶片转动也是不稳定,进而造成空压机的转动时将会出现不稳定的抖动,难以有效精准的控制空压机的稳定转动,造成一定的性能不足,且能效利用率较低的的技术问题。
本发明的目的是通过下述技术方案予以实现的:
一种具有能量回收的燃料电池系统,包括燃料电池系统控制器、电堆模块、供氢系统,空气供应系统和冷却系统,其特征在于:还包括膨胀机组件,膨胀机组件包括发电机、膨胀机和发电机控制器,发电机控制器控制发电机工作,发电机和膨胀机耦合在一起,空气供应系统包括空压机和中冷器,外部空气经过空压机压缩形成高温压缩空气再经过中冷器的冷却后送到电堆模块的空气入口,从电堆模块排出的尾排气进入中冷器并作为中冷器的冷却源,利用尾排气对进入中冷器的高温压缩空气进行热交换,经过热交换后的尾排气从中冷器排出并输入到膨胀机,通过膨胀机做功带动发电机转动进行发电提供电能。
上述所述的发电机产生的电能通过控制器输出直流电为储能装置充电或者为其他用电设备供电从而实现能量回收。
上述所述的膨胀机与电机同轴连接。
上述所述的膨胀机组件还包括变速装置,发电机与膨胀机分别耦合在变速装置的两端,利用电堆模块排出反应完的尾排气输入到膨胀机,通过膨胀机做功带动变速装置,变速装置起到变速作用,进而带动发电机转动发电提供电能。
上述所述的空气供应系统还包括空气过滤器、流量计、空压机和增湿器,外部空气依次经过空气过滤器、流量计、空压机、中冷器和增湿器,然后送到电堆模块的空气入口,从膨胀机排出的尾排气经过增湿器处理后排出,尾排气体再进入到增湿器内,为进入电堆模块的空气进行加湿,保证进入电堆模块的空气湿度要求,同时在增湿器内再一次进行热交换,进一步降低送入电堆模块入口的空气温度。
上述所述的电堆模块的空气出口排出尾排气经过一个背压阀后进入中冷器的冷却入口,经过热交换后从中冷器的冷却出口排出。
上述所述的从膨胀机排出的尾排气经过增湿器处理后再经过消音器处理后排出。
上述所述的尾排气包括从电堆模块的空气出口排出的气体。
上述所述的尾排气还包括从电堆模块的氢气出口排出的混合气体经过水汽分离器分离后的部分气体。
一种燃料电池系统的控制方法,其特征在于:所述的燃料电池系统是上述所述的一种燃料电池系统,该燃料电池系统还包括温度传感器和燃料电池系统控制器,电堆模块的空气出口排出尾排气经过一个背压阀后进入中冷器的冷却入口,电堆模块的空气入口处设有温度传感器,温度传感器检测电堆模块的空气入口处的空气温度,温度传感器将检测的温度信号传送到燃料电池系统控制器中,外部空气依次经过空气过滤器、流量计、空压机、中冷器和增湿器;
当温度传感器检测到输入电堆模块的空气温度高于某个设定温度值T1时,燃料电池系统控制器控制空压机及背压阀,降低空压机的转速从而降低空压机输出高温压缩空气的温度及压缩比,将背压阀的流道拓宽增加进入中冷器的尾排气的量,从而调节输入电堆模块的空气温度,保证输入电堆模块的空气温度达到要求;
当温度传感器检测到输入电堆模块的空气温度低于某个设定温度值T2时,燃料电池系统控制器控制空压机及背压阀,提升空压机的转速从而提高空压机输出高温压缩空气的温度及压缩比,将背压阀的流道缩窄减少进入中冷器的尾排气的量,从而调节输入电堆模块的空气温度,保证输入电堆模块的空气温度达到要求;
所述的设定温度值T1大于设定温度值T2。
本发明与现有技术相比,具有如下效果:
1)一种具有能量回收的燃料电池系统,包括燃料电池系统控制器、电堆模块、供氢系统,空气供应系统和冷却系统,其特征在于:还包括膨胀机组件,膨胀机组件包括发电机、膨胀机和发电机控制器,发电机控制器控制发电机工作,发电机和膨胀机耦合在一起,空气供应系统包括空压机和中冷器,外部空气经过空压机压缩形成高温压缩空气再经过中冷器的冷却后送到电堆模块的空气入口,从电堆模块排出的尾排气进入中冷器并作为中冷器的冷却源,利用尾排气对进入中冷器的高温压缩空气进行热交换,经过热交换后的尾排气从中冷器排出并输入到膨胀机,通过膨胀机做功带动发电机转动进行发电提供电能,膨胀机不再连接空压机,减少膨胀机与空压机之间输送不稳定现象,可有效精准的控制空压机的稳定转动,结构简单,布局合理,有效解决燃料电池系统尾排气能量回收问题,能量利用率高,有效提高燃料电池系统效率。
2)本发明的燃料电池系统的控制方法,控制简单,容易实现,实现成本低,保证燃料电池系统在最佳的温度范围内正常运行,节省能源,能有效提高燃料电池系统效率。
3)本发明的其它优点在实施例部分展开详细描述。
附图说明
图1是为本发明实施例一燃料电池系统的空气供应系统的原理图;
图2是为本发明实施例一燃料电池系统的供氢系统的原理图;
图3是为本发明实施例一燃料电池系统的膨胀机组件的方框图;
图4是为本发明实施例一燃料电池系统的控制原理图。
具体实施方式
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图1至图4所示,一种具有能量回收的燃料电池系统,包括燃料电池系统控制器、电堆模块、供氢系统,空气供应系统和冷却系统,其特征在于:还包括膨胀机组件,膨胀机组件包括发电机1、膨胀机3和发电机控制器4,发电机控制器4控制发电机1工作,发电机1和膨胀机3耦合在一起,空气供应系统包括空压机和中冷器,外部空气经过空压机压缩形成高温压缩空气再经过中冷器的冷却后送到电堆模块的空气入口,从电堆模块排出的尾排气进入中冷器并作为中冷器的冷却源,利用尾排气对进入中冷器的高温压缩空气进行热交换,经过热交换后的尾排气从中冷器排出并输入到膨胀机3,通过膨胀机3做功带动发电机1转动进行发电提供电能,膨胀机不再连接空压机,减少膨胀机与空压机之间输送不稳定现象,有效精准的控制空压机的稳定转动,结构简单,布局合理,有效解决燃料电池系统尾排气能量回收问题,能量利用率高,有效提高燃料电池系统效率。空压机出口排出的空气温度高达170℃-180℃,相对低温的尾排气(一般温度在50度以下)在中冷器中与空压机输出高温高压空气进行热交换,将空压机输出的高温高压空气降至燃料电池电堆工作要求的温度。
发电机1产生的电能通过控制器4输出直流电为储能装置5充电或者为其他用电设备供电从而实现能量回收,有效解决燃料电池系统尾排气能量回收问题,能量利用率高,有效提高燃料电池系统效率。
上述的膨胀机3与电机1同轴连接,结构布置合理。
上述的膨胀机组件还包括变速装置2,发电机1与膨胀机3分别耦合在变速装置2的两端,利用电堆模块排出反应完的尾排气输入到膨胀机3,通过膨胀机3做功带动变速装置2,变速装置2起到变速作用,进而带动发电机1转动发电提供电能,通过变速装置可以提高电机的转速,从而提高电机的发电效率,有效解决燃料电池系统尾排气能量回收问题,能量利用率高,有效提高燃料电池系统效率。
上述的空气供应系统还包括空气过滤器、流量计、空压机和增湿器,外部空气依次经过空气过滤器、流量计、空压机、中冷器和增湿器,然后送到电堆模块的空气入口,从膨胀机3排出的尾排气经过增湿器处理后排出,尾排气体再进入到增湿器内,为进入电堆模块的空气进行加湿,保证进入电堆模块的空气湿度要求,同时在增湿器内再一次进行热交换,进一步降低送入电堆模块的空气入口的空气温度,进入膨胀机3中的尾排气经过膨胀机3内的叶片转动搅拌后,从而降低尾排气的温度,结构布置合理。
上述的电堆模块排出尾排气经过一个背压阀后进入中冷器的冷却入口,经过热交换后从中冷器的冷却出口排出,背压阀可以防止后面膨胀机组件停机时造成尾排气体反流。
上述的从膨胀机3排出的尾排气经过增湿器处理后再经过消音器处理后排出,有效降低燃料电池系统的整体噪音。
上述的尾排气包括从电堆模块的空气出口排出的气体。
上述的尾排气还包括从电堆模块的氢气出口排出的混合气体经过水汽分离器分离后的部分气体,可以更充分利用尾排气,提高能效。
实施例二:
如图1至图4所示,一种燃料电池系统的控制方法,其特征在于:所述的燃料电池系统是上述所述的一种燃料电池系统,该燃料电池系统还包括温度传感器和燃料电池系统控制器,电堆模块的空气出口排出尾排气经过一个背压阀后进入中冷器的冷却入口,电堆模块的空气入口处设有温度传感器,温度传感器检测电堆模块的空气入口处的空气温度,温度传感器将检测的温度信号传送到燃料电池系统控制器中,外部空气依次经过空气过滤器、流量计、空压机、中冷器和增湿器;燃料电池系统控制器控制电堆模块、供氢系统,空气供应系统和冷却系统的运作,使电堆模块、供氢系统,空气供应系统和冷却系统配合工作进行发电,背压阀受燃料电池系统控制器控制,背压阀是可调节打开的程度,以满足不同流量需求。燃料电池系统控制器实时对空气流量计、空压机、背压阀、膨胀机组件、储能装置进行控制或监控。
当温度传感器检测到输入电堆模块的空气温度高于某个设定温度值T1时,燃料电池系统控制器控制空压机及背压阀,降低空压机的转速从而降低空压机输出高温压缩空气的温度及压缩比,将背压阀的流道拓宽增加进入中冷器的尾排气的量,从而调节输入电堆模块的空气温度,保证输入电堆模块的空气温度达到要求;
当温度传感器检测到输入电堆模块的空气温度低于某个设定温度值T2时,燃料电池系统控制器控制空压机及背压阀,提升空压机的转速从而提高空压机输出高温压缩空气的温度及压缩比,将背压阀的流道缩窄减少进入中冷器的尾排气的量,从而调节输入电堆模块的空气温度,保证输入电堆模块的空气温度达到要求;
所述的设定温度值T1大于设定温度值T2。
本发明控制简单,容易实现,实现成本低,保证燃料电池系统在最佳的温度范围内正常运行,节省能源,能有效提高燃料电池系统效率。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种具有能量回收的燃料电池系统,包括燃料电池系统控制器、电堆模块、供氢系统,空气供应系统和冷却系统,其特征在于:还包括膨胀机组件,膨胀机组件包括发电机(1)、膨胀机(3)和发电机控制器(4),发电机控制器(4)控制发电机(1)工作,发电机(1)和膨胀机(3)耦合在一起,空气供应系统包括空压机和中冷器,外部空气经过空压机压缩形成高温压缩空气再经过中冷器的冷却后送到电堆模块的空气入口,从电堆模块排出的尾排气进入中冷器并作为中冷器的冷却源,利用尾排气对进入中冷器的高温压缩空气进行热交换,经过热交换后的尾排气从中冷器排出并输入到膨胀机(3),通过膨胀机(3)做功带动发电机(1)转动进行发电提供电能。
2.根据权利要求1所述的一种具有能量回收的燃料电池系统,其特征在于:发电机(1)产生的电能通过控制器(4)输出直流电为储能装置(5)充电或者为其他用电设备供电从而实现能量回收。
3.根据权利要求2所述的一种具有能量回收的燃料电池系统,其特征在于:膨胀机(3)与电机(1)同轴连接。
4.根据权利要求1或2或3所述的一种具有能量回收的燃料电池系统,其特征在于:膨胀机组件还包括变速装置(2),发电机(1)与膨胀机(3)分别耦合在变速装置(2)的两端,利用电堆模块排出反应完的尾排气输入到膨胀机(3),通过膨胀机(3)做功带动变速装置(2),变速装置(2)起到变速作用,进而带动发电机(1)转动发电提供电能。
5.根据权利要求4所述的一种具有能量回收的燃料电池系统,其特征在于:空气供应系统还包括空气过滤器、流量计、空压机和增湿器,外部空气依次经过空气过滤器、流量计、空压机、中冷器和增湿器,然后送到电堆模块的空气入口,从膨胀机(3)排出的尾排气经过增湿器处理后排出,尾排气体再进入到增湿器内,为进入电堆模块的空气进行加湿,保证进入电堆模块的空气湿度要求,同时在增湿器内再一次进行热交换,进一步降低送入电堆模块入口的空气温度。
6.根据权利要求5所述的一种具有能量回收的燃料电池系统,其特征在于:电堆模块的空气出口排出尾排气经过一个背压阀后进入中冷器的冷却入口,经过热交换后从中冷器的冷却出口排出。
7.根据权利要求6所述的一种具有能量回收的燃料电池系统,其特征在于:从膨胀机(3)排出的尾排气经过增湿器处理后再经过消音器处理后排出。
8.根据权利要求7所述的一种具有能量回收的燃料电池系统,其特征在于:所述的尾排气包括从电堆模块的空气出口排出的气体。
9.根据权利要求8所述的一种具有能量回收的燃料电池系统,其特征在于:所述的尾排气还包括从电堆模块的氢气出口排出的混合气体经过水汽分离器分离后的部分气体。
10.一种燃料电池系统的控制方法,其特征在于:所述的燃料电池系统是权利要求1至权利要求9所述的任意一种燃料电池系统,该燃料电池系统还包括温度传感器和燃料电池系统控制器,电堆模块的空气出口排出尾排气经过一个背压阀后进入中冷器的冷却入口,电堆模块的空气入口处设有温度传感器,温度传感器检测电堆模块的空气入口处的空气温度,温度传感器将检测的温度信号传送到燃料电池系统控制器中,外部空气依次经过空气过滤器、流量计、空压机、中冷器和增湿器;
当温度传感器检测到输入电堆模块的空气温度高于某个设定温度值T1时,燃料电池系统控制器控制空压机及背压阀,降低空压机的转速从而降低空压机输出高温压缩空气的温度及压缩比,将背压阀的流道拓宽增加进入中冷器的尾排气的量,从而调节输入电堆模块的空气温度,保证输入电堆模块的空气温度达到要求;
当温度传感器检测到输入电堆模块的空气温度低于某个设定温度值T2时,燃料电池系统控制器控制空压机及背压阀,提升空压机的转速从而提高空压机输出高温压缩空气的温度及压缩比,将背压阀的流道缩窄减少进入中冷器的尾排气的量,从而调节输入电堆模块的空气温度,保证输入电堆模块的空气温度达到要求;
所述的设定温度值T1大于设定温度值T2。
CN202210380936.6A 2022-04-12 2022-04-12 一种具有能量回收的燃料电池系统及控制方法 Pending CN114678573A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210380936.6A CN114678573A (zh) 2022-04-12 2022-04-12 一种具有能量回收的燃料电池系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210380936.6A CN114678573A (zh) 2022-04-12 2022-04-12 一种具有能量回收的燃料电池系统及控制方法

Publications (1)

Publication Number Publication Date
CN114678573A true CN114678573A (zh) 2022-06-28

Family

ID=82078420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210380936.6A Pending CN114678573A (zh) 2022-04-12 2022-04-12 一种具有能量回收的燃料电池系统及控制方法

Country Status (1)

Country Link
CN (1) CN114678573A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976117A (zh) * 2022-07-08 2022-08-30 浙江吉利控股集团有限公司 一种燃料电池的集成装置、供气系统及供气方法
CN116779909A (zh) * 2023-04-18 2023-09-19 雄川氢能科技(广州)有限责任公司 一种燃料电池空气供给系统
CN117855532A (zh) * 2024-03-01 2024-04-09 上海重塑能源科技有限公司 一种燃料电池系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518828A (en) * 1994-07-21 1996-05-21 Bechtel Group, Inc. Thermal integration of an air-cooled fuel cell stack
JP2003217641A (ja) * 2002-01-22 2003-07-31 Denso Corp 燃料電池システム
WO2014107407A1 (en) * 2013-01-03 2014-07-10 Eaton Corporation Exhaust gas energy recovery system
CN105644346A (zh) * 2016-02-29 2016-06-08 上海大学 压缩空气式机动车尾气余热回收系统和回收方法
CN107452971A (zh) * 2016-05-19 2017-12-08 福特全球技术公司 用于燃料电池堆系统的空气控制系统和方法
JP2018055931A (ja) * 2016-09-28 2018-04-05 株式会社豊田自動織機 燃料電池システム
CN109167087A (zh) * 2018-09-17 2019-01-08 新乡市特美特热控技术股份有限公司 一种燃料电池空气管理系统
CN109962267A (zh) * 2019-03-25 2019-07-02 奇瑞汽车股份有限公司 燃料电池汽车供氧系统及汽车
CN110911711A (zh) * 2019-12-12 2020-03-24 中国第一汽车股份有限公司 燃料电池进气增压系统、燃料电池及燃料电池汽车
CN111342086A (zh) * 2020-02-29 2020-06-26 同济大学 一种燃料电池空气过氧比与流量压力协同控制方法及系统
CN213660456U (zh) * 2020-12-15 2021-07-09 上海重塑能源科技有限公司 燃料电池散热系统
CN113571747A (zh) * 2021-07-10 2021-10-29 上海申风投资管理有限公司 一种燃料电池空气系统控制方法
CN113809355A (zh) * 2021-09-17 2021-12-17 烟台东德实业有限公司 一种利用膨胀机出口冷空气的燃料电池循环水冷却系统
CN113823815A (zh) * 2021-10-28 2021-12-21 福达(深圳)新能源技术有限公司 一种燃料电池系统及工作控制方法
CN114122454A (zh) * 2021-11-25 2022-03-01 上海捷氢科技股份有限公司 燃料电池及其空气供应系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518828A (en) * 1994-07-21 1996-05-21 Bechtel Group, Inc. Thermal integration of an air-cooled fuel cell stack
JP2003217641A (ja) * 2002-01-22 2003-07-31 Denso Corp 燃料電池システム
WO2014107407A1 (en) * 2013-01-03 2014-07-10 Eaton Corporation Exhaust gas energy recovery system
CN105644346A (zh) * 2016-02-29 2016-06-08 上海大学 压缩空气式机动车尾气余热回收系统和回收方法
CN107452971A (zh) * 2016-05-19 2017-12-08 福特全球技术公司 用于燃料电池堆系统的空气控制系统和方法
JP2018055931A (ja) * 2016-09-28 2018-04-05 株式会社豊田自動織機 燃料電池システム
CN109167087A (zh) * 2018-09-17 2019-01-08 新乡市特美特热控技术股份有限公司 一种燃料电池空气管理系统
CN109962267A (zh) * 2019-03-25 2019-07-02 奇瑞汽车股份有限公司 燃料电池汽车供氧系统及汽车
CN110911711A (zh) * 2019-12-12 2020-03-24 中国第一汽车股份有限公司 燃料电池进气增压系统、燃料电池及燃料电池汽车
CN111342086A (zh) * 2020-02-29 2020-06-26 同济大学 一种燃料电池空气过氧比与流量压力协同控制方法及系统
CN213660456U (zh) * 2020-12-15 2021-07-09 上海重塑能源科技有限公司 燃料电池散热系统
CN113571747A (zh) * 2021-07-10 2021-10-29 上海申风投资管理有限公司 一种燃料电池空气系统控制方法
CN113809355A (zh) * 2021-09-17 2021-12-17 烟台东德实业有限公司 一种利用膨胀机出口冷空气的燃料电池循环水冷却系统
CN113823815A (zh) * 2021-10-28 2021-12-21 福达(深圳)新能源技术有限公司 一种燃料电池系统及工作控制方法
CN114122454A (zh) * 2021-11-25 2022-03-01 上海捷氢科技股份有限公司 燃料电池及其空气供应系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976117A (zh) * 2022-07-08 2022-08-30 浙江吉利控股集团有限公司 一种燃料电池的集成装置、供气系统及供气方法
CN116779909A (zh) * 2023-04-18 2023-09-19 雄川氢能科技(广州)有限责任公司 一种燃料电池空气供给系统
CN116779909B (zh) * 2023-04-18 2024-04-30 雄川氢能科技(广州)有限责任公司 一种燃料电池空气供给系统
CN117855532A (zh) * 2024-03-01 2024-04-09 上海重塑能源科技有限公司 一种燃料电池系统
CN117855532B (zh) * 2024-03-01 2024-05-17 上海重塑能源科技有限公司 一种燃料电池系统

Similar Documents

Publication Publication Date Title
CN114678573A (zh) 一种具有能量回收的燃料电池系统及控制方法
CN1022944C (zh) 发电的方法和设备
CN114388843B (zh) 一种燃料电池系统及控制方法
CN103236555A (zh) 一种固体氧化物燃料电池系统及热电协同控制方法
WO2023108792A1 (zh) 一种具有能量回收模块的燃料电池系统
JP2014088861A (ja) 発電システム
CN111477914A (zh) 一种燃料电池系统能量回收利用系统及方法
CN211829043U (zh) 车用燃料电池的空气系统和车用燃料电池
CN114198157A (zh) 一种燃料电池能量回收系统及控制方法
CN114204069A (zh) 一种能量回收式燃料电池空气供应系统
CN116779909B (zh) 一种燃料电池空气供给系统
JPH1167240A (ja) 多段タービン圧縮機を備えた燃料電池発電装置
CN110400951A (zh) 一种氢燃料电池系统
CN2577451Y (zh) 一种可提高燃料电池运行性能的空气输送装置
CN210429978U (zh) 一种氢燃料电池系统
CN213845337U (zh) 一种带有能量回收系统的燃料电池装置
CN114899450A (zh) 一种带燃气涡轮增压器的燃料电池系统
JP2003036872A (ja) 複合発電システム
CN209569189U (zh) 一种燃料电池空气压缩供给系统
JP3137147B2 (ja) 燃料電池設備用タービン・コンプレッサ装置の制御方法
CN115621513A (zh) 一种氢燃料电池废气利用系统
CN211320226U (zh) 空压机和燃料电池联合循环系统、交通工具、充电系统
CN101170184A (zh) 一种用于低压燃料电池的空气供应系统
CN217848007U (zh) 一种空气系统与一种燃料电池发动机
CN215633853U (zh) 分离式涡轮增压空压机及其电机冷却单元、氢燃料电池系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination