CN114672819A - 光电催化pet塑料氧化耦合水分解制氢方法及系统 - Google Patents

光电催化pet塑料氧化耦合水分解制氢方法及系统 Download PDF

Info

Publication number
CN114672819A
CN114672819A CN202210230939.1A CN202210230939A CN114672819A CN 114672819 A CN114672819 A CN 114672819A CN 202210230939 A CN202210230939 A CN 202210230939A CN 114672819 A CN114672819 A CN 114672819A
Authority
CN
China
Prior art keywords
pet plastic
solution
photoelectrocatalysis
pet
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210230939.1A
Other languages
English (en)
Inventor
储升
张博文
潘宇洋
张会岩
肖睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202210230939.1A priority Critical patent/CN114672819A/zh
Publication of CN114672819A publication Critical patent/CN114672819A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/21Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种光电催化PET塑料氧化耦合水分解制氢方法及系统,方法以负载助催化剂的N型半导体作为光阳极,以采用分子束外延生长方法处理并负载助催化剂的P型半导体作为光阳极,以PET塑料溶解液作为阳极电解质,在偏压和光照条件下进行光电催化水分解制氢,并将PET塑料转化为包括对苯二甲酸、乙醇酸和甲酸在内的化学品。本发明的系统中光电极能充分提高降低光电催化PET氧化反应的活化能,发挥光电催化转化技术实现常温常压条件下塑料废弃物的高选择性转化优势,降低反应过程中的能量消耗,从而显著提高系统的能量效率。

Description

光电催化PET塑料氧化耦合水分解制氢方法及系统
技术领域
本发明涉及光电催化水分解制氢技术领域,尤其是光电催化PET塑料氧化耦合水分解制氢方法及系统。
背景技术
近年来,由于塑料具有电绝缘性好、防水性好、材质轻、比较耐用、生产技术成熟、成本低等优点。全球塑料产量从1950年的150万吨飙升到2019年的3.68亿吨,预计到2050年将超过5亿吨。其中聚对苯二甲酸乙二醇酯(PET)塑料是产量和使用量巨大的一种生活中常见的塑料,其单体是由对苯二甲酸和乙二醇经过酯化反应得到的,在酸、碱、醇等条件下可以发生解聚反应。但是其废弃量巨大,目前亟需合适的处理方法。
目前废塑料的高值化利用技术依然是极具挑战性的一个难题。传统的热催化转化法需要高温等苛刻条件、能耗高且产物选择性较差。而填埋,焚烧,机械回收以及生物降解等策略面临着包括易造成环境污染,资源利用不充分,降解速度慢在内的诸多问题。
光电催化系统通过利用太阳能和外加辅助的电能,可以实现水分解产氢,是一种极具潜力的产氢技术。现有技术中,由于阳极氧化过程具有较缓慢的反应动力学特性和较高的过电势,常规的光阳极大多采用普通的N型半导体,所能发挥的降低氧化反应活化能的效果十分有限,因此成为限制目前系统效率的一大瓶颈问题。另外,光电催化过程中产生的副产物氧气附加值较低,致使系统经济性较低,且与阴极产生的氢气存在混合爆炸的风险。
发明内容
针对现有技术的不足,本发明提供一种光电催化PET塑料氧化耦合水分解制氢方法及系统,目的是降低氧化反应的活化能,提高系统的能量效率和经济效率。
本发明采用的技术方案如下:
一种光电催化PET塑料氧化耦合水分解制氢方法,以负载助催化剂的N型半导体作为光阳极,以采用分子束外延生长方法处理并负载助催化剂的P型半导体作为光阴极,以PET塑料溶解液作为阳极电解质,在偏压和光照条件下进行光电催化水分解制氢,并将PET塑料转化为包括对苯二甲酸、乙醇酸和甲酸在内的化学品。
进一步技术方案为:
光阳极的助催化剂为过渡金属氧化物或氮化物;光阴极的助催化剂为贵金属单质、过渡金属氧化物或氮化物。
以Fe2O3作为N型半导体时,光阳极的制备方法为:
将六水合硝酸铁和双(2,4-戊二酮酸)双(2-丙醇酸)钛(IV)按50∶1的质量比混合后溶于乙醇溶剂中,形成络合物溶液,并静置后待用;
超声清洗FTO导电玻璃,吹干;
将所述络合物溶液旋涂在FTO玻璃上,经烘干、煅烧,形成稳定的α-Fe2O3
将α-Fe2O3置于水中,并加入硝酸钴溶液,密封后抽真空,之后在氙灯照射下光沉积,形成负载纳米氧化钴颗粒的α-Fe2O3,得到光阳极;
所述烘干的温度为60-90℃、煅烧的温度为350-650℃;
所述水的体积为20-100ml,所述硝酸钴溶液的体积为100-500μl、浓度为0.1-0.5M;
所述氙灯照射的功率为300-500W,光沉积时间为15-60min。
以Si作为P型半导体,光阴极的制备方法为:
将单晶硅片反复洗净后,利用扩散方式进行掺杂形成N+P结;
利用分子束在所述N+P结表面外延生长GaN纳米线得半成品;
将助催化剂通过电子束蒸发沉积在所述半成品表面,得到光阴极。
所述PET塑料溶解液的制备方法为:
将PET塑料粉碎至80-100目的细小颗粒,然后置于酸溶液、碱溶液、醇中任意一种中,在60-90℃条件下搅拌12-24h搅拌,得到含有少量白色沉淀的PET塑料溶解液。
以Fe2O3作为N型半导体时,所述PET塑料溶解液的制备方法为:
将PET塑料粉碎至80-100目的细小颗粒,然后置于碱溶液中,在60-90℃条件下搅拌12-24h搅拌,得到含有少量白色沉淀的PET塑料溶解液。
所述碱溶液为NaOH溶液、KOH溶液、LiOH溶液中任意一种,碱溶液浓度为0.1-1M。
以Fe2O3作为N型半导体时,以浓度为1-1000mM的所述PET塑料溶解液作为阳极电解质,以浓度为0.1-1M的所述碱溶液作为阴极电解质。
一种实现所述的光电催化PET塑料氧化耦合水分解制氢方法的光电催化PET塑料氧化耦合水分解制氢系统,包括光源、电解池、光阳极、光阴极、阳离子膜、阳极室、阴极室和外部电路;
阳极室和阴极室由阳离子膜分隔开,阴极室内盛装的阴极电解液为酸溶液、碱溶液或醇,阳极室内盛装的阳极电解液为PET经酸解、碱解或醇解处理后的PET塑料溶解液;
光阳极放置于阳极室,光阳极采用负载助催化剂的N型半导体;
光阴极放置于阴极室,光阴极采用采用分子束外延生长方法处理并负载助催化剂的P型半导体;
光阳极和光阴极通过导线与外部电源连接;
光源采用氙灯或者太阳光。
进一步技术方案为:
所述阳离子膜采用N115阳离子膜或N117阳离子膜。
本发明的有益效果如下:
本发明采用利用负载助催化剂的N型半导体作为光阳极,能够显著降低氧化反应的活化能。并且促进发挥光电催化转化技术实现常温常压条件下塑料废弃物的高选择性转化优势,降低了转化过程中的能量消耗,从而进一步提高能量效率。和现有的采用常规光电极的系统相比,本申请的系统效率显著提高。
本发明以PET氧化反应替代传统人工光合作用系统中的水氧化反应,并与水还原产氢反应耦合。由于经过处理后的PET塑料具有较低的氧化能垒,使得相同辅助偏压和光照强度下,将PET氧化与水分解产氢耦合,效率大幅提高,进一步提高了系统能量效率。
本发明利用光电催化的技术优势实现PET废塑料高值化利用,将PET塑料转化为包括对苯二甲酸、乙醇酸、甲酸等在内的高价值化学品。与传统水氧化产生的氧气产物相比具有更高的附加值。
附图说明
图1为本发明实施例的系统结构示意图。
图2为本发明方法的光电催化反应原理示意图。
图3为本发明实施例1的光电催化反应与未采用PET塑料溶解液作为阳极电解质的光电催化反应的电压-电流曲线对比结果。
图4为本发明实施例1在光暗切换条件下光电催化反应的时间-电流曲线。
图5为本发明实施例1的光电催化反应与使用常规光阳极的光电催化反应的时间-电流曲线对比结果。
图中:1、光阳极;2、阳极室;3、阳离子膜;4、阴极室;5、光阴极。
具体实施方式
以下结合附图说明本发明的具体实施方式。
本申请的一种光电催化PET塑料氧化耦合水分解制氢方法,以负载助催化剂的P型半导体作为光阴极,以采用分子束外延生长方法处理并负载助催化剂的N型半导体作为光阳极,以PET塑料溶解液作为阳极电解质,在偏压和光照条件下进行光电催化水分解制氢,同时将PET塑料转化为对苯二甲酸、乙醇酸和甲酸化学品;
所述N型半导体为Fe2O3,BiVO4,TiO2,WO3,Ta3N5,III-V族半导体中的任意一种;
所述P型半导体为Si,Cu2c,III-V族半导体中的任意一种。
光阳极的助催化剂为过渡金属氧化物或氮化物;光阴极的助催化剂为贵金属单质、过渡金属氧化物或氮化物。
以Fe2O3作为N型半导体时,光阳极的制备方法为:
将六水合硝酸铁和双(2,4-戊二酮酸)双(2-丙醇酸)钛(IV)按50∶1的质量比混合后溶于乙醇溶剂中,形成络合物溶液,并静置后待用;
超声清洗FTO导电玻璃,吹干;
将所述络合物溶液旋涂在FTO玻璃上,经烘干、煅烧,形成稳定的α-Fe2O3
将α-Fe2O3置于水中,并加入硝酸钴溶液,密封后抽真空,之后在氙灯照射下光沉积,形成负载纳米氧化钴颗粒的α-Fe2O3,得到光阳极;
其中,烘干温度为60-90℃、煅烧温度为350-650℃;
其中,水的体积为20-100ml,硝酸钴溶液的体积为100-500μl、浓度为0.1-0.5M;
其中,氙灯照射功率300-500W,光沉积时间为15-60min。
以Si作为P型半导体,光阴极的制备方法为:
将单晶硅片反复洗净后,利用扩散方式进行掺杂形成N+P结;
利用分子束在所述N+P结表面外延生长GaN纳米线得半成品;
将助催化剂通过电子束蒸发沉积在所述半成品表面,得到光阴极。
所述PET塑料溶解液的制备方法为:
将PET塑料粉碎至80-100目的细小颗粒,然后置于酸溶液、碱溶液、醇中任意一种中,在60-90℃条件下搅拌12-24h搅拌,得到含有少量白色沉淀的PET塑料溶解液。
以Fe2O3作为N型半导体时,所述PET塑料溶解液的制备方法为:
将PET塑料粉碎至80-100目的细小颗粒,然后置于碱溶液中,在60-90℃条件下搅拌12-24h搅拌,得到含有少量白色沉淀的PET塑料溶解液。
所述碱溶液为NaOH溶液、KOH溶液、LiOH溶液中任意一种,碱溶液浓度为0.1-10M。
以Fe2O3作为N型半导体时,以浓度1-1000mM的所述PET塑料溶解液作为阳极电解质,以浓度为01-1M的所述碱溶液作为阴极电解质。
本领域技术人员可以理解,通过调控光照和电流条件或者改变电解质溶液,能调节光电催化合成反应速率,同时可以提高对高价值目标反应产物的选择性。将PET高效定向转化为高价值产品,实现PET废塑料的高值化利用。
本申请的一种实现所述的光电催化PET塑料氧化耦合水分解制氢方法的光电催化PET塑料氧化耦合水分解制氢系统,如图1所示,包括光源、电解池、光阳极1、光阴极5、阳离子膜3、阳极室2、阴极室4和外部电路;
阳极室2和阴极室4是由阳离子膜3分隔开,阴极室4内盛装的阴极电解液为酸溶液、碱溶液或醇,阳极室2内盛装的阳极电解液为PET经酸解、碱解或醇解处理后的PET塑料溶解液;
光阳极1放置于阳极室2,光阳极1采用负载助催化剂的P型半导体;
光阴极5放置于阴极室4,光阴极5采用采用分子束外延生长方法处理并负载助催化剂的P型半导体;
光阳极1和光阴极5通过导线与外部电源连接;
光源采用氙灯或者太阳光。
阳离子膜3采用N115阳离子膜或N117阳离子膜。
以下以具体实施例进一步说明本申请的光电催化PET塑料氧化耦合水分解制氢方法。
实施例1
a)光电极制备
光阳极采用旋涂法制备,具体制备方法如下。
分别用乙醇和水溶液超声清洗FTO导电玻璃各30min,然后用氮气吹干。
将六水合硝酸铁和双(2,4-戊二酮酸)双(2-丙醇酸)钛(IV)按照50∶1的质量比例混合后溶于乙醇溶剂中,形成络合物溶液,并静置24h后待用。
将混合好的络合液滴在FTO玻璃上,并在4000rpm转速下旋涂60s,之后在烘箱中烘干,温度设置为80℃,烘干后置于马弗炉内进行500℃条件下高温煅烧,形成稳定的α-Fe2O3光阳极。
将制备的钛掺杂Fe2O3光阳极置于20ml的水溶液中,并加入100μl的0.1M硝酸钴溶液,密封后抽真空10min,之后置于350W氙灯照射下光沉积30min,得到负载纳米氧化钴颗粒的α-Fe2O3光阳极。
光阴极采用分子束外延生长方法制备,具体制备方法如下:
将单晶硅片反复洗净后,利用扩散方式进行掺杂形成N+P结,之后利用分子束在硅片表面外延生长GaN纳米线。铂助催化剂通过电子束蒸发沉积在光阴极表面,得到产氢特异性效率较高的光阴极。
b)PET预处理
PET通过碱液解聚,具体方法如下,将PET塑料粉碎至80-100目的细小颗粒,然后置于1M NaOH水溶液在90℃条件下搅拌24h,得到含有少量白色沉淀的PET塑料溶解液。
c)光电催化反应
将制备的光阳极以及光阴极分别置入阳极室以及阴极室,阳极室加入经过预处理的100mM PET塑料溶解液,阴极室加入1M NaOH作为阴极电解质。
阳极室通入氮气气体1小时后完全密封,两个光电极前后正对光源放置,采用350W氙灯作为模拟太阳光光源,光源先穿过带隙较大的光阳极后照射到光阴极;然后向阳极室中通入N2后密封;
如图2所示,光电极在光照射条件下激发产生电子和空穴,光阳极的空穴用于氧化PET生成包括乙醇酸、甲酸在内的酸类有机物,同时产生H+,H+在电场及浓差作用下迁移到光阴极表面,产生的电子在光阴极用于水还原产氢。
反应过程中,利用电化学工作站施加电压,并记录电流-电压关系,得到图5,为其他条件相同的情况下,本实施例1的光电催化反应的时间-电流曲线与使用常规光阳极的光电催化反应的时间-电流曲线对比结果。
图3为本实施例1采用采用PET塑料溶解液作为阳极电解质的光电催化反应与未采用PET塑料溶解液而采用水(water)作为阳极电解质的光电催化反应的电压-电流曲线对比结果。图4为本实施例1在光暗切换条件下光电催化反应的时间-电流曲线。
通过图3至图5的结果,相同条件下,本实施例的光电极催化反应的电流密度远高于使用常规光阳极的光电催化反应的电流密度。PET塑料氧化在光激发下进行,可以加快水分解产氢的速率,且反应在较长时间内都表现出稳定性。通过电路中电荷转移的情况,能够分析出反应进行的速率以及能量转化的效率。氢气通过气相色谱仪进行分析,酸类有机物等产物通过高效液相色谱进行分析。
本领域技术人员可理解,光阳极的价带电位高于PET氧化平衡电位,导带电位低于水分解还原产氢的平衡电位;光阳极及光阴极具有不同带隙,光线首先通过带隙较大半导体,之后通过带隙较小半导体,形成叠层结构。
实施例2
在其他条件与实施例1相同的情况下,其中六水合硝酸铁采用钨酸。PET水解过程采用0.1M H2SO4溶液于60℃条件下搅拌24h,得到的PET塑料溶解液作为阳极电解液。阴极电解液采用0.1M H2SO4溶液。获得光电催化PET塑料氧化耦合水分解制氢结果。
本申请采用的光阳极,能够充分降低阳极氧化反应的活化能,进而提升系统能量效率。再充分利用PET塑料的解聚特性以及氧化能垒较低的特点,将光电催化PET氧化与水分解产氢过程耦合,大幅提升了光电催化水分解产氢的速率。
本领域普通技术人员可以理解:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,以负载助催化剂的N型半导体作为光阳极,以采用分子束外延生长方法处理并负载助催化剂的P型半导体作为光阴极,以PET塑料溶解液作为阳极电解质,在偏压和光照条件下进行光电催化水分解制氢,并将PET塑料转化为包括对苯二甲酸、乙醇酸和甲酸在内的化学品。
2.根据权利要求1所述的光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,光阳极的助催化剂为过渡金属氧化物或氮化物;光阴极的助催化剂为贵金属单质、过渡金属氧化物或氮化物。
3.根据权利要求1所述的光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,以Fe2O3作为N型半导体时,光阳极的制备方法为:
将六水合硝酸铁和双(2,4-戊二酮酸)双(2-丙醇酸)钛(IV)按50∶1的质量比混合后溶于乙醇溶剂中,形成络合物溶液,并静置后待用;
超声清洗FTO导电玻璃,吹干;
将所述络合物溶液旋涂在FTO玻璃上,经烘干、煅烧,形成稳定的α-Fe2O3
将α-Fe2O3置于水中,并加入硝酸钴溶液,密封后抽真空,之后在氙灯照射下光沉积,形成负载纳米氧化钴颗粒的α-Fe2O3,得到光阳极;
所述烘干的温度为60-90℃、煅烧的温度为350-650℃;
所述水的体积为20-100ml,所述硝酸钴溶液的体积为100-500μl、浓度为0.1-0.5M;
所述氙灯照射的功率为300-500W,光沉积时间为15-60min。
4.根据权利要求1所述的光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,以Si作为P型半导体时,光阴极的制备方法为:
将单晶硅片反复洗净后,利用扩散方式进行掺杂形成N+P结;
利用分子束在所述N+P结表面外延生长GaN纳米线得半成品;
将助催化剂通过电子束蒸发沉积在所述半成品表面,得到光阴极。
5.根据权利要求1所述的光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,所述PET塑料溶解液的制备方法为:
将PET塑料粉碎至80-100目的细小颗粒,然后置于酸溶液、碱溶液、醇中任意一种中,在60-90℃条件下搅拌12-24h搅拌,得到含有少量白色沉淀的PET塑料溶解液。
6.根据权利要求5所述的光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,以Fe2O3作为N型半导体时,所述PET塑料溶解液的制备方法为:
将PET塑料粉碎至80-100目的细小颗粒,然后置于碱溶液中,在60-90℃条件下搅拌12-24h搅拌,得到含有少量白色沉淀的PET塑料溶解液。
7.根据权利要求6所述的光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,所述碱溶液为NaOH溶液、KOH溶液、LiOH溶液中任意一种,碱溶液浓度为0.1-1M。
8.根据权利要求6所述的光电催化PET塑料氧化耦合水分解制氢方法,其特征在于,以Fe2O3作为N型半导体时,以浓度为1-1000mM的所述PET塑料溶解液作为阳极电解质,以浓度为0.1-1M的所述碱溶液作为阴极电解质。
9.一种实现如权利要求1至8之一所述的光电催化PET塑料氧化耦合水分解制氢方法的光电催化PET塑料氧化耦合水分解制氢系统,其特征在于,包括光源、电解池、光阳极、光阴极、阳离子膜、阳极室、阴极室和外部电路;
阳极室和阴极室由阳离子膜分隔开,阴极室内盛装的阴极电解液为酸溶液、碱溶液或醇,阳极室内盛装的阳极电解液为PET经酸解、碱解或醇解处理后的PET塑料溶解液;
光阳极放置于阳极室,光阳极采用负载助催化剂的N型半导体;
光阴极放置于阴极室,光阴极采用采用分子束外延生长方法处理并负载助催化剂的P型半导体;
光阳极和光阴极通过导线与外部电源连接;
光源采用氙灯或者太阳光。
10.根据权利要求9所述的光电催化PET塑料氧化耦合水分解制氢系统,其特征在于,所述阳离子膜采用N115阳离子膜或N117阳离子膜。
CN202210230939.1A 2022-03-10 2022-03-10 光电催化pet塑料氧化耦合水分解制氢方法及系统 Pending CN114672819A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210230939.1A CN114672819A (zh) 2022-03-10 2022-03-10 光电催化pet塑料氧化耦合水分解制氢方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210230939.1A CN114672819A (zh) 2022-03-10 2022-03-10 光电催化pet塑料氧化耦合水分解制氢方法及系统

Publications (1)

Publication Number Publication Date
CN114672819A true CN114672819A (zh) 2022-06-28

Family

ID=82071915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210230939.1A Pending CN114672819A (zh) 2022-03-10 2022-03-10 光电催化pet塑料氧化耦合水分解制氢方法及系统

Country Status (1)

Country Link
CN (1) CN114672819A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711627A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种光阳极-光伏电池耦合的双光照完全光驱动分解水制氢方法
CN107012475A (zh) * 2017-04-24 2017-08-04 太原师范学院 一种双极膜表面粉末态光催化剂在水分解中的应用
CN113502493A (zh) * 2021-06-08 2021-10-15 东南大学 一种光电催化有机固废氧化耦合二氧化碳还原系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711627A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种光阳极-光伏电池耦合的双光照完全光驱动分解水制氢方法
CN107012475A (zh) * 2017-04-24 2017-08-04 太原师范学院 一种双极膜表面粉末态光催化剂在水分解中的应用
CN113502493A (zh) * 2021-06-08 2021-10-15 东南大学 一种光电催化有机固废氧化耦合二氧化碳还原系统及方法

Similar Documents

Publication Publication Date Title
CN106435635B (zh) 一种高效光电催化分解水产氧电极的制备方法及应用
Hisatomi et al. Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis
US20180230028A1 (en) Z-Scheme Microbial Photoelectrochemical System (MPS) for Wastewater-to-Chemical Fuel Conversion
CN110694648B (zh) 一种光催化水裂解产氢钼掺杂硫化铟锌空心分级结构光催化剂及其制备方法
CN110344029B (zh) 一种表面羟基化氧化铁薄膜光阳极材料的制备方法
CN111261413B (zh) 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN109985666B (zh) 一种表面修饰的MoS2催化剂在压电催化产氢中的应用
CN110373680A (zh) 一种用于光电化学分解水的ZnO/BiVO4异质结光阳极复合材料的制备方法
CN114481192B (zh) 一种Cd掺杂的二氧化钛/硫化铟锌光阳极及其制备方法
Zhang et al. Decoupled artificial photosynthesis
CN103872174A (zh) 一种Au修饰TiO2纳米棒阵列光阳极的制备方法
CN112958116A (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
CN108866563A (zh) 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途
CN110665525A (zh) 一种复合氮化碳光催化材料的钙钛矿及其制备方法和应用
CN109821559A (zh) 一种核壳结构复合光电材料的制备方法及其应用
CN113502493B (zh) 一种光电催化有机固废氧化耦合二氧化碳还原系统及方法
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
CN114672819A (zh) 光电催化pet塑料氧化耦合水分解制氢方法及系统
CN114703500A (zh) 一种三氧化钨-钒酸铋-有机酸复合光电极及其制备方法和应用
CN112725771B (zh) 一种Ti基光阳极及其制备方法和在光电催化全解水制取氧气中的应用
Liang et al. Photo-and electrochemical processes to convert plastic waste into fuels and high-value chemicals
Morikawa et al. Selective CO 2 reduction conjugated with H 2 O oxidation utilizing semiconductor/metal-complex hybrid photocatalysts
CN112962117B (zh) 一种石墨烯-硫化钼/氧化钼纳米复合物的制备方法及其在近红外下增强析氢的方法
CN111054420B (zh) 利用介质阻挡放电等离子体一步合成复合光电催化剂的方法、产品及其应用
CN115475632B (zh) 一种CN/Mn2O3/FTOp-n异质结材料的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination