CN114672466A - Recombinant Coxsackie B3 virus with fluorescent protein label and construction method - Google Patents

Recombinant Coxsackie B3 virus with fluorescent protein label and construction method Download PDF

Info

Publication number
CN114672466A
CN114672466A CN202210396221.XA CN202210396221A CN114672466A CN 114672466 A CN114672466 A CN 114672466A CN 202210396221 A CN202210396221 A CN 202210396221A CN 114672466 A CN114672466 A CN 114672466A
Authority
CN
China
Prior art keywords
gfp
virus
pcv
recombinant
cvb3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210396221.XA
Other languages
Chinese (zh)
Inventor
曾俊
贺茜
邓辉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yichang No1 People's Hospital (people's Hospital Of China Three Gorges University)
Original Assignee
Yichang No1 People's Hospital (people's Hospital Of China Three Gorges University)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yichang No1 People's Hospital (people's Hospital Of China Three Gorges University) filed Critical Yichang No1 People's Hospital (people's Hospital Of China Three Gorges University)
Priority to CN202210396221.XA priority Critical patent/CN114672466A/en
Publication of CN114672466A publication Critical patent/CN114672466A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0045Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent agent being a peptide or protein used for imaging or diagnosis in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0097Cells, viruses, ghosts, red blood cells, viral vectors, used for imaging or diagnosis in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32611Poliovirus
    • C12N2770/32621Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32611Poliovirus
    • C12N2770/32641Use of virus, viral particle or viral elements as a vector
    • C12N2770/32643Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention provides a recombinant Coxsackie B3 virus with a fluorescent protein label, which is an infectious recombinant virus rCV-CS and a recombinant virus rCV-GFP expressing GFP, and has a sequence shown as SEQ ID NO: 1, the construction method is that on the basis of CVB3 full-length infectious cDNA clone plasmid pCV, the CVB3 full-length infectious clone plasmid pCV-CS containing multiple cloning sites MCS is constructed, and 2Apro enzyme digestion recognition sequences are added in front of the MCS; amplifying a GFP fragment by taking pEGFP as a template to obtain a GFP coding gene; introducing a GFP coding gene into a multiple cloning site of pCV-CS to construct a CVB3 whole-gene infectious cloning plasmid pCV-GFP expressing GFP; the pCV-GFP is transfected and amplified by liposome to obtain recombinant coxsackie B3 virus rCV-GFP with a fluorescent protein label. The technical scheme of the invention is used for preparing the tracer virus in the living animal cells and has obvious effect.

Description

Recombinant Coxsackie B3 virus with fluorescent protein label and construction method
Technical Field
The invention relates to the technical field of biological medicines, in particular to a recombinant coxsackie B3 virus with a fluorescent protein label and a construction method and application thereof.
Background
The Coxsackie virus B3 belongs to a single-stranded positive-strand small RNA virus, is spherical, icosahedral, three-dimensionally symmetrical, non-enveloped and non-protuberant, and a naked protein nucleocapsid wraps nucleic acid to form a virus particle with the diameter of 20-30 nm. The Coxsackie virus mainly infects human or animals through the fecal oral infection route, invades a host by taking the alimentary canal as an entrance, and spreads to other tissues and organs. The poliovirus infection pathway is studied more, the poliovirus may invade the central nerve by infecting the peripheral nerve, spread the virus to the whole body by blood stream transport, or be further transmitted by infection of vascular endothelial cells, and the infection pathway of the coxsackievirus may be similar to the poliovirus infection pathway, and further experiments and clinical studies are needed. At present, the pathogenic mechanism and virus tissue tropism of the coxsackie virus are researched, the virus antigen in fixed cells or tissues is detected by an immunological method or virus particles in the fixed cells or tissues are detected by an electron microscope, obviously, the research modes can not fully and deeply analyze the dynamic process in the life cycle of the virus, and the mode of directly observing and researching the virus in living cells or living bodies is a more convenient and visual mode.
In 1962, Seikagana Victoria jellyfish, Nomuraea Victoria, et al, first discovered a Green Fluorescent Protein (GFP) consisting of 238 amino acids at approximately 26.9kDa under blue light excitation. After being modified by Martin Chalfie, Qianyong and the like, the green fluorescent protein serving as a biological probe is widely applied to cell biology and molecular biology research. After the GFP-encoding gene is linked to the target protein gene, the expression and localization of intracellular proteins can be observed at any time by a fluorescence microscope. The GFP is fused with the target protein without influencing the luminescence, and the GFP does not influence the biological function of living cells in the process of luminescence, and the self-luminescence does not need other substrates or auxiliary molecules. At present, GFP is mainly applied to the following aspects: (1) as a molecular marker, the protein label is used for organelles such as cytoskeleton, plasma membrane, cell nucleus and the like, and the GFP is integrated into the escherichia coli to be used as the marker, so that the screening efficiency of a polypeptide library, the research and development of vaccines and the research on a signal transduction process are greatly improved. (2) With the development of optical analysis methods, GFP fluorescent probes are applied to in vivo intracellular drug screening. (3) GFP luminescence depends on Ca2+ and the surrounding chemical environment, and is therefore suitable for use as a living cell bio-optical sensor. (4) Application in signal transduction. In recent years it has been found that certain mutated GFP's are capable of Fluorescence Resonance Energy Transfer (FRET).
With the development of imaging technology, optical imaging in living animals is more and more widely applied to life sciences, medical research and drug development. With GFP as a fluorescent reporter group, the tissue and the cellular localization of luminescent cells or virus particles in living organisms can be directly monitored by using an optical detection instrument. Compared with the traditional animal experiment method which needs to kill the experimental objects at different time points to obtain data, the GFP-labeled virus can be adopted to obtain a plurality of time points and continuous experimental data. In addition, the method does not involve radioactive substances and is simple to operate and free from safety risks.
The experimental study aims to insert Green Fluorescent Protein (GFP) into CVB3 whole gene infectious clone on the basis of successfully established CVB3 whole gene infectious clone (pCV), so as to construct recombinant CVB3 virus for expressing GFP. After CVB3 enters a cell, the ribosome entry site of a 5' non-coding region begins to collect cell ribosome to be bound to a virus positive strand RNA, and the synthesis of polyprotein is started from downstream AUG, wherein 2A protease (2A protease, 2Apro) and 3C protease (3C protease, 3Cpro) have a self-cleavage function, and a single polyprotein is cut into 4 virus structural proteins (VP1-4) and 7 functional proteins (2A-C, 3A-D). Considering that GFP has 238 amino acids, in order to avoid the influence of GFP on the packaging of the virus, the experiment utilized the self-splicing property of CVB3 virus replication synthesis, and a virus 2Apro restriction recognition sequence was added to the 5' end of the coding region of the GFP gene.
Disclosure of Invention
Aiming at the technical problems, the invention successfully constructs the CVB3 full-length infectious clone pCV-CS containing a multiple cloning site and a 2Apro enzyme digestion recognition sequence before the multiple cloning site on the basis of the established CVB3 full-length infectious cDNA clone pCV. The clone has stable property and is easy to operate.
pCV-GFP was successfully constructed. In order to achieve the aim of virus tracing and test the feasibility of pCV-CS as an expression vector, a GFP coding gene is introduced into a multiple cloning site of pCV-CS, and CVB3 whole gene infectious clone pCV-GFP expressing GFP is successfully constructed;
infectious recombinant virus rCV-CS and recombinant virus rCV-GFP expressing GFP were successfully obtained. The biological characteristics of the recombinant virus rCV-GFP are consistent with those of CVB3-WT, and GFP can be stably expressed. The specific technical scheme is as follows:
a recombinant Coxsackie B3 virus with a fluorescent protein tag is an infectious recombinant virus rCV-CS and a recombinant virus rCV-GFP expressing GFP, and has a sequence shown as SEQ ID NO: 1.
the construction method of the recombinant coxsackie B3 virus with the fluorescent protein label comprises the following steps:
(1) on the basis of the CVB3 full-length infectious cDNA clone plasmid pCV, a CVB3 full-length infectious clone plasmid pCV-CS containing a multiple cloning site MCS is constructed, and a 2Apro enzyme digestion recognition sequence is added in front of the MCS;
amplifying a GFP fragment by taking pEGFP as a template to obtain a GFP coding gene;
(2) introducing a GFP coding gene into a multiple cloning site of pCV-CS to construct a CVB3 whole-gene infectious cloning plasmid pCV-GFP expressing GFP;
(3) the pCV-GFP is transfected and amplified by liposome to obtain recombinant coxsackie B3 virus rCV-GFP with a fluorescent protein label.
Introducing a multiple cloning site MCS into a region between a P1 region and a P2 region of a full-length infectious cDNA genome of CVB3 in the step (1); the DNA sequence of CVB3 is SEQ ID NO: 2; the sequence of the multicloning site MCS is SEQ ID NO: 3;
2Apro enzyme digestion recognition sequence is SEQ ID NO: 4.
the primer pair when the multi-cloning site MCS is inserted is SEQ ID NO: 5; the nucleotide sequence of SEQ ID NO: 5 in the upstream sequence of the primer pairXhoⅠAnd (4) enzyme cutting sites. The primer pair inserted with the 2Apro enzyme cutting recognition sequence is SEQ ID NO: 6; the amino acid sequence of SEQ ID NO: 6 in the downstream sequence of the primer pairSpeⅠAnd (4) enzyme cutting sites.
The primer pair for introducing the GFP coding gene into the multiple cloning site of pCV-CS in the step (2) is SEQ ID NO: 7.
the invention relates to application of the constructed recombinant coxsackie B3 virus with the fluorescent protein label in preparation of a medicament for tracing animal living viruses. The virus-traced living animal cells comprise Vero cells, pancreatic cells and myocardial cells.
The technical scheme of the invention proves that pCV-CS can be completely used as a virus vector for effectively and stably expressing the exogenous gene fragment. rCV-GFP stably expresses GFP as a fluorescent probe, and rCV-GFP has various biological characteristics consistent with CVB3-WT, and this experiment proves that rCV-GFP can trace virus-infected cells and tissues through cell culture and mouse in vivo experiments. Therefore, rCV-GFP can be used as a visual CVB3 virus, the positioning of CVB3 in living cells and living tissues can be directly observed, and a research platform is provided for research on cell tropism and tissue tropism of CVB 3. The research provides a stable and reliable research and application platform for deeply researching the genome structure and function of CVB3 and the pathogenic mechanism of molecules.
Drawings
FIG. 1 is an electrophoretogram of segmented PCR amplification incorporating MCS. Lane 1 shows the XS1 fragment (1320 bp); lane 2 shows the XS2 fragment (579 bp); lane 3 shows the XS fragment (1894 bp); lane 5 shows a GFP fragment (720 bp); lanes 4 and 6 show DL2000 DNA Marker, with the brightest band size of 750 bp.
FIG. 2 is an electrophoresis diagram of clone pCV-CS identified by colony PCR. The target band size is 1320bp, 2/4/6/7/8/9 is colony PCR positive, 3/5/7 lane is negative, and 1Kb DNA Ladder is lane 1.
FIG. 3 is a MCS scheme and sequencing peak diagram. (a) MCS schematic. (b) Thick black solid line 2AproAnd (4) enzyme cutting of the recognition sequence. The boxes are shown as MCS sequences in turn ATCGAT (ClaⅠ)AGGCCT(StuⅠ)。
FIG. 4 shows the electrophoresis chart of clone pCV-GFP identified by colony PCR. The size of the target band is 720bp, lanes 1, 2 and 9 are colony PCR positive, lanes 3-8 are negative, and lane 10 is DL2000 DNA Marker.
FIG. 5 is a schematic diagram of enzyme digestion identification and an electrophoresis diagram of enzyme digestion cloning plasmid. A. pCV-GFP plasmid schematic, displayEcoR1 the position of the restriction and the size of the fragment. B. By usingEcoRI after digestion of the plasmid, pCV-GFP in lane 2, after digestionThe fragment sizes are 5443, 3280 and 2181 bp respectively; lane 3 shows the sizes of the cleaved fragments of pCV-CS, which are 5443, 3280 and 1467 bp, respectively; lane 4 shows the sizes of the fragments after pCV digestion, which are 5443, 3280 and 1425 bp, respectively; lane 1 is TaKaRa 1Kb DNA Ladder.
FIG. 6 is a diagram showing the sequencing results of pCV-GFP. The 2Apro cleavage recognition sequence is shown in the thick black solid line of the pCV-GFP sequencing peak map. Shown in boxes are the GFP coding start sequences.
FIG. 7 shows that rCV-GFP causes changes in cell CPE. COS-7 cells transfected with pCV-GFP were harvested 48h after transfection, and the cell supernatants were inoculated with Vero cells and observed for cytopathic effects (100X). (a) 48h uninfected negative control, (b) CVB3-WT positive control. (c-f) indicates rCV-GFP inoculation at 6, 12, 24 and 48 hours.
FIG. 8 shows the detection of GFP in rCV-GFP infected Vero cells and the detection of VP proteins by immunofluorescence. rCV-GFP 24h after Vero cell inoculation, fixation, immunofluorescence microscopy GFP expression and VP1 expression. pEGFP is a control for GFP expression, rCV is a positive control for VP 1.
FIG. 9 shows the expression of GFP at different time points after Vero infection with rCV-GFP. (a-d) Vero cells were seeded in 6-well plates, and after Vero cells were infected with 0.1MOI rCV-GFP, GFP expression was observed under a fluorescent microscope at 2, 6, 12, and 24h after infection, respectively (X100).
FIG. 10 shows the formation of plaques by virus infection of Vero cells. The plaque morphology of CVB3-WT, recombinant virus rCV and rCV-GFP on Vero cells was compared at the same virus titer.
FIG. 11 is a viral growth curve. After the Vero cells are infected by the virus, the virus titer in the culture supernatant at different time points is detected to draw a growth curve.
FIG. 12 shows rCV-GFP stably expressing GFP in Vero cells. The expression of GFP and VP1 was detected by immunoblotting after 5 th and 10 th passages of rCV-GFP infected Vero cells. Beta-actin is the internal reference.
FIG. 13 shows the immunofluorescence of mouse tissue after rCV-GFP infection. rCV-GFP infected mice, on day 4, the hearts and pancreas of the mice were harvested and tested for co-localization of the viral capsid protein VP1 with GFP to cardiomyocytes and pancreatic cells by immunofluorescence. Green fluorescence indicates GFP and red fluorescence shows the viral capsid protein VP1(400 ×).
FIG. 14 is a diagram of PCR amplification incorporating MCS fragment. PCR primers and start positions and bridges are indicated.
Detailed Description
Example 1
To facilitate the introduction of foreign genes into the CVB3 genome, the experiment introduces Multiple Cloning Sites (MCS) into the interval between P1 region and P2 of CVB3 genome on the basis of constructed full-length infectious clone (pCV) of CVB3, and adds enzyme digestion recognition sequence (TTMTNTG/AFGQQSGA) of 2Apro before the Multiple Cloning sites. Based on the pCV sequencing sequence, 2 pairs of primers were designed using DNASTAR Lasergene 9.0 software for cloning the inserted MCS and a 42bp long 2Apro restriction recognition sequence (Table 1-1). In order to conveniently connect the full-length gene into the plasmid, an Xho I restriction site is introduced into the upstream sequence of the first pair of primers, and a Spe I restriction site is designed in the downstream primer sequence of the 2 nd pair of primers. All the primers are synthesized by Shenzhen Huada Gene company.
TABLE 2-1 construction of multiple cloning site PCR primers
Figure DEST_PATH_IMAGE002
The restriction recognition sequences introduced are underlined in italics.
PCR amplification of fragments of interest
XS1(1320 bp) and XS2(579 bp) were amplified simultaneously using pCV plasmid as template by using ultra-High Fidelity DNA polymerase (Phusion High-Fidelity DNA polymers), and then connected by PCR bridging to form a long fragment of 1899bp (FIG. 14). The GFP fragment was amplified using pEGFP as a template.
The PCR reaction system is as follows:
Figure 887554DEST_PATH_IMAGE003
PCR reaction parameters: fragment XS 1: pre-denaturation at 98 ℃ for 30s, and 30 cycle parameters: 10s at 98 ℃, 10s at 55 ℃ and 30s at 72 ℃; 5min at 72 ℃. Fragment XS 2: pre-denaturation at 98 ℃ for 30 s; the 30 cycle parameters were: 10s at 98 ℃, 10s at 60 ℃ and 10s at 72 ℃; 5min at 72 ℃. Fragment GFP: pre-denaturation at 98 ℃ for 30 s; the 30 cycle parameters were: 10s at 98 ℃, 10s at 53 ℃ and 20s at 72 ℃; 5min at 72 ℃. Electrophoresis and gel recovery of amplification products, the operation is as follows: preparing 1% agarose electrophoresis Gel, loading, performing 100V electrophoresis for 40 min, photographing, and recovering by using E.Z.N.A. Gel Extraction Kit Gel: cutting a target band, adding a sol solution with one time volume, acting at 50 ℃ for 15 min, balancing to room temperature after the sol is completely melted, adding a centrifugal adsorption column, centrifuging at 12000rpm for 1min, then adding 750 mu l of a washing solution, centrifuging at 12000rpm for 1min, continuously adding 500 mu l of the washing solution, centrifuging at 12000rpm for 1min, discarding the washing solution, centrifuging at 12000rpm for 2min, standing at room temperature for 2min, adding 30 mu l of nuclease-free 12000rpm, eluting for 2min, and recovering a product, and freezing and storing at-20 ℃ for later use.
The concentration of the 2-fragment recovered product was measured by UV spectrophotometry. After equimolar mixing of 2 fragments, adding the mixture into a PCR tube, mixing the amount of each component with dNTP, Phusion DNA Polymerase and 5 xPhusion HF Buffer as same as that of the common PCR, and carrying out PCR bridging according to the following procedures: 10 PCR cycles at 98 ℃ for 10s, 60 ℃ for 10s and 72 ℃ for 1 min; the PCR tubes were removed and primers XS1S and XS2A were added and 20 more cycles of PCR were performed as per the above procedure. PCR products were electrophoresed and gel recovered as described above. And recovering the product, and freezing and storing the product at the temperature of 20 ℃ below zero for later use. FIG. 1 segmented PCR amplification incorporates MCS electrophoretograms. Lane 1 shows the XS1 fragment (1320 bp); lane 2 shows the XS2 fragment (579 bp); lane 3 shows the XS fragment (1894 bp); lane 5 shows a GFP fragment (720 bp); lanes 4 and 6 show DL2000 DNA Marker, with the brightest band size of 750 bp.
After PCR amplification products XS and GFP were recovered, they were sent to Huada Gene Co for sequencing analysis.
Construction of CVB3 full-Length cDNA cloning plasmid (pCV-CS) containing MCS
The correctly sequenced PCR-recovered product XS from the previous step, as well as the full-length infectious clone plasmid (pCV) of CVB3, were digested with Xho I and Spe I: PCR product 5. mu.g, Xho I and Spe I1.5. mu.l each, 10 XNEB buffer with BSA 5. mu.l, and 50. mu.l of water. Water bath at 37 ℃ for 2 h. In the same manner, the pCV plasmid was digested in two enzymes. Electrophoresis and gel recovery of the enzyme digestion product are carried out as follows: 1% agarose gel was prepared for recovery of PCR fragments, and 0.7% agarose gel was prepared for recovery of pCV plasmid fragments. After loading, electrophoresis was performed at 100V for 40 min, and after photographing, recovered with e.z.n.a. Gel Extraction Kit Gel: cutting a target strip, adding a sol solution with one time volume, acting at 50 ℃ for 15 min, balancing to room temperature after the sol is completely melted, adding a centrifugal adsorption column, centrifuging at 12000rpm for 1min, then adding 750 mu l of a washing solution, centrifuging at 12000rpm for 1min, continuously adding 500 mu l of the washing solution, centrifuging at 12000rpm for 1min, discarding the washing solution, centrifuging at 12000rpm for 2min, standing at room temperature for 2min, then adding 30 mu l of nuclease-free solution, eluting at 12000rpm for 2min, and recovering a product, and freezing and storing at-20 ℃ for later use.
T4 DNA ligase was ligated to the two digested fragments recovered (XS and vector pCV) as follows: about 10ng of vector, 100ng of PCR-digested fragment, 1. mu. l T4 DNA ligase, 1. mu.l of 10 XT 4 DNA ligation buffer, and 10. mu.l of water. 16 ℃ for 8h or overnight.
The ligation product was transformed into escherichia coli TOP10 competent bacteria: mu.l of the ligation product was added to 50. mu.l of TOP10 competent bacteria and left on ice for 30 min; water bath at 42 deg.C for 45s, and ice-cooling for 2 min; adding 600 mul LB culture medium, shaking and culturing for 60 minutes at 37 ℃; coating the bacterial liquid on an LB agar plate culture medium containing X-gal, IPTG and Amp +, and performing inverted culture at 37 ℃ until a single bacterial colony is formed; white colonies were picked, and the length of the insert in the vector was confirmed by PCR.
Cloning and identification
Selecting white colonies, confirming the length of the inserted fragment in the vector by using a PCR method, carrying out PCR by using XS1S/XS1A as primers, and carrying out electrophoresis identification on products. The PCR-positive colonies were grown in 5ml Amp + LB liquid medium and cultured overnight with shaking at 37 ℃. Plasmid extraction with e.z.n.a. Plasmid Mini Kit: a. taking 1.0-5.0 ml of bacterial liquid, centrifuging at room temperature for 1min at 10,000g, and collecting bacteria; b. the medium was discarded. Adding 250 μ l Solution I/RNaseA mixture, and performing vortex oscillation to completely suspend the cells; c. adding 250 μ l of Solution II into the resuspended mixture, and mixing by gentle inversion 4-6 times (this operation avoids mixing the lysate vigorously and does not require more than 5min for the lysis reaction); d. adding 350 μ l Solution III, gently inverting several times to form white floccule precipitate; e. centrifuging at room temperature for 10min at a speed of not less than 10,000 g; f. transferring the supernatant to a HiBind DNA binding column sleeved with a 2ml collecting pipe, centrifuging for 1min at 10,000g at room temperature, and pouring off the filtrate in the collecting pipe; g. the column was replaced with the collection tube, 500. mu.l HB Buffer was added, centrifugation was carried out under the above conditions, and the filtrate was discarded; h. the column is re-installed into the collection tube, 700 mul of DNA Wash Buffer is added, the centrifugation is carried out according to the conditions, and the filtrate is discarded; i. discarding the filtrate, and repeating the step 9 once; j. discarding the filtrate, reloading the column into the collection tube, centrifuging the empty column at 10,000g for 2min to spin-dry the column matrix; k. the column was mounted in a clean 1.5ml centrifuge tube, 30-50. mu.l of Elution Buffer (10mM Tris-HCl, pH 8.5) or sterile water was added to the column matrix, and the column was allowed to stand for 1-2min, and centrifuged at 10,000g for 1min to elute plasmid DNA.
Identification of plasmids by restriction: mu.l plasmid, 0.5. mu.l EcoRI, 2. mu.l 10 XNEB buffer, 0.2. mu.l 100 XBSA, water to 20. mu.l, water bath at 37 ℃ for 2 h; the cleaved fragments were detected by 1% agarose gel electrophoresis. The plasmid is transformed into TOP-10 competent cells, spread on an X-gal agar plate and cultured for 24h, and then white colonies are picked for colony PCR rapid identification, wherein PCR primers are XS1S/XS1A, and the length of the product is 1320bp (figure 2). Colony PCR results showed that some white colonies were false positive ( Line 3, 5 and 7).
And (3) sequencing the plasmid with correct enzyme digestion identification by Huada Gene company, and analyzing the sequencing result. And (3) analyzing a sequencing result: the sequencing peak image is clear, no miscellaneous peak appears, and the colony is proved to be a single clone. The results show that: the experiment successfully introduces the MCS sequence ATCGAT (in the sequence of ATCGAT) into the CVB3 infectious clone plasmid pCVClaⅠ)AGGCCT(StuI) and 2A is introduced before and after the reactionproThe cleavage recognition sequence (TMTNTG/AFGQQSQA) (FIG. 3).
Construction of GFP-containing CVB3 infectious clone plasmid (pCV-GFP)
The correctly sequenced PCR-recovered product (GFP) from the previous step was subjected to double digestion with Cla I and StuI: GFP 5. mu.g, NarI and StuI 1.5. mu.l each, 10 XNEB buffer with BSA 5. mu.l, and water to 50. mu.l. Water bath at 37 ℃ for 2 h. The pCV-CS plasmid was digested in the same manner with ClaI and StuI. Electrophoresis and gel recovery of the enzyme digestion product are carried out as follows: 1.2% agarose electrophoresis gel was prepared for recovery of PCR fragments. 0.7% agarose electrophoresis gel is prepared, and pCV-CS plasmid restriction enzyme fragments are recovered. After loading, electrophoresis was performed at 100V for 40 min, and after photographing, recovered with e.z.n.a. Gel Extraction Kit Gel: cutting a target band, adding a sol solution with one time volume, acting at 50 ℃ for 15 min, balancing to room temperature after the sol is completely melted, adding a centrifugal adsorption column, centrifuging at 12000rpm for 1min, then adding 750 mu l of a washing solution, centrifuging at 12000rpm for 1min, continuously adding 500 mu l of the washing solution, centrifuging at 12000rpm for 1min, discarding the washing solution, centrifuging at 12000rpm for 2min, standing at room temperature for 2min, adding 30 mu l of nuclease-free 12000rpm, eluting for 2min, and recovering a product, and freezing and storing at-20 ℃ for later use.
T4 DNA ligase was ligated to the two enzyme recovery fragments as follows: about 10ng of vector, 100ng of PCR-digested fragment, 1. mu. l T4 DNA ligase, 1. mu.l of 10 XT 4 DNA ligation buffer, and 10. mu.l of water. 16 ℃ for 8 h.
The ligation product was transformed into E.coli TOP10 competent bacteria: add 10. mu.l ligation into 50. mu.l TOP10 competent bacteria and leave them on ice for 30 min; water bath at 42 deg.C for 45s, and ice-cooling for 2 min; adding 600 mul LB culture medium, shaking and culturing for 60 minutes at 37 ℃; coating the bacterial liquid on an LB agar plate culture medium containing X-gal, IPTG and Amp, and performing inverted culture at 37 ℃ until a single bacterial colony is formed; white colonies were picked, and the length of the insert in the vector was confirmed by PCR.
Cloning and identification
Selecting white colony, confirming the length of the inserted fragment in the vector by using a PCR method, carrying out electrophoresis identification on the product by using a primer GFPS/GFPA for PCR. The PCR-positive colonies were grown in 5ml Amp + LB liquid medium and cultured overnight with shaking at 37 ℃. Plasmid extraction with e.z.n.a. Plasmid Mini Kit: a. taking 1.0-5.0 ml of bacterial liquid, centrifuging at room temperature for 1min at 10000g, and collecting bacteria; b. pouring out the culture medium, adding 250 mu l of Solution I/RNaseA mixed Solution, and performing vortex oscillation to completely suspend the cells; c. add 250. mu.l of Solution II to the resuspension mix and mix gently upside down 4-6 times (this operation avoids mixing the lysate vigorously and does not exceed 5min for lysis); d. adding 350 μ l of Solution III, and gently inverting for several times until white flocculent precipitate is formed; e. centrifuging at room temperature for 10min at a speed of not less than 10,000 g; f. transferring the supernatant to a HiBind DNA binding column sleeved with a 2ml collecting pipe, centrifuging for 1min at 10,000g at room temperature, and pouring off the filtrate in the collecting pipe; g. the column was replaced with the collection tube, 500. mu.l HB Buffer was added, centrifugation was carried out under the above conditions, and the filtrate was discarded; h. the column is re-installed into the collection tube, 700 mul of DNA Wash Buffer is added, the centrifugation is carried out according to the conditions, and the filtrate is discarded; i. discarding the filtrate, and repeating the step 9 once; j. discarding the filtrate, reloading the column into the collection tube, centrifuging the empty column at 10,000g for 2min to spin-dry the column matrix; k. the column was mounted in a clean 1.5ml centrifuge tube, 30-50. mu.l of Elution Buffer (10mM Tris-HCl, pH 8.5) or sterile water was added to the column matrix, left to stand for 1-2min, and centrifuged at 10,000g for 1min to elute plasmid DNA.
Identification of plasmids by restriction: mu.l plasmid, 0.5. mu.l EcoRI, 2. mu.l 10 XNEB buffer, 0.2. mu.l 100 XBSA, water to 20. mu.l, water bath at 37 ℃ for 2 h; the cleaved fragments were detected by electrophoresis on a 1% agarose gel.
Plasmid transformationTOP10Competent cells were plated on X-gal agar plates for 24h, and white colonies were picked for colony PCR rapid identification with PCR primers GFPS/GFPA and product length 720bp (FIG. 4). The colony PCR results showed that some white colonies were false positive (Line 3-8).
In order to further verify whether the plasmid in the positive colony is inserted into the CVB3 full-length gene or not, the colony PCR positive colony is subjected to amplification culture in an Amp + LB liquid culture medium for 24 hours, and the plasmid is extracted and utilizedEcoRI, enzyme digestion identification. The results show that: the sizes of the fragments after pCV-GFP enzyme digestion are 5443 bp, 3280 bp and 2181 bp respectively; the sizes of the fragments after pCV-CS enzyme digestion are 5443, 3280 and 1467 bp respectively; the sizes of the fragments after pCV enzyme digestion are 5443 bp, 3280 bp and 1425 bp respectively; the size of the cleaved fragment of the recombinant plasmid was consistent with the expected results (FIG. 5). The results prove that two modified CVB3 whole gene clones (pCV-CS and pCV-GFP) are successfully obtained on the basis of the existing CVB3 whole gene clone pCV. And (3) sequencing the plasmid with correct enzyme digestion identification by Huada gene company, and analyzing the sequencing result. Analyzing a sequencing result: the sequencing report sequence and the peak map are accurate in correspondence, the result shows that the 2Apro enzyme digestion recognition sequence is connected with GFP at the Cla I enzyme digestion site, the connection sequence is correct, and the base mutation is not found in the sequence comparison result (figure 6).
Transfection of eukaryotic cells to obtain recombinant viruses
Liposome transfection was used in this study. The lipofection steps are as follows: COS-7 cells were first seeded in 6-well plates and cultured to 90% confluent plates in DMEM complete medium containing 10% fetal bovine serum, 100U/ml penicillin, and 100 ng/ml streptomycin. Mixing 6. mu.l Lipofectamine 2000 and 125. mu.l Opti-MEM, standing at room temperature for 5min, and mixing 20. mu.l plasmid (pCV-CS or pCV-GFP) and 125. mu.l Opti-MEM; mixing the two tubes of mixed solution, standing at room temperature for 20 min; removing the cell culture solution by suction, washing the cells for 2 times by using 1 ml of DMEM, and adding a DMEM liquid culture medium without serum and antibiotics; adding a mixed solution of plasmids and liposomes to the monolayer cells, shaking up, placing at 37 ℃, culturing for 6h in a 5% CO2 incubator, then removing the supernatant, adding 2ml of DMEM medium containing 2% fetal calf serum and 100 ng/ml streptomycin, culturing for 48h, observing cytopathic effect during the culture, and collecting cell suspension when 90% of cells have cytopathic effect; after centrifugation at 12000rpm at 4 ℃ for 30min, the virus-containing supernatants were collected and the recombinant viruses obtained after transfection of pCV-CS and pCV-GFP were designated rCV-CS and rCV-GFP, respectively. Cell supernatants were collected 48 hours after transfection and the isolated recombinant virus was named rCV-GFP. Recombinant virus rCV-GFP was inoculated into Vero cells and the cell morphology was observed under light microscopy (FIG. 7). The results show that: rCV-typical cytopathic effects of rounding, wall detachment, increased refractivity, etc. appeared in Vero cells 12h after GFP infection, with CPE in about 90% of cells at 48h (FIG. 7 f), which was the same as CPE at 48h after CVB3-WT infection (FIG. 7 b).
Amplification of recombinant viruses rCV-CS and rCV-GFP
The amplification method of the collected virus supernatant was as follows: taking 10 mu l of virus liquid supernatant, inoculating the virus liquid supernatant into a 25 cm2 cell culture bottle of 90% confluent monolayer Vero cells, adsorbing the virus liquid supernatant for 1h at 37 ℃, washing the virus liquid supernatant for 3 times by using DMEM, adding DMEM 5ml culture medium containing 2% fetal calf serum and 100 ng/ml streptomycin, culturing the virus liquid supernatant for 48h, observing cytopathic effect during the culture, freezing and thawing the virus liquid supernatant for 3 times when 90% cells have cytopathic effect, and collecting cell suspension; centrifuging at 12000rpm at 4 deg.C for 30min, collecting supernatant containing virus, detecting virus titer by TCID50 method, packaging, and freezing at-80 deg.C.
Viral RNA preparation
Viral genomic RNA was extracted with NucleoSpin RNA Virus kit: (1) splitting virus, adding 150 μ l virus solution into 600 μ l RAV1, and keeping at 70 deg.C for 5 min; (2) adding 600 mul of absolute ethyl alcohol; (3) column adsorption, adding the mixture into adsorption column, centrifuging at 8000g for 1 min; (4) rinsing sequentially for 3 times 500 RAW, 600 μ l RAW3 centrifuging 8000g for 1min, 200 μ l RAW3 centrifuging 11000g for 5 min; (5) eluting, 50 μ l RNase-free water at 70 deg.C, standing at room temperature for 5min, centrifuging 11000g, 1 min. The RNA obtained was stored at-80 ℃ until use.
Reverse transcription of synthetic viral cDNA
Mu.l of 10mM dNTP Mix, 1. mu.l of random primer and 10. mu.l of viral RNA were added to a centrifugal tube without RNase, mixed well at 65 ℃ for 5min, and rapidly ice-washed for 2 min. Then, 4. mu.l of 5 Xfirst strand cDNA synthesis buffer, 2. mu.l of 0.1M DTT, 1. mu.l of RNase inhibitor were added, and after 2min at 37 ℃, 1. mu.l of SuperScript III reverse transcriptase was added. The above system is placed at 25 deg.C for 5min, then at 50 deg.C for 30min, and finally at 70 deg.C for 15 min to inactivate enzyme. The resulting first strand cDNA product was stored at-80 ℃ until use.
Recombinant viral nucleic acid identification
Collecting the Virus suspension, centrifuging at 12000rpm and 4 ℃ for 10min, taking the supernatant, and extracting Virus genome RNA by using a NucleoSpin RNA Virus kit: (1) splitting virus, adding 150 μ l virus solution into 600 μ l RAV1, and keeping at 70 deg.C for 5 min; (2) adding 600 mul of absolute ethyl alcohol; (3) column adsorption, passing the upper mixture through adsorption column, centrifuging for 8000g for 1min, (4) rinsing for 3 times 500 RAW, 600 μ l RAW3 centrifuging for 8000g for 1min, 200 μ l RAW3 centrifuging for 11000g for 5 min; (5) eluting, standing 50 μ l RNase-free water at 70 deg.C for 5min, centrifuging 11000g, and 1min to obtain RNA. RNA is used as a template, and random primers are used for reverse transcription of first strand cDNA. Using this cDNA as a template, PCR was carried out using primers XS1S/XS1A, or GFPS/GFPA. The system is as follows:
Premix Taq 5 μl
GFPS (10 μM) 0.2 μl
GFPA (10 μM) 0.2 μl
cDNA
1 μl
H2O Add to10 μl
and (3) PCR reaction conditions: 30 cycles at 94 ℃ for 30 s; 56 ℃ for 30 s; 72 ℃ for 2 min.
The PCR product was subjected to agarose gel electrophoresis, 1.2% agar gel was prepared with 1 XTAE, and SYBR Safe fluorescent dye was added. Setting parameters of a BIO-RAD electrophoresis apparatus: 100V/20 min. Pictures were taken in an AIpha Innotech gel imaging system and the images were analyzed for size comparison to DL2000 Marker.
Recombinant CVB3 Virus propagation assays
Recombinant CVB3 virus rCV-CS, rCV-GFP and wild-type virus were diluted to the same titer, added to a 6-well plate grown with 80% confluent Vero cells at a multiplicity of infection (MOI) of about 0.01, adsorbed in a 5% C02 incubator at 37 ℃ for 1h, washed 3 times with PBS, added with 2ml of DMEM maintenance medium containing 2% FBS, cell supernatants were collected at 6 th, 12 th, 24 th, 48 th and 72 th after inoculation, centrifuged at 12000rpm for 30min at 4 ℃ and virus-containing supernatants were collected and frozen at-80 ℃. Virus titer was measured by TCID50 method and virus growth curves were plotted against titer values. The specific method comprises the following steps:
TCID50 refers to half the cell lethal dose of virus, specifically to a volume of virus dilution at TCID50 dilution to infect cells, after a sufficient incubation time, there is half the possibility that the cells will be totally lethal (CPE). In theory, if cells in any well are infected with one virus particle, CPE is completely appeared in the culture time which is long enough, and finally, the virus in the wells is only contained in a small amount or no virus by a method of limiting dilution, and the virus amount in the virus stock solution can be calculated by using the end point dilution. The specific method comprises the following steps:
preparation of Vero cells: reviving Vero cells at 37 deg.C and 5% CO2Culturing cells in an incubator until 90% of the cells are fully paved; discarding the original culture solution, digesting the cells with 0.25% pancreatin, and suspending in a DMEM culture solution containing 2% FBS; cells were counted and cell suspension 100. mu.l/well was seeded into 96-well plates, 10,000 cells/well. Culturing in a 5% CO2 incubator at 37 deg.C for 24 h.
Virus dilution: opening a biological safety cabinet, and preparing a virus diluent DMEM +2% FBS +1% double antibody in the biological safety cabinet; taking the virus liquid to be detected, and carrying out the following steps: 10, performing continuous dilution; the diluted virus solution was added to a 96-well plate at 100. mu.l/well. Repeat 7 wells for each dilution; a group of negative control holes are arranged, DMEM +2% FBS +1% double antibody is added, and 100 mu l/hole is formed; gently shaking, mixing, placing in a 5% CO2 incubator at 37 deg.C, and culturing for 3 days.
And (3) judging a positive result: observing under an inverted optical microscope, wherein the CPE pore count is positive (net drawing, cell rounding, wall separation and refractivity enhancement); the number of positive wells was counted.
GFP-tagged CVB3 was constructed and the vital activity of CVB3 and interactions with host cells were studied in living cells. With the aid of fluorescence microscopy, we attempted to observe GFP expression in live cells in real time, reflecting the proliferation, spreading of the virus in Vero cells. GFP expression was not observed at 2h after rCV-GFP infection of Vero; and 6h after infection, part of Vero cells generate fluorescence signals which are scattered in infected cells. Cells expressing fluorescent signals are increased 12h after infection, and the fluorescent signals are enhanced, and after infection for 24h, about 90 percent of cells generate stronger green fluorescent signals. As the infection time increased, the virus proliferated and the signal for expressing GFP also increased, and the progeny virus released infected the surrounding cells, causing changes in CPE and the surrounding infected cells expressing GFP (FIG. 9). The 24h cells showed a significant change in CPE caused by the virus (see fig. 9).
Calculating the TCID50 value (Reed-Muench method): calculating the number of positive wells (P) and the number of negative wells (N) for each virus dilution; calculating the cumulative number of positive and negative wells; positive well accumulation was accumulated from bottom to top (SP). The cumulative number of negative wells is accumulated from top to bottom (SN); calculate the percentage of positive wells: ratio (RP) = (SP)/[ SP + SN ]; calculating a distance proportion: distance ratio = (percentage of positive greater than 50% -50%)/(percentage of positive greater than 50% -percentage of positive less than 50%); lg TCID50 = (highest dilution log of positive percentage greater than 50% + distance ratio) × log of dilution factor. The titer was found to be TCID 50/0.2.
rCV-GFP and prototype CVB3 proliferation Activity differences, after inoculation of Vero cells with the same virus at 0.001 multiplicity of infection, culture supernatants (6, 12, 24, 48 and 72h) were removed at different time points using TCID50The virus titer in the culture supernatant was measured at each time point and plotted as a virus propagation curve (fig. 11). The results show that: rCV and rCV-GFP have similar proliferative activity to prototype CVB3 and similar growth curves; the virus rapidly proliferates within 12h after the CVB3 infects Vero cells, and reaches the highest virus titer of about 10 within 48h7 TCID50Per ml; rCV-GFP has a similar proliferation activity to prototype CVB3 and a similar growth curve, but the virus titer is lower than prototype CVB 3.
Infectivity and plaque assay of recombinant CVB3 Virus
Recombinant CVB3 virus and wild virus were inoculated at 0.001 MOI into a 6-well plate of Vero cell 80% confluent plate, adsorbed at 37 ℃ for 1 hour in a 5% C02 incubator, washed 3 times with PBS, cultured in 2ml of a 2% FBS-containing DMEM-containing medium at 37 ℃ in a 5% C02 incubator, observed for cytopathic Condition (CPE), and continuously passed through 20 passages to confirm the ability of the virus to produce CPE, while comparing with the wild type.
Virus was diluted 10-fold in gradient: 10-3, 10-4, 10-5, 10-6, 10-7 and 10-8 which are respectively inoculated on a single layer of Vero cells; adsorbing for 1h at 37 ℃ in a 5% C02 incubator, and washing with PBS 3 times; 2ml of DMEM maintenance medium containing 0.9% low melting agarose was added; adding 4% formaldehyde solution diluted by PBS after 3 days, and fixing for 1h at room temperature; removing agar with running water, adding crystal violet staining solution, and standing at room temperature for 30 min; washing away residual dye liquor by running water, and observing the shape and diameter of the plaque.
rCV-GFP infectivity experiment results show that after rCV-GFP is infected for 24h, cells contract and fall off, and CPE with enhanced refractivity changes. The invention evaluates the biological characteristics of the virus and the virulence of the virus through plaques formed by the virus. The plaque forming time and the shape and size of the plaque can reflect the growth characteristics of the virus. In our experiments rCV-GFP was compared with the prototype CVB3 plaque morphology and time to spotting. The results show that: rCV-GFP, rCV and prototype CVB3 virus all showed plaques 72h after infecting Vero cells; the plaques formed by rCV, rCV-GFP were smaller in diameter than the plaques formed by the prototype CVB3 virus at the same infectious dose and time (FIG. 10). And (4) prompting by a result: infectivity of recombinant CVB3 virus was significantly reduced compared to prototype CVB3 virus.
Immunoblotting method for detecting recombinant CVB3 virus protein expression
Recombinant CVB3 virus and wild virus were inoculated into a 6-well plate of Vero cell 80% confluent plate at 0.001 MOI, adsorbed for 1h at 37 ℃ in a 5% CO2 incubator, washed 3 times with PBS, added with 2ml of DMEM maintenance solution containing 2% FBS, and incubated for 24h at 37 ℃ in a 5% CO2 incubator. Removing culture supernatant, adding 50 μ l of 2 xSDS-PAGE protein loading buffer solution to lyse cells; collecting lysate at 100 deg.C for 10 min; loading 8 μ l of SDS-PAGE gel, wherein the concentration of the upper layer gel is 5%, and the lower layer gel is 12%; protein electrophoresis parameters: 80V, about 60 min; and after the sample enters the separation gel, adjusting the voltage to 110V, and stopping electrophoresis when the minimum belt in the protein Marker runs to the lowest part of the gel or the bromocyanine is about to run out of the gel. Thus, rCV-GFP virus was serially passaged on Vero cells for 10 passages, and expression of VP1 and GFP protein was examined after rCV-GFP infected Vero cells by immunoblotting. The results show that: the recombinant virus rCV-GFP still can express the virus shell protein VP1 and the foreign protein GFP after the 5 th generation (p5) and the 10 th generation (p10) of the Vero cells are continuously passaged (FIG. 12).
Recombinant CVB3 virus rCV-GFP infected mice
To confirm whether rCV-GFP could be used as a biopsy, the tissue tropism of CVB3 was investigated. The invention adopts rCV-GFP 105 TCID50 intraperitoneal injection, infecting 4-week-old male Balb/c mice. On day 4 post-infection, mice were sacrificed and heart and pancreas were paraffin sections examined for GFP expression and immunofluorescence. To investigate whether recombinant GFP tracer viruses (rCV-GFP) could be used for live virus tracing in animals. Furthermore, the invention researches the tissue distribution condition of the virus after rCV-GFP infects Balb/c mice. Because, numerous studies have shown that after CVB3 infection in mice, the virus proliferates mainly in the pancreas and infects cardiomyocytes. Therefore, pancreatic and cardiac tissue sections were selected for tissue immunofluorescence to determine whether GFP expression co-localized to the same tissue cells as viral capsid protein VP 1.
Preparing a paraffin section: cutting mouse tissue into pieces smaller than 1cm3, and immersing in 4% paraformaldehyde for fixation overnight; and (3) dehydrating: gradient dehydration of ethanol (30%, 50%, 70%, 80%, 90%, 95%, 100% x 2) with one change at 30min intervals; and (3) transparency: 2/3 ethanol +1/3 xylene → 1/2 ethanol +1/2 xylene → 1/3 ethanol +2/3 xylene → xylene (twice), wherein the residence time of each stage is 0.5-2 hours; wax dipping: melting paraffin at 62 ℃, and immersing the tissue in the paraffin for about 24 hours; embedding: the waxed tissue is wrapped in wax to form blocks; slicing 5 μm, spreading in 40 deg.C warm water, sticking on glass slide, baking at 40 deg.C, and standing overnight; dewaxing xylene twice for 10min, dewaxing with ethanol gradient to water (100% x 2, 95%, 90%, 80%, 70%) for 5min each stage, and distilling water for 5 min.
Tissue section immunofluorescence: washing the slices with 0.1M PBS for 5min for 3 times; soaking in 0.3% hydrogen peroxide solution at room temperature for 20 min; washing with 0.1M PBS for 5min 3 times; sealing serum for 1 h; primary antibody (1:50 anti-VP 1 mouse monoclonal antibody) overnight at 4 ℃, negative control was replaced with PBS; washing with 0.1M PBS for 5min 3 times; adding a secondary antibody (1:500 Cy3 labeled rabbit anti-mouse IgG) at room temperature, and keeping away from light for 1 h; washing with 0.1M PBS for 5min for 3 times; sealing by using a neutral sealing agent; and (4) observing by a fluorescence microscope. The results showed that the viral capsid protein VP1 co-localized with GFP tissue in both cardiomyocytes and pancreatic cells (fig. 13). Therefore, the tissue cell localization of the virus can be observed under a fluorescence microscope only after tissue sectioning, and the complicated fluorescence detection step of the immune tissue is omitted. Thus, it was suggested that GFP could track viruses in living animal tissue cells.
Sequence listing
<110> first-person hospital in Yichang city
<120> recombinant coxsackie B3 virus with fluorescent protein label and construction method
<160> Total number 7
<210>1
<211>7415
<212>DNA
<213> Artificial sequence
<223>rCV-GFP
<400>SEQ ID NO:1
TTAAAACAGCCTGTGGGTTGATCCCACCCACAGGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACTGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATTGTTACCATATAGCTATTGGATTGGCCATCCGGTGACCAATAGAGCTATTATATATCTCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAAATGGGAGCTCAAGTATCAACGCAAAAGACTGGGGCACATGAGACCGGGCTGAATGCTAGCGGCAATTCCATCATTCACTACACAAATATTAATTATTACAAGGATGCCGCATCCAACTCAGCCAATCGGCAGGATTTCACTCAAGACCCGGGCAAGTTCACAGAACCAGTAAAAGATATCATGATTAAATCACTACCAGCTCTCAACTCCCCCACAGTAGAGGAGTGCGGATACAGTGACAGGGCGAGATCAATCACATTAGGTAACTCCACCATAACGACTCAGGAATGCGCCAACGTGGTGGTGGGCTATGGAGTATGGCCAGATTATCTAAAGGATAGTGAGGCAACAGCAGAGGACCAACCGACCCAACCAGACGTTGCCACATGTAGGTTCTATACCCTTGACTCTGTGCAATGGCAGAAAACCTCACCAGGATGGTGGTGGAAGCTGCCCGATGCTTTGTCGAACTTAGGACTGTTTGGGCAGAACATGCAGTACCACTACTTAGGCCGAACTGGGTATACCGTACATGTGCAGTGCAATGCATCTAAGTTCCACCAAGGATGCTTGCTAGTAGTGTGTGTACCGGAAGCTGAGATGGGTTGCGCAACGCTAGACAACACCCCATCCAGTGCAGAATTGCTGGGGGGCGATAGCGCAAAAGAGTTTGCGGACAAACCGGTCGCATCCGGGTCCAACGAGTTGGTACAGAGGGTGGTGTATAATGCAGGCATGGGGGTGGGTGTTGGAAACCTCACCATTTTCCCCCACCAATGGATCAACCTACGCACCAATAATAGTGCTACAATTGTGATGCCATACACCAACAGTGTACCTATGGATAACATGTTTAGGCATAACAACGTCACCCTAATGGTTATCCCATTTGTACCGCTAGATTACTGCCCTGGGTCCACCACGTACGTCCCAATTACGGTCACGATAGCCCCAATGTGTGCCGAGTACAATGGGTTACGTTTAGCAGGGCACCAGGGCTTACCAACCATGAATACTCCGGGGAGCTGTCAATTTCTGACATCAGACGACTTCCAATCACCATCCGCCATGCCGCAATATGACGTCACACCAGAGATGAGGATACCTGGTGAGGTGAAAAACTTGATGGAAATAGCTGAGGTTGACTCAGTTGTCCCAGTCCAAAATGTTGGAGAGAAGGTCAACTCTATGGAAGCATACCAGATACCTGTGAGATCCAATGAAGGATCTGGAACGCAAGTATTCGGCTTTCCACTGCAACCAGGGTACTCGAGTGTTTTTTGTCGGACGCTCCTAGGAGAGATCTTGAACTATTATACACATTGGTCAGGCAGCATAAAGCTTACGTTTATGTTCTGTGGTTCGGCCATGGCTACTGGAAAATTCCTTTTGGCATACTCACCACCAGGTGCTGGAGCTCCTACAAAAAGGGTTGATGCCATGCTTGGTACTCATGTAGTTTGGGACGTGGGGCTACAATCAAGTTGCGTGCTGTGTATACCCTGGATAAGCCAAACACACTACCGGTATGTTACTTCAGATGAGTATACCGCAGGGGGTTTTATTACGTGCTGGTATCAAACAAACATAGTGGTCCCAGCGGATGCCCAAAGCTCCTGTTACATCATGTGTTTCGTGTCAGCATGCAATGACTTCTCTGTCAGGCTATTGAAGGACACTCCTTTCATTTCGCAGCAAAACTTTTACCAGGGCCCAGTGGAAGATGCGATAACAGCCGCTATAGGGAGAGTTGCGGATACCGTGGGTACAGGGCCAACCAACTCAGAAGCTATACCAGCACTCACTGCTGCTGAGACAGGTCACACGTCACAAGTAGTGCCGGGTGACACCATGCAGACACGCCACGTTAAGAACTACCATTCAAGGTCCGAGTCAACCATAGAGAACTTCCTATGTAGGTCAGCATGCGTGTACTTTACGGCGTATAGAAACTCAGGTGCCAAGCGGTATGCTGAATGGGTATTAACACCACGACAAGCAGCACAACTTAGGAGAAAGCTAGAATTCTTTACCTACGTCCGGTTCGACCTGGAGCTGACGTTTGTCATAACAAGTACTCAACAGCCCTCAACCACACAGAACCAAGACGCACAGATCCTAACACACCAAATTATGTATGTACCACCAGGTGGACCTGTACCAGATAAAGTTGATTCATACGTGTGGCAAACATCTACGAATCCCAGTGTGTTTTGGACCGAGGGAAACGCCCCGCCGCGCATGTCCATACCGTTTTTGAGCATTGGCAACGCCTATTCAAATTTCTATGACGGATGGTCTGAATTTTCCAGGAACGGAGTTTACGGCATCAACACGCTAAACAACATGGGCACGCTATATGCAAGACATGTCAACGCTGGAAGCACGGGTCCAATAAAAAGCACCATTAGAATCTACTTCAAACCGAAGCATGTCAAAGCGTGGATACCTAGACCACCTAGACTCTGCCAATACGAGAAGGCAAAGAACGTGAACTTCCAACCCAGCGGAGTTACCACTACTAGGCAAAGCATCACTACAATGACAAATACGGGCGCATTTGGACAACAATCAGGGGCAGTGTATGTGGGGAACTACAGGGTAGTAAATAGACATCTAGCTACCAGTGCTGACTGGCAAAACTGTGTGTGGGAAAGTTACAACAGAGACCTCTTAGTGAGCACGACCACAGCACATGGATGTGATATTATAGCCAGATGTCAGTGCACAACGGGAGTGTACTTTTGTGCGTCCAAAAACAAGCACTACCCAATTTCGTTTGAAGGACCAGGTCTAGTAGAGGTCCAAGAGAGTGAATACTACCCCAGGAGATACCAATCCCATGTGCTTTTAGCAGCTGGATTTTCCGAACCAGGTGACTGTGGCGGTATCCTAAGGTGTGAGCATGGTGTCATTGGCATTGTGACCATGGGGGGTGAAGGCGTGGTCGGCTTTGCAGACATCCGTGATCTCCTGTGGCTGGAAGATGATGCAATGGAACAGGGAGTGAAGGACTATGTGGAACAGCTTGGAAATGCATTCGGCTCCGGCTTTACTAACCAAATATGTGAGCAAGTCAACCTCCTGAAAGAATCACTAGTGGGTCAAGACTCCATCTTAGAGAAATCTCTAAAAGCCTTAGTTAAGATAATATCAGCCTTAGTAATTGTGGTGAGGAACCACGATGACCTGATCACTGTGACTGCCACACTAGCCCTTATCGGTTGTACCTCGTCCCCGTGGCGGTGGCTCAAACAGAAGGTATCACAATATTACGGAATCCCTATGGCTGAACGCCAAAACAATAGCTGGCTTAAGAAATTTACTGAAATGACGAATGCTTGCAAGGGTATGGAATGGATAGCTGTCAAAATTCAGAAATTCATTGAATGGCTCAAAGTAAAAATTTTGCCAGAGGTCAGGGAAAAACACGAATTCCTGAACAGACTTAAACAACTCCCCTTATTAGAAAGTCAGATCGCCACAATCGAGCAGAGCGCGCCATCCCAAAGTGACCAGGAACAATTATTTTCCAATGTCCAATACTTTGCCCACTATTGCAGAAAGTACGCTCCCCTCTACGCAGCTGAAGCAAAGAGGGTGTTCTCCCTTGAGAAGAAGATGAGCAATTACATACAGTTCAAGTCCAAATGCCGTATTGAACCTGTATGTTTGCTCCTGCACGGGAGCCCTGGTGCCGGCAAGTCGGTGGCAACAAACTTAATTGGAAGGTCGCTTGCTGAGAAACTCAACAGCTCAGTGTACTCACTACCGCCAGACCCAGATCACTTCGACGGATACAAACAGCAGGCCGTGGTGATTATGGACGATCTATGCCAGAATCCTGATGGGAAAGACGTCTCCTTGTTCTGCCAAATGGTTTCCAGTGTAGATTTTGTACCACCCATGGCTGCCCTAGAAGAGAAAGGCATTCTGTTCACCTCACCGTTTGTCTTGGCATCGACCAATGCAGGATCTATTAATGCTCCAACCGTGTCAGATAGCAGAGCCTTGGCAAGGAGATTTCACTTTGACATGAACATCGAGGTTATTTCCATGTACAGTCAGAATGGCAAGATAAACATGCCCATGTCAGTCAAGACTTGTGACGATGAGTGTTGCCCGGTCAATTTTAAAAAGTGCTGCCCTCTTGTGTGTGGGAAGGCTATACAATTCATTGATAGAAGAACACAGGTCAGATACTCTCTAGACATGCTAGTCACCGAGATGTTTAGGGAGTACAATCATAGACACAGCGTGGGGACCACGCTTGAGGCACTGTTCCAGGGACCACCAGTATACAGAGAGATCAAAATTAGCGTTGCACCAGAGACACCACCACCGCCCGCCATTGCGGACCTGCTCAAATCGGTAGACAGTGAGGCTGTGAGGGAGTACTGCAAAGAAAAAGGATGGTTGGTTCCTGAGATCAACTCCACCCTCCAAATTGAGAAACATGTCAGTCGGGCTTTCATTTGCTTACAGGCATTGACCACATTTGTGTCAGTGGCTGGAATCATATATATAATATATAAGCTCTTTGCGGGTTTTCAAGGTGCTTATACAGGAGTGCCCAACCAGAAGCCCAGAGTGCCTACCCTGAGGCAAGCAAAAGTGCAAGGCCCTGCCTTTGAGTTCGCCGTCGCAATGATGAAAAGGAACTCAAGCATGGTGAAAACTGAATATGGCGAGTTTACCATGCTGGGCATCTATGACAGGTGGGCCGTTTTGCCACGCCACGCCAAACCTGGGCCAACCATCTTGATGAATGATCAAGAGGTTGGTGTGCTAGATGCCAAGGAGCTAGTAGACAAGGACGGCACCAACTTAGAACTGACACTACTCAAATTGAACCGGAATGAGAAGTTCAGAGACATCAGAGGCTTCTTAGCCAAGGAGGAAGTGGAGGTTAATGAGGCAGTGCTAGCAATTAACACCAGCAAGTTTCCCAACATGTACATTCCAGTAGGACAGGTCACAGAATACGGCTTCCTAAACCTAGGTGGCACACCCACCAAGAGAATGCTTATGTACAACTTCCCCACAAGAGCAGGCCAGTGTGGTGGAGTGCTCATGTCCACCGGCAAGGTACTGGGTATCCATGTTGGTGGAAATGGCCATCAGGGCTTCTCAGCAGCACTCCTCAAACACTACTTCAATGATGAGCAAGGTGAAATAGAATTTATTGAGAGCTCAAAGGACGCCGGGTTTCCAGTCATCAACACACCAAGTAAAACAAAGTTGGAGCCTAGTGTTTTCCACCAGGTCTTTGAGGGGAACAAAGAACCAGCAGTACTCAGGAGTGGGGATCCACGTCTCAAGGCCAATTTTGAAGAGGCTATATTTTCCAAGTATATAGGAAATGTCAACACACACGTGGATGAGTACATGCTGGAAGCAGTGGACCACTACGCAGGCCAACTAGCCACCCTAGATATCAGCACTGAACCAATGAAACTGGAGGACGCAGTGTACGGTACCGAGGGTCTTGAGGCGCTTGATCTAACAACGAGTGCCGGTTACCCATATGTTGCACTGGGTATCAAGAAGAGGGACATCCTCTCTAAGAAGACTAAGGACCTAACAAAGTTAAAGGAATGTATGGACAAGTATGGCCTGAACCTACCAATGGTGACTTATGTAAAAGATGAGCTCAGGTCCATAGAGAAGGTAGCGAAAGGAAAGTCTAGGCTGATTGAGGCGTCCAGTTTGAATGATTCAGTGGCGATGAGACAGACATTTGGTAATCTGTACAAAACTTTCCACCTAAACCCAGGGGTTGTGACTGGTAGTGCTGTTGGGTGTGACCCAGACCTCTTTTGGAGCAAGATACCAGTGATGTTAGATGGACATCTCATAGCATTTGATTACTCTGGGTACGATGCTAGCTTAAGCCCTGTCTGGTTTGCTTGCCTAAAAATGTTACTTGAGAAGCTTGGATACACGCACAAAGAGACAAACTACATTGACTACTTGTGCAACTCCCATCACCTGTACAGGGATAAACATTACTTTGTGAGGGGTGGCATGCCCTCGGGATGTTCTGGTACCAGTATTTTCAACTCAATGATTAACAATATCATAATTAGGACACTAATGCTAAAAGTGTACAAAGGGATTGACTTGGACCAATTCAGGATGATCGCATATGGTGATGATGTGATCGCATCGTACCCATGGCCTATAGATGCATCTTTACTCGCTGAAGCTGGTAAGGGTTACGGGCTGATCATGACACCAGCAGATAAGGGAGAGTGCTTTAACGAAGTTACCTGGACCAACGTCACTTTCCTAAAGAGGTATTTTAGAGCAGATGAACAGTACCCCTTCCTGGTGCATCCTGTTATGCCCATGAAAGACATACACGAATCAATTAGATGGACCAAGGATCCAAAGAACACCCAAGATCACGTGCGCTCACTGTGTCTATTAGCTTGGCATAACGGGGAGCACGAATATGAGGAGTTCATCCGTAAAATTAGAAGCGTCCCAGTCGGACGTTGTTTGACCCTCCCCGCGTTTTCAACTCTGCGCAGGAAGTGGTTGGACTCCTTTTAGATTAGAGACAATTTGAAATAATTTAGATTGGCTTAACCCTACTGTGCTAACCGAACCAGATAACGGTACAGTAGGGGTAAATTCTCCGCATTCGGTGCGGAAAAAAAAAAAAAAA
<210>2
<211>10186
<212>DNA
<213> Artificial sequence
<223>pCV-CS
<400>SEQ ID NO:2
tctagaggatccccgggtaccgagctcgaattcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgccaagcttgcatgcctgcaggtcgactaatacgactcactatagggttaaaacagcctgtgggttgatcccacccacagggcccattgggcgctagcactctggtatcacggtacctttgtgcgcctgttttataccccctcccccaactgtaacttagaagtaacacacactgatcaacagtcagcgtggcacaccagccacgttttgatcaagcacttctgttaccccggactgagtatcaatagactgctcacgcggttgaaggagaaagcgttcgttatccggccaactacttcgaaaaacctagtaacaccgtggaagttgcagagtgtttcgctcagcactaccccagtgtagatcaggtcgatgagtcaccgcattccccacgggcgaccgtggcggtggctgcgttggcggcctgcccatggggaaacccatgggacgctctaatacagacatggtgcgaagagtctattgagctagttggtagtcctccggcccctgaatgcggctaatcctaactgcggagcacacaccctcaagccagagggcagtgtgtcgtaacgggcaactctgcagcggaaccgactactttgggtgtccgtgtttcattttattcctatactggctgcttatggtgacaattgagagattgttaccatatagctattggattggccatccggtgaccaatagagctattatatatctctttgttgggtttataccacttagcttgaaagaggttaaaacattacaattcattgttaagttgaatacagcaaaatgggagctcaagtatcaacgcaaaagactggggcacatgagaccgggctgaatgctagcggcaattccatcattcactacacaaatattaattattacaaggatgccgcatccaactcagccaatcggcaggatttcactcaagacccgggcaagttcacagaaccagtaaaagatatcatgattaaatcactaccagctctcaactcccccacagtagaggagtgcggatacagtgacagggcgagatcaatcacattaggtaactccaccataacgactcaggaatgcgccaacgtggtggtgggctatggagtatggccagattatctaaaggatagtgaggcaacagcagaggaccaaccgacccaaccagacgttgccacatgtaggttctatacccttgactctgtgcaatggcagaaaacctcaccaggatggtggtggaagctgcccgatgctttgtcgaacttaggactgtttgggcagaacatgcagtaccactacttaggccgaactgggtataccgtacatgtgcagtgcaatgcatctaagttccaccaaggatgcttgctagtagtgtgtgtaccggaagctgagatgggttgcgcaacgctagacaacaccccatccagtgcagaattgctggggggcgatagcgcaaaagagtttgcggacaaaccggtcgcatccgggtccaacgagttggtacagagggtggtgtataatgcaggcatgggggtgggtgttggaaacctcaccattttcccccaccaatggatcaacctacgcaccaataatagtgctacaattgtgatgccatacaccaacagtgtacctatggataacatgtttaggcataacaacgtcaccctaatggttatcccatttgtaccgctagattactgccctgggtccaccacgtacgtcccaattacggtcacgatagccccaatgtgtgccgagtacaatgggttacgtttagcagggcaccagggcttaccaaccatgaatactccggggagctgtcaatttctgacatcagacgacttccaatcaccatccgccatgccgcaatatgacgtcacaccagagatgaggatacctggtgaggtgaaaaacttgatggaaatagctgaggttgactcagttgtcccagtccaaaatgttggagagaaggtcaactctatggaagcataccagatacctgtgagatccaatgaaggatctggaacgcaagtattcggctttccactgcaaccagggtactcgagtgtttttagtcggacgctcctaggagagatcttgaactattatacacattggtcaggcagcataaagcttacgtttatgttctgtggttcggccatggctactggaaaattccttttggcatactcaccaccaggtgctggagctcctacaaaaagggttgatgccatgcttggtactcatgtagtttgggacgtggggctacaatcaagttgcgtgctgtgtataccctggataagccaaacacactaccggtatgttacttcagatgagtataccgcagggggttttattacgtgctggtatcaaacaaacatagtggtcccagcggatgcccaaagctcctgttacatcatgtgtttcgtgtcagcatgcaatgacttctctgtcaggctattgaaggacactcctttcgtttcgcagcaaaacttttaccagggcccagtggaagatgcgataacagccgctatagggagagttgcggataccgtgggtacagggccaaccaactcagaagctataccagcactcactgctgctgagacaggtcacacgtcacaagtagtgccgggtgacaccatgcagacacgccacgttaagaactaccattcaaggtccgagtcaaccatagagaacttcctatgtaggtcagcatgcgtgtactttacggcgtatagaaactcaggtgccaagcggtatgctgaatgggtattaacaccacgacaagcagcacaacttaggagaaagctagaattctttacctacgtccggttcgacctggagctgacgtttgtcataacaagtactcaacagccctcaaccacacagaaccaagacgcacagatcctaacacaccaaattatgtatgtaccaccaggtggacctgtaccagataaagttgattcatacgtgtggcaaacatctacgaatcccagtgtgttttggaccgagggaaacgccccgccgcgcatgtccataccgtttttgagcattggcaacgcctattcaaatttctatgacggatggtctgaattttccaggaacggagtttacggcatcaacacgctaaacaacatgggcacgctatatgcaagacatgtcaacgctggaagcacgggtccaataaaaagcaccattagaatctacttcaaaccgaagcatgtcaaagcgtggatacctagaccacctagactctgccaatacgagaaggcaaagaacgtgaacttccaacccagcggagttaccactactaggcaaagcatcactacaatgacaaatacgggcgcatttggacaacaatcaggggcaatcgatcgcaggcctacaatgacaaatacgggcgcatttggacaacaatcaggggcagtgtatgtggggaactacagggtagtaaatagacatctagctaccagtgctgactggcaaaactgtgtgtgggaaagttacaacagagacctcttagtgagcacgaccacagcacatggatgtgatattatagccagatgtcagtgcacaacgggagtgtacttttgtgcgtccaaaaacaagcactacccaatttcgtttgaaggaccaggtctagtagaggtccaagagagtgaatactaccccaggagataccaatcccatgtgcttttagcagctggattttccgaaccaggtgactgtggcggtatcctaaggtgtgagcatggtgtcattggcattgtgaccatggggggtgaaggcgtggtcggctttgcagacatccgtgatctcctgtggctggaagatgatgcaatggaacagggagtgaaggactatgtggaacagcttggaaatgcattcggctccggctttactaaccaaatatgtgagcaagtcaacctcctgaaagaatcactagtgggtcaagactccatcttagagaaatctctaaaagccttagttaagataatatcagccttagtaattgtggtgaggaaccacgatgacctgatcactgtgactgccacactagcccttatcggttgtacctcgtccccgtggcggtggctcaaacagaaggtatcacaatattacggaatccctatggctgaacgccaaaacaatagctggcttaagaaatttactgaaatgacgaatgcttgcaagggtatggaatggatagctgtcaaaattcagaaattcattgaatggctcaaagtaaaaattttgccagaggtcagggaaaaacacgaattcctgaacagacttaaacaactccccttattagaaagtcagatcgccacaatcgagcagagcgcgccatcccaaagtgaccaggaacaattattttccaatgtccaatactttgcccactattgcagaaagtacgctcccctctacgcagctgaagcaaagagggtgttctcccttgagaagaagatgagcaattacatacagttcaagtccaaatgccgtattgaacctgtatgtttgctcctgcacgggagccctggtgccggcaagtcggtggcaacaaacttaattggaaggtcgcttgctgagaaactcaacagctcagtgtactcactaccgccagacccagatcacttcgacggatacaaacagcaggccgtggtgattatggacgatctatgccagaatcctgatgggaaagacgtctccttgttctgccaaatggtttccagtgtagattttgtaccacccatggctgccctagaagagaaaggcattctgttcacctcaccgtttgtcttggcatcgaccaatgcaggatctattaatgctccaaccgtgtcagatagcagagccttggcaaggagatttcactttgacatgaacatcgaggttatttccatgtacagtcagaatggcaagataaacatgcccatgtcagtcaagacttgtgacgatgagtgttgcccggtcaattttaaaaagtgctgccctcttgtgtgtgggaaggctatacaattcattgatagaagaacacaggtcagatactctctagacatgctagtcaccgagatgtttagggagtacaatcatagacacagcgtggggaccacgcttgaggcactgttccagggaccaccagtatacagagagatcaaaattagcgttgcaccagagacaccaccaccgcccgccattgcggacctgctcaaatcggtagacagtgaggctgtgagggagtactgcaaagaaaaaggatggttggttcctgagatcaactccaccctccaaattgagaaacatgtcagtcgggctttcatttgcttacaggcattgaccacatttgtgtcagtggctggaatcatatatataatatataagctctttgcgggttttcaaggtgcttatacaggagtgcccaaccagaagcccagagtgcctaccctgaggcaagcaaaagtgcaaggccctgcctttgagttcgccgtcgcaatgatgaaaaggaactcaagcatggtgaaaactgaatatggcgagtttaccatgctgggcatctatgacaggtgggccgttttgccacgccacgccaaacctgggccaaccatcttgatgaatgatcaagaggttggtgtgctagatgccaaggagctagtagacaaggacggcaccaacttagaactgacactactcaaattgaaccggaatgagaagttcagagacatcagaggcttcttagccaaggaggaagtggaggttaatgaggcagtgctagcaattaacaccagcaagtttcccaacatgtacattccagtaggacaggtcacagaatacggcttcctaaacctaggtggcacacccaccaagagaatgcttatgtacaacttccccacaagagcaggccagtgtggtggagtgctcatgtccaccggcaaggtactgggtatccatgttggtggaaatggccatcagggcttctcagcagcactcctcaaacactacttcaatgatgagcaaggtgaaatagaatttattgagagctcaaaggacgccgggtttccagtcatcaacacaccaagtaaaacaaagttggagcctagtgttttccaccaggtctttgaggggaacaaagaaccagcagtactcaggagtggggatccacgtctcaaggccaattttgaagaggctatattttccaagtatataggaaatgtcaacacacacgtggatgagtacatgctggaagcagtggaccactacgcaggccaactagccaccctagatatcagcactgaaccaatgaaactggaggacgcagtgtacggtaccgagggtcttgaggcgcttgatctaacaacgagtgccggttacccatatgttgcactgggtatcaagaagagggacatcctctctaagaagactaaggacctaacaaagttaaaggaatgtatggacaagtatggcctgaacctaccaatggtgacttatgtaaaagatgagctcaggtccatagagaaggtagcgaaaggaaagtctaggctgattgaggcgtccagtttgaatgattcagtggcgatgagacagacatttggtaatctgtacaaaactttccacctaaacccaggggttgtgactggtagtgctgttgggtgtgacccagacctcttttggagcaagataccagtgatgttagatggacatctcatagcatttgattactctgggtacgatgctagcttaagccctgtctggtttgcttgcctaaaaatgttacttgagaagcttggatacacgcacaaagagacaaactacattgactacttgtgcaactcccatcacctgtacagggataaacattactttgtgaggggtggcatgccctcgggatgttctggtaccagtattttcaactcaatgattaacaatatcataattaggacactaatgctaaaagtgtacaaagggattgacttggaccaattcaggatgatcgcatatggtgatgatgtgatcgcatcgtacccatggcctatagatgcatctttactcgctgaagctggtaagggttacgggctgatcatgacaccagcagataagggagagtgctttaacgaagttacctggaccaacgtcactttcctaaagaggtattttagagcagatgaacagtaccccttcctggtgcatcctgttatgcccatgaaagacatacacgaatcaattagatggaccaaggatccaaagaacacccaagatcacgtgcgctcactgtgtctattagcttggcataacggggagcacgaatatgaggagttcatccgtaaaattagaagcgtcccagtcggacgttgtttgaccctccccgcgttttcaactctgcgcaggaagtggttggactccttttagattagagacaatttgaaataatttagattggcttaaccctactgtgctaaccgaaccagataacggtacagtaggggtaaattctccgcattcggtgcggaaaaaaaaaaaaaaagcggccgc
<210>3
<211>15
<212>DNA
<213> Artificial sequence
<223> sequence of multicloning site MCS
<400>SEQ ID NO:3
ATCGATCGCAGGCCT
<210>4
<211>42
<212>DNA
<213> Artificial sequence
<223>2Apro enzyme digestion recognition sequence
<400>SEQ ID NO:4
ACAATGACAAATACGGGCGCATTTGGACAACAATCAGGGGCA (TMTNTG/AFGQQSQA)
<210>5
<211>53
<212>DNA
<213> Artificial sequence
<223> primer set for MCS on multiple cloning site
<400>SEQ ID NO:5
GTACTCGAGTGTTTTTAGTCGGACG;CGATCGATTGCCCCTGATTGTTGTCCA
<210>6
<211>54
<212>DNA
<213> Artificial sequence
<223>2Apro primers for cleavage of recognition sequence
<400>SEQ ID NO:6
CAATCGATCGCAGGCCTACAATGACAAATA;CCACTAGTGATTCTTTCAGGAGG
<210>7
<211>45
<212>DNA
<213> Artificial sequence
<223> primer set for introducing GFP-encoding gene into multiple cloning site of pCV-CS
<400>SEQ ID NO:7
TCATCGATATGGTGAGCAAGGG;TAAGGCCTCTTGTACAGCTCGT
Sequence listing
<110> first-person hospital in Yichang city
<120> recombinant coxsackie B3 virus with fluorescent protein label and construction method
<160> Total number 7
<210>1
<211>7415
<212>DNA
<213> Artificial sequence
<223>rCV-GFP
<400>SEQ ID NO:1
TTAAAACAGCCTGTGGGTTGATCCCACCCACAGGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCC
TGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACTGATCAACAGTCAGCGTGGCACACCAGCCACGTT
TTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCG
GCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGT
CGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACG
CTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTG
CGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCG
TGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATTGTTACCATATAGCTATTGGATTGGCCATCC
GGTGACCAATAGAGCTATTATATATCTCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCA
TTGTTAAGTTGAATACAGCAAAATGGGAGCTCAAGTATCAACGCAAAAGACTGGGGCACATGAGACCGGGCTGAATGCTA
GCGGCAATTCCATCATTCACTACACAAATATTAATTATTACAAGGATGCCGCATCCAACTCAGCCAATCGGCAGGATTTC
ACTCAAGACCCGGGCAAGTTCACAGAACCAGTAAAAGATATCATGATTAAATCACTACCAGCTCTCAACTCCCCCACAGT
AGAGGAGTGCGGATACAGTGACAGGGCGAGATCAATCACATTAGGTAACTCCACCATAACGACTCAGGAATGCGCCAACG
TGGTGGTGGGCTATGGAGTATGGCCAGATTATCTAAAGGATAGTGAGGCAACAGCAGAGGACCAACCGACCCAACCAGAC
GTTGCCACATGTAGGTTCTATACCCTTGACTCTGTGCAATGGCAGAAAACCTCACCAGGATGGTGGTGGAAGCTGCCCGA
TGCTTTGTCGAACTTAGGACTGTTTGGGCAGAACATGCAGTACCACTACTTAGGCCGAACTGGGTATACCGTACATGTGC
AGTGCAATGCATCTAAGTTCCACCAAGGATGCTTGCTAGTAGTGTGTGTACCGGAAGCTGAGATGGGTTGCGCAACGCTA
GACAACACCCCATCCAGTGCAGAATTGCTGGGGGGCGATAGCGCAAAAGAGTTTGCGGACAAACCGGTCGCATCCGGGTC
CAACGAGTTGGTACAGAGGGTGGTGTATAATGCAGGCATGGGGGTGGGTGTTGGAAACCTCACCATTTTCCCCCACCAAT
GGATCAACCTACGCACCAATAATAGTGCTACAATTGTGATGCCATACACCAACAGTGTACCTATGGATAACATGTTTAGG
CATAACAACGTCACCCTAATGGTTATCCCATTTGTACCGCTAGATTACTGCCCTGGGTCCACCACGTACGTCCCAATTAC
GGTCACGATAGCCCCAATGTGTGCCGAGTACAATGGGTTACGTTTAGCAGGGCACCAGGGCTTACCAACCATGAATACTC
CGGGGAGCTGTCAATTTCTGACATCAGACGACTTCCAATCACCATCCGCCATGCCGCAATATGACGTCACACCAGAGATG
AGGATACCTGGTGAGGTGAAAAACTTGATGGAAATAGCTGAGGTTGACTCAGTTGTCCCAGTCCAAAATGTTGGAGAGAA
GGTCAACTCTATGGAAGCATACCAGATACCTGTGAGATCCAATGAAGGATCTGGAACGCAAGTATTCGGCTTTCCACTGC
AACCAGGGTACTCGAGTGTTTTTTGTCGGACGCTCCTAGGAGAGATCTTGAACTATTATACACATTGGTCAGGCAGCATA
AAGCTTACGTTTATGTTCTGTGGTTCGGCCATGGCTACTGGAAAATTCCTTTTGGCATACTCACCACCAGGTGCTGGAGC
TCCTACAAAAAGGGTTGATGCCATGCTTGGTACTCATGTAGTTTGGGACGTGGGGCTACAATCAAGTTGCGTGCTGTGTA
TACCCTGGATAAGCCAAACACACTACCGGTATGTTACTTCAGATGAGTATACCGCAGGGGGTTTTATTACGTGCTGGTAT
CAAACAAACATAGTGGTCCCAGCGGATGCCCAAAGCTCCTGTTACATCATGTGTTTCGTGTCAGCATGCAATGACTTCTC
TGTCAGGCTATTGAAGGACACTCCTTTCATTTCGCAGCAAAACTTTTACCAGGGCCCAGTGGAAGATGCGATAACAGCCG
CTATAGGGAGAGTTGCGGATACCGTGGGTACAGGGCCAACCAACTCAGAAGCTATACCAGCACTCACTGCTGCTGAGACA
GGTCACACGTCACAAGTAGTGCCGGGTGACACCATGCAGACACGCCACGTTAAGAACTACCATTCAAGGTCCGAGTCAAC
CATAGAGAACTTCCTATGTAGGTCAGCATGCGTGTACTTTACGGCGTATAGAAACTCAGGTGCCAAGCGGTATGCTGAAT
GGGTATTAACACCACGACAAGCAGCACAACTTAGGAGAAAGCTAGAATTCTTTACCTACGTCCGGTTCGACCTGGAGCTG
ACGTTTGTCATAACAAGTACTCAACAGCCCTCAACCACACAGAACCAAGACGCACAGATCCTAACACACCAAATTATGTA
TGTACCACCAGGTGGACCTGTACCAGATAAAGTTGATTCATACGTGTGGCAAACATCTACGAATCCCAGTGTGTTTTGGA
CCGAGGGAAACGCCCCGCCGCGCATGTCCATACCGTTTTTGAGCATTGGCAACGCCTATTCAAATTTCTATGACGGATGG
TCTGAATTTTCCAGGAACGGAGTTTACGGCATCAACACGCTAAACAACATGGGCACGCTATATGCAAGACATGTCAACGC
TGGAAGCACGGGTCCAATAAAAAGCACCATTAGAATCTACTTCAAACCGAAGCATGTCAAAGCGTGGATACCTAGACCAC
CTAGACTCTGCCAATACGAGAAGGCAAAGAACGTGAACTTCCAACCCAGCGGAGTTACCACTACTAGGCAAAGCATCACT
ACAATGACAAATACGGGCGCATTTGGACAACAATCAGGGGCAGTGTATGTGGGGAACTACAGGGTAGTAAATAGACATCT
AGCTACCAGTGCTGACTGGCAAAACTGTGTGTGGGAAAGTTACAACAGAGACCTCTTAGTGAGCACGACCACAGCACATG
GATGTGATATTATAGCCAGATGTCAGTGCACAACGGGAGTGTACTTTTGTGCGTCCAAAAACAAGCACTACCCAATTTCG
TTTGAAGGACCAGGTCTAGTAGAGGTCCAAGAGAGTGAATACTACCCCAGGAGATACCAATCCCATGTGCTTTTAGCAGC
TGGATTTTCCGAACCAGGTGACTGTGGCGGTATCCTAAGGTGTGAGCATGGTGTCATTGGCATTGTGACCATGGGGGGTG
AAGGCGTGGTCGGCTTTGCAGACATCCGTGATCTCCTGTGGCTGGAAGATGATGCAATGGAACAGGGAGTGAAGGACTAT
GTGGAACAGCTTGGAAATGCATTCGGCTCCGGCTTTACTAACCAAATATGTGAGCAAGTCAACCTCCTGAAAGAATCACT
AGTGGGTCAAGACTCCATCTTAGAGAAATCTCTAAAAGCCTTAGTTAAGATAATATCAGCCTTAGTAATTGTGGTGAGGA
ACCACGATGACCTGATCACTGTGACTGCCACACTAGCCCTTATCGGTTGTACCTCGTCCCCGTGGCGGTGGCTCAAACAG
AAGGTATCACAATATTACGGAATCCCTATGGCTGAACGCCAAAACAATAGCTGGCTTAAGAAATTTACTGAAATGACGAA
TGCTTGCAAGGGTATGGAATGGATAGCTGTCAAAATTCAGAAATTCATTGAATGGCTCAAAGTAAAAATTTTGCCAGAGG
TCAGGGAAAAACACGAATTCCTGAACAGACTTAAACAACTCCCCTTATTAGAAAGTCAGATCGCCACAATCGAGCAGAGC
GCGCCATCCCAAAGTGACCAGGAACAATTATTTTCCAATGTCCAATACTTTGCCCACTATTGCAGAAAGTACGCTCCCCT
CTACGCAGCTGAAGCAAAGAGGGTGTTCTCCCTTGAGAAGAAGATGAGCAATTACATACAGTTCAAGTCCAAATGCCGTA
TTGAACCTGTATGTTTGCTCCTGCACGGGAGCCCTGGTGCCGGCAAGTCGGTGGCAACAAACTTAATTGGAAGGTCGCTT
GCTGAGAAACTCAACAGCTCAGTGTACTCACTACCGCCAGACCCAGATCACTTCGACGGATACAAACAGCAGGCCGTGGT
GATTATGGACGATCTATGCCAGAATCCTGATGGGAAAGACGTCTCCTTGTTCTGCCAAATGGTTTCCAGTGTAGATTTTG
TACCACCCATGGCTGCCCTAGAAGAGAAAGGCATTCTGTTCACCTCACCGTTTGTCTTGGCATCGACCAATGCAGGATCT
ATTAATGCTCCAACCGTGTCAGATAGCAGAGCCTTGGCAAGGAGATTTCACTTTGACATGAACATCGAGGTTATTTCCAT
GTACAGTCAGAATGGCAAGATAAACATGCCCATGTCAGTCAAGACTTGTGACGATGAGTGTTGCCCGGTCAATTTTAAAA
AGTGCTGCCCTCTTGTGTGTGGGAAGGCTATACAATTCATTGATAGAAGAACACAGGTCAGATACTCTCTAGACATGCTA
GTCACCGAGATGTTTAGGGAGTACAATCATAGACACAGCGTGGGGACCACGCTTGAGGCACTGTTCCAGGGACCACCAGT
ATACAGAGAGATCAAAATTAGCGTTGCACCAGAGACACCACCACCGCCCGCCATTGCGGACCTGCTCAAATCGGTAGACA
GTGAGGCTGTGAGGGAGTACTGCAAAGAAAAAGGATGGTTGGTTCCTGAGATCAACTCCACCCTCCAAATTGAGAAACAT
GTCAGTCGGGCTTTCATTTGCTTACAGGCATTGACCACATTTGTGTCAGTGGCTGGAATCATATATATAATATATAAGCT
CTTTGCGGGTTTTCAAGGTGCTTATACAGGAGTGCCCAACCAGAAGCCCAGAGTGCCTACCCTGAGGCAAGCAAAAGTGC
AAGGCCCTGCCTTTGAGTTCGCCGTCGCAATGATGAAAAGGAACTCAAGCATGGTGAAAACTGAATATGGCGAGTTTACC
ATGCTGGGCATCTATGACAGGTGGGCCGTTTTGCCACGCCACGCCAAACCTGGGCCAACCATCTTGATGAATGATCAAGA
GGTTGGTGTGCTAGATGCCAAGGAGCTAGTAGACAAGGACGGCACCAACTTAGAACTGACACTACTCAAATTGAACCGGA
ATGAGAAGTTCAGAGACATCAGAGGCTTCTTAGCCAAGGAGGAAGTGGAGGTTAATGAGGCAGTGCTAGCAATTAACACC
AGCAAGTTTCCCAACATGTACATTCCAGTAGGACAGGTCACAGAATACGGCTTCCTAAACCTAGGTGGCACACCCACCAA
GAGAATGCTTATGTACAACTTCCCCACAAGAGCAGGCCAGTGTGGTGGAGTGCTCATGTCCACCGGCAAGGTACTGGGTA
TCCATGTTGGTGGAAATGGCCATCAGGGCTTCTCAGCAGCACTCCTCAAACACTACTTCAATGATGAGCAAGGTGAAATA
GAATTTATTGAGAGCTCAAAGGACGCCGGGTTTCCAGTCATCAACACACCAAGTAAAACAAAGTTGGAGCCTAGTGTTTT
CCACCAGGTCTTTGAGGGGAACAAAGAACCAGCAGTACTCAGGAGTGGGGATCCACGTCTCAAGGCCAATTTTGAAGAGG
CTATATTTTCCAAGTATATAGGAAATGTCAACACACACGTGGATGAGTACATGCTGGAAGCAGTGGACCACTACGCAGGC
CAACTAGCCACCCTAGATATCAGCACTGAACCAATGAAACTGGAGGACGCAGTGTACGGTACCGAGGGTCTTGAGGCGCT
TGATCTAACAACGAGTGCCGGTTACCCATATGTTGCACTGGGTATCAAGAAGAGGGACATCCTCTCTAAGAAGACTAAGG
ACCTAACAAAGTTAAAGGAATGTATGGACAAGTATGGCCTGAACCTACCAATGGTGACTTATGTAAAAGATGAGCTCAGG
TCCATAGAGAAGGTAGCGAAAGGAAAGTCTAGGCTGATTGAGGCGTCCAGTTTGAATGATTCAGTGGCGATGAGACAGAC
ATTTGGTAATCTGTACAAAACTTTCCACCTAAACCCAGGGGTTGTGACTGGTAGTGCTGTTGGGTGTGACCCAGACCTCT
TTTGGAGCAAGATACCAGTGATGTTAGATGGACATCTCATAGCATTTGATTACTCTGGGTACGATGCTAGCTTAAGCCCT
GTCTGGTTTGCTTGCCTAAAAATGTTACTTGAGAAGCTTGGATACACGCACAAAGAGACAAACTACATTGACTACTTGTG
CAACTCCCATCACCTGTACAGGGATAAACATTACTTTGTGAGGGGTGGCATGCCCTCGGGATGTTCTGGTACCAGTATTT
TCAACTCAATGATTAACAATATCATAATTAGGACACTAATGCTAAAAGTGTACAAAGGGATTGACTTGGACCAATTCAGG
ATGATCGCATATGGTGATGATGTGATCGCATCGTACCCATGGCCTATAGATGCATCTTTACTCGCTGAAGCTGGTAAGGG
TTACGGGCTGATCATGACACCAGCAGATAAGGGAGAGTGCTTTAACGAAGTTACCTGGACCAACGTCACTTTCCTAAAGA
GGTATTTTAGAGCAGATGAACAGTACCCCTTCCTGGTGCATCCTGTTATGCCCATGAAAGACATACACGAATCAATTAGA
TGGACCAAGGATCCAAAGAACACCCAAGATCACGTGCGCTCACTGTGTCTATTAGCTTGGCATAACGGGGAGCACGAATA
TGAGGAGTTCATCCGTAAAATTAGAAGCGTCCCAGTCGGACGTTGTTTGACCCTCCCCGCGTTTTCAACTCTGCGCAGGA
AGTGGTTGGACTCCTTTTAGATTAGAGACAATTTGAAATAATTTAGATTGGCTTAACCCTACTGTGCTAACCGAACCAGA
TAACGGTACAGTAGGGGTAAATTCTCCGCATTCGGTGCGGAAAAAAAAAAAAAAA
<210>2
<211>10186
<212>DNA
<213> Artificial sequence
<223>pCV-CS
<400>SEQ ID NO:2
tctagaggatccccgggtaccgagctcgaattcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctca
caattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaatt
gcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggag
aggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcgg
tatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggc
cagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaa
aaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcg
tgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcat
agctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcc
cgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagcca
ctggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacact
agaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaa
acaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatc
ctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaa
aggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctga
cagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccg
tcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccg
gctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccat
ccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgcta
caggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatga
tcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatc
actcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtact
caaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgcca
catagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgag
atccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaa
aaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaa
tattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaatagg
ggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaata
ggcgtatcacgaggccctttcgtctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacg
gtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcgggg
ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaa
ggagaaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcg
ctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacg
ttgtaaaacgacggccagtgccaagcttgcatgcctgcaggtcgactaatacgactcactatagggttaaaacagcctgt
gggttgatcccacccacagggcccattgggcgctagcactctggtatcacggtacctttgtgcgcctgttttataccccc
tcccccaactgtaacttagaagtaacacacactgatcaacagtcagcgtggcacaccagccacgttttgatcaagcactt
ctgttaccccggactgagtatcaatagactgctcacgcggttgaaggagaaagcgttcgttatccggccaactacttcga
aaaacctagtaacaccgtggaagttgcagagtgtttcgctcagcactaccccagtgtagatcaggtcgatgagtcaccgc
attccccacgggcgaccgtggcggtggctgcgttggcggcctgcccatggggaaacccatgggacgctctaatacagaca
tggtgcgaagagtctattgagctagttggtagtcctccggcccctgaatgcggctaatcctaactgcggagcacacaccc
tcaagccagagggcagtgtgtcgtaacgggcaactctgcagcggaaccgactactttgggtgtccgtgtttcattttatt
cctatactggctgcttatggtgacaattgagagattgttaccatatagctattggattggccatccggtgaccaatagag
ctattatatatctctttgttgggtttataccacttagcttgaaagaggttaaaacattacaattcattgttaagttgaat
acagcaaaatgggagctcaagtatcaacgcaaaagactggggcacatgagaccgggctgaatgctagcggcaattccatc
attcactacacaaatattaattattacaaggatgccgcatccaactcagccaatcggcaggatttcactcaagacccggg
caagttcacagaaccagtaaaagatatcatgattaaatcactaccagctctcaactcccccacagtagaggagtgcggat
acagtgacagggcgagatcaatcacattaggtaactccaccataacgactcaggaatgcgccaacgtggtggtgggctat
ggagtatggccagattatctaaaggatagtgaggcaacagcagaggaccaaccgacccaaccagacgttgccacatgtag
gttctatacccttgactctgtgcaatggcagaaaacctcaccaggatggtggtggaagctgcccgatgctttgtcgaact
taggactgtttgggcagaacatgcagtaccactacttaggccgaactgggtataccgtacatgtgcagtgcaatgcatct
aagttccaccaaggatgcttgctagtagtgtgtgtaccggaagctgagatgggttgcgcaacgctagacaacaccccatc
cagtgcagaattgctggggggcgatagcgcaaaagagtttgcggacaaaccggtcgcatccgggtccaacgagttggtac
agagggtggtgtataatgcaggcatgggggtgggtgttggaaacctcaccattttcccccaccaatggatcaacctacgc
accaataatagtgctacaattgtgatgccatacaccaacagtgtacctatggataacatgtttaggcataacaacgtcac
cctaatggttatcccatttgtaccgctagattactgccctgggtccaccacgtacgtcccaattacggtcacgatagccc
caatgtgtgccgagtacaatgggttacgtttagcagggcaccagggcttaccaaccatgaatactccggggagctgtcaa
tttctgacatcagacgacttccaatcaccatccgccatgccgcaatatgacgtcacaccagagatgaggatacctggtga
ggtgaaaaacttgatggaaatagctgaggttgactcagttgtcccagtccaaaatgttggagagaaggtcaactctatgg
aagcataccagatacctgtgagatccaatgaaggatctggaacgcaagtattcggctttccactgcaaccagggtactcg
agtgtttttagtcggacgctcctaggagagatcttgaactattatacacattggtcaggcagcataaagcttacgtttat
gttctgtggttcggccatggctactggaaaattccttttggcatactcaccaccaggtgctggagctcctacaaaaaggg
ttgatgccatgcttggtactcatgtagtttgggacgtggggctacaatcaagttgcgtgctgtgtataccctggataagc
caaacacactaccggtatgttacttcagatgagtataccgcagggggttttattacgtgctggtatcaaacaaacatagt
ggtcccagcggatgcccaaagctcctgttacatcatgtgtttcgtgtcagcatgcaatgacttctctgtcaggctattga
aggacactcctttcgtttcgcagcaaaacttttaccagggcccagtggaagatgcgataacagccgctatagggagagtt
gcggataccgtgggtacagggccaaccaactcagaagctataccagcactcactgctgctgagacaggtcacacgtcaca
agtagtgccgggtgacaccatgcagacacgccacgttaagaactaccattcaaggtccgagtcaaccatagagaacttcc
tatgtaggtcagcatgcgtgtactttacggcgtatagaaactcaggtgccaagcggtatgctgaatgggtattaacacca
cgacaagcagcacaacttaggagaaagctagaattctttacctacgtccggttcgacctggagctgacgtttgtcataac
aagtactcaacagccctcaaccacacagaaccaagacgcacagatcctaacacaccaaattatgtatgtaccaccaggtg
gacctgtaccagataaagttgattcatacgtgtggcaaacatctacgaatcccagtgtgttttggaccgagggaaacgcc
ccgccgcgcatgtccataccgtttttgagcattggcaacgcctattcaaatttctatgacggatggtctgaattttccag
gaacggagtttacggcatcaacacgctaaacaacatgggcacgctatatgcaagacatgtcaacgctggaagcacgggtc
caataaaaagcaccattagaatctacttcaaaccgaagcatgtcaaagcgtggatacctagaccacctagactctgccaa
tacgagaaggcaaagaacgtgaacttccaacccagcggagttaccactactaggcaaagcatcactacaatgacaaatac
gggcgcatttggacaacaatcaggggcaatcgatcgcaggcctacaatgacaaatacgggcgcatttggacaacaatcag
gggcagtgtatgtggggaactacagggtagtaaatagacatctagctaccagtgctgactggcaaaactgtgtgtgggaa
agttacaacagagacctcttagtgagcacgaccacagcacatggatgtgatattatagccagatgtcagtgcacaacggg
agtgtacttttgtgcgtccaaaaacaagcactacccaatttcgtttgaaggaccaggtctagtagaggtccaagagagtg
aatactaccccaggagataccaatcccatgtgcttttagcagctggattttccgaaccaggtgactgtggcggtatccta
aggtgtgagcatggtgtcattggcattgtgaccatggggggtgaaggcgtggtcggctttgcagacatccgtgatctcct
gtggctggaagatgatgcaatggaacagggagtgaaggactatgtggaacagcttggaaatgcattcggctccggcttta
ctaaccaaatatgtgagcaagtcaacctcctgaaagaatcactagtgggtcaagactccatcttagagaaatctctaaaa
gccttagttaagataatatcagccttagtaattgtggtgaggaaccacgatgacctgatcactgtgactgccacactagc
ccttatcggttgtacctcgtccccgtggcggtggctcaaacagaaggtatcacaatattacggaatccctatggctgaac
gccaaaacaatagctggcttaagaaatttactgaaatgacgaatgcttgcaagggtatggaatggatagctgtcaaaatt
cagaaattcattgaatggctcaaagtaaaaattttgccagaggtcagggaaaaacacgaattcctgaacagacttaaaca
actccccttattagaaagtcagatcgccacaatcgagcagagcgcgccatcccaaagtgaccaggaacaattattttcca
atgtccaatactttgcccactattgcagaaagtacgctcccctctacgcagctgaagcaaagagggtgttctcccttgag
aagaagatgagcaattacatacagttcaagtccaaatgccgtattgaacctgtatgtttgctcctgcacgggagccctgg
tgccggcaagtcggtggcaacaaacttaattggaaggtcgcttgctgagaaactcaacagctcagtgtactcactaccgc
cagacccagatcacttcgacggatacaaacagcaggccgtggtgattatggacgatctatgccagaatcctgatgggaaa
gacgtctccttgttctgccaaatggtttccagtgtagattttgtaccacccatggctgccctagaagagaaaggcattct
gttcacctcaccgtttgtcttggcatcgaccaatgcaggatctattaatgctccaaccgtgtcagatagcagagccttgg
caaggagatttcactttgacatgaacatcgaggttatttccatgtacagtcagaatggcaagataaacatgcccatgtca
gtcaagacttgtgacgatgagtgttgcccggtcaattttaaaaagtgctgccctcttgtgtgtgggaaggctatacaatt
cattgatagaagaacacaggtcagatactctctagacatgctagtcaccgagatgtttagggagtacaatcatagacaca
gcgtggggaccacgcttgaggcactgttccagggaccaccagtatacagagagatcaaaattagcgttgcaccagagaca
ccaccaccgcccgccattgcggacctgctcaaatcggtagacagtgaggctgtgagggagtactgcaaagaaaaaggatg
gttggttcctgagatcaactccaccctccaaattgagaaacatgtcagtcgggctttcatttgcttacaggcattgacca
catttgtgtcagtggctggaatcatatatataatatataagctctttgcgggttttcaaggtgcttatacaggagtgccc
aaccagaagcccagagtgcctaccctgaggcaagcaaaagtgcaaggccctgcctttgagttcgccgtcgcaatgatgaa
aaggaactcaagcatggtgaaaactgaatatggcgagtttaccatgctgggcatctatgacaggtgggccgttttgccac
gccacgccaaacctgggccaaccatcttgatgaatgatcaagaggttggtgtgctagatgccaaggagctagtagacaag
gacggcaccaacttagaactgacactactcaaattgaaccggaatgagaagttcagagacatcagaggcttcttagccaa
ggaggaagtggaggttaatgaggcagtgctagcaattaacaccagcaagtttcccaacatgtacattccagtaggacagg
tcacagaatacggcttcctaaacctaggtggcacacccaccaagagaatgcttatgtacaacttccccacaagagcaggc
cagtgtggtggagtgctcatgtccaccggcaaggtactgggtatccatgttggtggaaatggccatcagggcttctcagc
agcactcctcaaacactacttcaatgatgagcaaggtgaaatagaatttattgagagctcaaaggacgccgggtttccag
tcatcaacacaccaagtaaaacaaagttggagcctagtgttttccaccaggtctttgaggggaacaaagaaccagcagta
ctcaggagtggggatccacgtctcaaggccaattttgaagaggctatattttccaagtatataggaaatgtcaacacaca
cgtggatgagtacatgctggaagcagtggaccactacgcaggccaactagccaccctagatatcagcactgaaccaatga
aactggaggacgcagtgtacggtaccgagggtcttgaggcgcttgatctaacaacgagtgccggttacccatatgttgca
ctgggtatcaagaagagggacatcctctctaagaagactaaggacctaacaaagttaaaggaatgtatggacaagtatgg
cctgaacctaccaatggtgacttatgtaaaagatgagctcaggtccatagagaaggtagcgaaaggaaagtctaggctga
ttgaggcgtccagtttgaatgattcagtggcgatgagacagacatttggtaatctgtacaaaactttccacctaaaccca
ggggttgtgactggtagtgctgttgggtgtgacccagacctcttttggagcaagataccagtgatgttagatggacatct
catagcatttgattactctgggtacgatgctagcttaagccctgtctggtttgcttgcctaaaaatgttacttgagaagc
ttggatacacgcacaaagagacaaactacattgactacttgtgcaactcccatcacctgtacagggataaacattacttt
gtgaggggtggcatgccctcgggatgttctggtaccagtattttcaactcaatgattaacaatatcataattaggacact
aatgctaaaagtgtacaaagggattgacttggaccaattcaggatgatcgcatatggtgatgatgtgatcgcatcgtacc
catggcctatagatgcatctttactcgctgaagctggtaagggttacgggctgatcatgacaccagcagataagggagag
tgctttaacgaagttacctggaccaacgtcactttcctaaagaggtattttagagcagatgaacagtaccccttcctggt
gcatcctgttatgcccatgaaagacatacacgaatcaattagatggaccaaggatccaaagaacacccaagatcacgtgc
gctcactgtgtctattagcttggcataacggggagcacgaatatgaggagttcatccgtaaaattagaagcgtcccagtc
ggacgttgtttgaccctccccgcgttttcaactctgcgcaggaagtggttggactccttttagattagagacaatttgaa
ataatttagattggcttaaccctactgtgctaaccgaaccagataacggtacagtaggggtaaattctccgcattcggtg
cggaaaaaaaaaaaaaaagcggccgc
<210>3
<211>15
<212>DNA
<213> Artificial sequence
<223> sequence of multicloning site MCS
<400>SEQ ID NO:3
ATCGATCGCAGGCCT
<210>4
<211>42
<212>DNA
<213> Artificial sequence
<223>2Apro enzyme digestion recognition sequence
<400>SEQ ID NO:4
ACAATGACAAATACGGGCGCATTTGGACAACAATCAGGGGCA (TMTNTG/AFGQQSQA)
<210>5
<211>53
<212>DNA
<213> Artificial sequence
<223> primer set for multiple cloning site MCS
<400>SEQ ID NO:5
GTACTCGAGTGTTTTTAGTCGGACG;CGATCGATTGCCCCTGATTGTTGTCCA
<210>6
<211>54
<212>DNA
<213> Artificial sequence
<223>2Apro primers for cleavage of recognition sequence
<400>SEQ ID NO:6
CAATCGATCGCAGGCCTACAATGACAAATA;CCACTAGTGATTCTTTCAGGAGG
<210>7
<211>45
<212>DNA
<213> Artificial sequence
<223> primer set for introducing GFP-encoding gene into multiple cloning site of pCV-CS
<400>SEQ ID NO:7
TCATCGATATGGTGAGCAAGGG;TAAGGCCTCTTGTACAGCTCGT

Claims (8)

1. The recombinant coxsackie B3 virus with the fluorescent protein label is characterized in that the virus is infectious recombinant virus rCV-CS and recombinant virus rCV-GFP expressing GFP, and the sequence is shown as SEQ ID NO: 1.
2. the method for constructing the recombinant coxsackie B3 virus with the fluorescent protein label according to claim 1, which is characterized by comprising the following steps:
(1) on the basis of the full-length infectious cDNA clone plasmid pCV of CVB3, a full-length infectious clone plasmid pCV-CS of CVB3, which contains a multiple cloning site MCS and has a sequence of SEQ ID NO: 2;
amplifying a GFP fragment by taking pEGFP as a template to obtain a GFP coding gene;
(2) introducing a GFP coding gene into a multiple cloning site of pCV-CS to construct a CVB3 whole-gene infectious cloning plasmid pCV-GFP expressing GFP;
(3) the pCV-GFP is transfected and amplified by liposome to obtain recombinant coxsackie B3 virus rCV-GFP with a fluorescent protein label.
3. The method for constructing a recombinant coxsackie B3 virus with a fluorescent protein tag according to claim 2, wherein the multi-cloning site MCS is introduced into a region between P1 and P2 of a full-length infectious cDNA genome of CVB3 in the step (1); the sequence of the multicloning site MCS is SEQ ID NO: 3;
2Apro enzyme digestion recognition sequence is SEQ ID NO: 4.
4. the method for constructing a recombinant coxsackie B3 virus with a fluorescent protein label according to claim 3, wherein a primer pair inserted into the multiple cloning site MCS is SEQ ID NO: 5; the nucleotide sequence of SEQ ID NO: 5 in the upstream sequence of the primer pairXhoⅠAnd (4) enzyme cutting sites.
5. The method for constructing the recombinant coxsackie B3 virus with the fluorescent protein label according to claim 3, wherein a primer pair inserted with a 2Apro enzyme cutting recognition sequence is SEQ ID NO: 6; the nucleotide sequence of SEQ ID NO: 6 in the downstream sequence of the primer pairSpeⅠAnd (4) enzyme cutting sites.
6. The method for constructing a recombinant coxsackie B3 virus with a fluorescent protein label according to claim 2, wherein the primer pair for introducing the GFP encoding gene into the multiple cloning site of pCV-CS in the step (2) is SEQ ID NO: 7.
7. the application of the recombinant coxsackie B3 virus with the fluorescent protein label, which is constructed according to any one of claims 2-6, in the preparation of medicaments for tracing the viruses of the living animals.
8. The use of claim 7, wherein the virally-tagged living animal cells comprise Vero cells, pancreatic cells, cardiac cells.
CN202210396221.XA 2022-04-15 2022-04-15 Recombinant Coxsackie B3 virus with fluorescent protein label and construction method Pending CN114672466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210396221.XA CN114672466A (en) 2022-04-15 2022-04-15 Recombinant Coxsackie B3 virus with fluorescent protein label and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210396221.XA CN114672466A (en) 2022-04-15 2022-04-15 Recombinant Coxsackie B3 virus with fluorescent protein label and construction method

Publications (1)

Publication Number Publication Date
CN114672466A true CN114672466A (en) 2022-06-28

Family

ID=82077612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210396221.XA Pending CN114672466A (en) 2022-04-15 2022-04-15 Recombinant Coxsackie B3 virus with fluorescent protein label and construction method

Country Status (1)

Country Link
CN (1) CN114672466A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517317A (en) * 2011-12-23 2012-06-27 中国科学院武汉病毒研究所 Preparation method and application of enterovirus 71 type full-length infectious clone with tags
CN103805634A (en) * 2014-03-05 2014-05-21 中国科学院武汉病毒研究所 CA16 infectious clone with green fluorescent protein gene as well as construction method and application of CA16 infectious clone
CN106754758A (en) * 2016-12-29 2017-05-31 汕头大学医学院 A kind of construction method of the restructuring enterovirus phenotype hybrid system of factor-containing adjuvant and its application
CN106884017A (en) * 2016-12-28 2017-06-23 中国食品药品检定研究院 Recombinant expression plasmid, pseudovirus, kit and method for packing the pseudovirus of CB 5
CN108060172A (en) * 2018-02-09 2018-05-22 中国食品药品检定研究院 A kind of recombinant virus for detecting the method for 6 type neutralizing antibody of Coxsackie virus A group and its being applied
CN110452921A (en) * 2019-07-24 2019-11-15 中国食品药品检定研究院 The packaging and serum neutralizing antibody detection method of 10 type pseudovirus of Coxsackie virus A

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517317A (en) * 2011-12-23 2012-06-27 中国科学院武汉病毒研究所 Preparation method and application of enterovirus 71 type full-length infectious clone with tags
CN103805634A (en) * 2014-03-05 2014-05-21 中国科学院武汉病毒研究所 CA16 infectious clone with green fluorescent protein gene as well as construction method and application of CA16 infectious clone
CN106884017A (en) * 2016-12-28 2017-06-23 中国食品药品检定研究院 Recombinant expression plasmid, pseudovirus, kit and method for packing the pseudovirus of CB 5
CN106754758A (en) * 2016-12-29 2017-05-31 汕头大学医学院 A kind of construction method of the restructuring enterovirus phenotype hybrid system of factor-containing adjuvant and its application
CN108060172A (en) * 2018-02-09 2018-05-22 中国食品药品检定研究院 A kind of recombinant virus for detecting the method for 6 type neutralizing antibody of Coxsackie virus A group and its being applied
CN110452921A (en) * 2019-07-24 2019-11-15 中国食品药品检定研究院 The packaging and serum neutralizing antibody detection method of 10 type pseudovirus of Coxsackie virus A

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN ZENG等: "An Attenuated Coxsackievirus B3 Vector: A Potential Tool for Viral Tracking Study and Gene Delivery", 《PLOS ONE》 *
PAN,J.等: "Human coxsackievirus B3 strain Nancy polyprotein mRNA, complete cds", 《GENBANK》 *

Similar Documents

Publication Publication Date Title
CN107164409B (en) Canine distemper virus sensitive cell line SLAM-MDCK and construction method and application thereof
CN112210565B (en) G gene and application thereof in efficient reverse trans-monosynaptic
CN103923887A (en) Pseudoviral particle containing hepatitis e virus RNA (Ribose Nucleic Acid) fragment and preparation method thereof
CN113684190A (en) Circovirus type 3 double-copy full-length gene infectious clone plasmid and construction method and application thereof
CN110468155B (en) System, method and application for rescuing porcine intestinal tract type A coronavirus
CN113817753B (en) Expression of SARS-CoV-2 fiber protein or its variant S Δ21 Construction and use of pseudotyped VSV viruses
CN110951778A (en) CDV-3 strain infectious cDNA clone of canine distemper virus, construction method and application thereof
CN104130977A (en) Antitumor medicine screening cell model and application thereof
CN114058619A (en) Construction of RIPLET knockout cell line and application of RIPLET knockout cell line as production cell line of picornaviridae virus vaccine
CN114107311A (en) Target participating in porcine transmissible gastroenteritis virus infection and application thereof
CN114672466A (en) Recombinant Coxsackie B3 virus with fluorescent protein label and construction method
CN109136200A (en) A kind of recombination infectious hematopoietic necrosis poison and its construction method and application
CN114410593A (en) Large-scale production process of recombinant novel coronavirus vaccine with measles virus as vector
CN113248577B (en) Coronavirus vaccine using adenovirus as carrier and its preparing method
CN103215267B (en) Suppress siRNA and its application of influenza virus related gene
CN114381437A (en) Method for producing rabies virus pseudovirus system by using stable cell line capable of inducing expression of rabies virus protein
CN108130340A (en) Express the application of the method and this method of duck source avian influenza virus NS1 albumen
CN110904056B (en) Infectious bronchitis virus rH120-YZS1 delta 5a and construction method and application thereof
CN114657154A (en) Preparation method and application of attenuated strain of contagious ecthyma virus
CN116410991B (en) Recombinant nucleic acid molecules, recombinant vectors and recombinant viruses of vesicular stomatitis virus and novel coronavirus and application of recombinant nucleic acid molecules, recombinant vectors and recombinant viruses
CN116904512A (en) Construction and application of porcine epidemic diarrhea virus attenuated FJzz1 strain infectious clone
CN112159799A (en) NDVKIID mutant type infectious clone virus DHN3-mF, preparation method and vaccine thereof
CN116536360A (en) Polyomavirus BKV recombinant expression vector and application thereof
CN118085065A (en) Preparation and application of human bocavirus HBoV1 non-structural protein NP1 single-chain antibody
CN114807232A (en) Construction and application of west nile virus infectious clone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220628

RJ01 Rejection of invention patent application after publication