CN114657157A - ZmD13蛋白在调控玉米株高中的应用 - Google Patents

ZmD13蛋白在调控玉米株高中的应用 Download PDF

Info

Publication number
CN114657157A
CN114657157A CN202210248548.2A CN202210248548A CN114657157A CN 114657157 A CN114657157 A CN 114657157A CN 202210248548 A CN202210248548 A CN 202210248548A CN 114657157 A CN114657157 A CN 114657157A
Authority
CN
China
Prior art keywords
protein
plant
sequence
leu
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210248548.2A
Other languages
English (en)
Other versions
CN114657157B (zh
Inventor
胡小娇
张伟
蒋成功
王红武
李坤
刘小刚
黄长玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Crop Sciences of Chinese Academy of Agricultural Sciences filed Critical Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority to CN202210248548.2A priority Critical patent/CN114657157B/zh
Publication of CN114657157A publication Critical patent/CN114657157A/zh
Application granted granted Critical
Publication of CN114657157B publication Critical patent/CN114657157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了ZmD13蛋白在调控玉米株高中的应用。本发明所保护的一个技术方案是蛋白质或调控所述蛋白质活性或含量的物质在调控或缩短植物茎节长度、调控或抑制植物细胞伸长、调控或缩短植物穗长、调控或缩短植物叶长以及植物育种和改良中的应用。所述蛋白为序列表中序列1所示的ZmD13蛋白或突变失活后的ZmD13蛋白。实验证明,降低玉米中ZmD13蛋白的表达量和/或活性后得到基因编辑玉米,与野生型玉米B104相比,株高降低,节间缩短,茎节细胞伸长显著受抑制。因此,ZmD13蛋白对指导玉米株高改良和耐密品种选育具有重要意义。

Description

ZmD13蛋白在调控玉米株高中的应用
技术领域
本发明涉及生物技术领域,具体涉及ZmD13蛋白在调控玉米株高中的应用。
背景技术
玉米(Zea mays.L)是世界第一大粮食作物,总产量超过10亿吨,占全球粮食总产量的40%,在保障世界粮食安全中具有重要地位。过去的50年中,全球玉米单产的迅速增加主要得益于种植密度的提高。玉米耐密品种应当具备株高适宜、株型紧凑、根系发达、茎秆坚韧、抗逆抗病等性状特征。株高是影响玉米品种耐密性的关键性状之一。密植条件下,玉米茎基部节间趋于伸长变细,株高和穗位升高,植株抗倒性变差,大风天气容易发生倒伏减产,合理降低品种株高则有利于增强植株抗倒伏能力,改善群体通透性,提高光合效率,促进密植增产。此外,矮秆玉米品种果穗和籽粒营养分配比例更大,收获指数高。因此,深入开展株高调控基因的克隆和分子机制研究,对指导玉米株高改良和耐密品种选育具有重要理论与现实意义。
发明内容
本发明所要解决的技术问题是如何调控植物株高或如何降低植物的株高。
为了解决上述技术问题,本发明首先提供了蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质的应用。所述应用可为下述任一种:
P1、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物株高或降低植物株高中的应用。
P2、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物茎节长度或缩短植物茎节长度中的应用。
P3、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物细胞伸长或抑制植物细胞伸长中的应用。
P4、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物叶长或缩短植物叶长中的应用。
P5、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物穗长或缩短植物穗长中的应用。
P6、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在植物育种或品质改良中的应用。
上文所述蛋白质可为如下A1)、A2)、A3)、A4)或A5)的蛋白质:
A1)氨基酸序列是序列表中序列1的蛋白质。
A2)氨基酸序列是序列表中序列3的蛋白质。
A3)氨基酸序列是序列表中序列7的蛋白质。
A4)氨基酸序列是序列表中序列9的蛋白质。
A5)将A1)、A2)、A3)或A4)所示的氨基酸序列经过一个以上氨基酸残基的取代和/或缺失和/或添加得到的且具有相同功能的由A1)、A2)、A3)或A4)衍生的或与A1)、A2)、A3)或A4)所示的蛋白质具有80%以上的同一性且具有相同功能的蛋白质。
A6)在A1)、A2)、A3)、A4)或A5)的N末端或/和C末端连接蛋白标签得到的融合蛋白质。
上文所述应用中,所述蛋白质可来源于玉米。
上文所述一个以上氨基酸残基具体可为十个以内的氨基酸残基。
上述应用中,调控所述蛋白质活性或含量的物质可为敲除所述蛋白质的编码基因的物质和/或调控所述蛋白质的编码基因表达的物质。
上述应用中,所述调控基因表达的物质可为进行如下6种调控中至少一种调控的物质:1)在所述基因转录水平上进行的调控;2)在所述基因转录后进行的调控(也就是对所述基因的初级转录物的剪接或加工进行的调控);3)对所述基因的RNA转运进行的调控(也就是对所述基因的mRNA由细胞核向细胞质转运进行的调控);4)对所述基因的翻译进行的调控;5)对所述基因的mRNA降解进行的调控;6)对所述基因的翻译后的调控(也就是对所述基因翻译的蛋白质的活性进行调控)。
上述应用中,所述调控基因表达可为抑制或降低所述基因表达,所述抑制或降低所述基因表达可通过基因敲除实现或通过基因沉默实现。
所述基因敲除(geneknockout)是指通过同源重组使特定靶基因失活的现象。基因敲除是通过DNA序列的改变使特定靶基因失活。
所述基因沉默是指在不损伤原有DNA的情况下使基因不表达或低表达的现象。基因沉默以不改变DNA序列为前提,使基因不表达或低表达。基因沉默可发生在两种水平上,一种是由于DNA甲基化、异染色质化以及位置效应等引起的转录水平的基因沉默,另一种是转录后基因沉默,即在基因转录后的水平上通过对靶标RNA进行特异性抑制而使基因失活,包括反义RNA、共抑制(co-suppression)、基因压抑(quelling)、RNA干扰(RNAi)和微小RNA(miRNA)介导的翻译抑制等。
上述应用中,所述调控基因表达的物质可为抑制或降低所述基因表达的试剂。所述抑制或降低所述基因表达的试剂可为敲除所述基因的试剂,如通过同源重组敲除所述基因的试剂,或通过CRISPR-Cas9敲除所述基因的试剂。所述抑制或降低所述基因表达的试剂可以包含靶向所述基因的多核苷酸,例如siRNA、shRNA、sgRNA、miRNA或反义RNA。
上述应用中,所述80%以上的同一性可为至少80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、98%或99%的同一性。
为了解决上述技术问题,本发明还提供了与上文所述蛋白质相关的生物材料的下述任一种应用:
Q1、所述生物材料在调控植物株高或降低植物株高中的应用。
Q2、所述生物材料在调控植物茎节长度或缩短植物茎节长度中的应用。
Q3、所述生物材料在调控植物细胞伸长或抑制植物细胞伸长中的应用。
Q4、所述生物材料在调控植物叶长或缩短植物叶长中的应用。
Q5、所述生物材料在调控植物穗长或缩短植物穗长中的应用。
Q7、所述生物材料在植物育种或品质改良中的应用。
所述生物材料可为下述任一种:
B1)编码上文所述蛋白质的核酸分子。
B2)含有B1)所述核酸分子的表达盒。
B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体。
B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物。
B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系。
B6)含有B1)所述核酸分子的转基因植物组织、或含有B2)所述表达盒的转基因植物组织。
B7)含有B1)所述核酸分子的转基因植物器官、或含有B2)所述表达盒的转基因植物器官。
B8)抑制或降低上文所述蛋白质的编码基因的表达或权利要求1中所述蛋白质活性的核酸分子。
B9)含有B8)所述核酸分子的表达盒、重组载体、重组微生物或转基因植物细胞系。
上文所述应用中,所述核酸分子可为如下b1)或b2)或b3)或b4)或b5)或b6)所示的DNA分子:
b1)编码序列是序列表中序列2所示的DNA分子。
b2)核苷酸序列是序列表中序列4所示的DNA分子。
b3)编码序列是序列表中序列8所示的DNA分子。
b4)编码序列是序列表中序列10所示的DNA分子。
b5)与b1)、b2)、b3)或b4)限定的核苷酸序列具有90%或90%以上同一性,且编码权利要求1中所述蛋白质的DNA分子。
b6)在严格条件下与b1)、b2)、b3)或b4)限定的核苷酸序列杂交,且编码权利要求1中所述蛋白质的DNA分子。
上文B8)所述核酸分子可为表达靶向上文A1)所述蛋白编码基因的gRNA的DNA分子或靶向上文A1)所述蛋白编码基因的gRNA。
所述靶向上文A1)蛋白编码基因的gRNA的靶序列可对应于序列表序列2的第1044-1063位和序列表序列2的第1324-1343位核苷酸。
上文所述应用中,所述植物可为玉米。所述植物穗长可为玉米雄穗长。
术语“同一性”指与天然核酸序列的序列相似性。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。所述具有90%或90%以上同一性可为至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%的同一性。
上述生物材料中,B2)所述的含有核酸分子的表达盒,是指能够在宿主细胞中表达上述应用中所述蛋白质的DNA,该DNA不但可包括启动蛋白编码基因转录的启动子,还可包括终止蛋白编码基因转录的终止子。进一步,所述表达盒还可包括增强子序列。可用于本发明的启动子包括但不限于:组成型启动子,组织、器官和发育特异的启动子,和诱导型启动子。
可用现有的植物表达载体构建含有所述蛋白编码基因表达盒的重组表达载体。
上述生物材料中,所述重组微生物具体可为酵母,细菌,藻和真菌。
为了解决上述技术问题,本发明还提供了一种降低植物株高和/或降低植物茎节长度和/或降低植物细胞伸长和/或降低植物分枝数和/或降低植物叶长和/或降低植物穗长的方法。所述方法可包括通过抑制或降低植物中上文所述的蛋白质活性和/或的抑制或降低上文所述的蛋白质编码基因的表达量来降低植物株高和/或降低植物茎节长度和/或降低植物细胞伸长和/或降低植物叶长和/或降低植物穗长。
上文所述方法中,所述方法可包括向所述植物中导入降低或抑制上文所述的蛋白编码基因表达和/或降低或抑制上文所述的蛋白的活性的物质。所述降低或抑制上文所述蛋白编码基因表达和/或降低或抑制上文所述的蛋白的活性的物质可为如下c1)-c4)任一种物质:
c1)抑制或降低上文A1)所述蛋白编码基因表达和/或上文A1)所述蛋白的活性的核酸分子。
c2)含有c1)所述核酸分子的表达盒。
c3)含有c1)所述核酸分子的重组载体、或含有c2)所述表达盒的重组载体。
c4)含有c1)所述核酸分子的重组微生物、或含有c2)所述表达盒的重组微生物、或含有c3)所述重组载体的重组微生物。
上文所述方法中,c1)所述的核酸分子可为表达靶向上文A1)所述蛋白编码基因的gRNA的DNA分子或靶向上文A1)所述蛋白编码基因的gRNA。
所述gRNA的靶序列可对应于序列表中序列2的第1044-1063位和/或序列表中序列2的第1324-1343位核苷酸。
上文所述方法中,所述抑制或降低植物基因组中上文所述蛋白质的编码基因的表达和/或上文A1)所述蛋白的活性可为将植物基因组进行下述至少一种突变:
1)缺失了植物基因组中序列表中序列2的第1060位的1个核苷酸“G”和第1341位的1个核苷酸“C”。
2)缺失了植物基因组中序列表中序列2的第1059-1340位的282个核苷酸。
上文所述植物可为玉米。上文所述植物穗长可为玉米雄穗长。
上文所述的蛋白质和/或上文所述的生物材料也属于本发明的保护范围。
本发明在玉米EMS诱变突变体库中发现一个隐性单基因控制的半矮化突变体dwarf13(d13)。成熟突变体株高降低,节间缩短,茎节细胞伸长显著受抑制。d13突变体中活性油菜素内酯(BL)含量较野生型明显降低,黑暗下具有中胚轴不伸长等典型脱黄化现象,推断d13为BR合成缺陷突变。图位克隆发现精细定位区间内有一个新基因编码CYP450酶,突变体该基因第八外显子上的SNP突变导致蛋白翻译提前终止,推断该基因为控制d13表型的候选基因,并将其命名为ZmD13。利用CRISPR/Cas9对ZmD13基因进行编辑发现,与野生型玉米相比,编辑突变体存在与d13相同的表型,即株高降低,节间缩短,茎节细胞伸长显著受抑制,进一步等位测验证实了该基因调控玉米株高的功能。初步关联分析发现ZmD13在自然群体中存在调控株高的等位变异,表明该基因具有潜在育种价值。综合上述结果,本发明克隆了一个参与玉米株高发育调控的新基因ZmD13,该基因的克隆对指导玉米株高改良和耐密品种选育具有重要意义。
附图说明
图1为突变体d13与野生型(WT)表型分析。(A-D):突变体d13与WT表型对比;(E):d13与WT节间长对比;(F):d13与WT表型值比较,**代表P<0.01。
图2为d13与野生型(WT)第四茎节细胞结构观察。(A和C):拔节期d13和WT第四茎节横切扫描电镜图片200倍放大;(B和D):拔节期d13和WT第四茎节纵切扫描电镜图片100倍放大;(E和F):d13和WT茎节细胞长宽比较,**代表P<0.01。
图3为突变体d13和野生型(WT)在暗培养下的幼苗高度和中胚轴长度比较。(A):暗培养下d13和WT幼苗表型对比;(B):d13和WT幼苗高度比较;(C):d13和WT幼苗中胚轴长度比较,**代表P<0.01。
图4为突变体d13及野生型(WT)茎尖生长点活性油菜素甾酮(CS)和油菜素内酯(BL)含量测定,**代表P<0.01。
图5为ZmD13基因的精细定位和候选基因分析。(A)ZmD13基因精细定位;(B)ZmD13基因结构;(C)突变位点测序分析;(D)启动子顺式元件分析。
图6为ZmD13基因的组织特异性表达分析。
图7为ZmD13基因的CRISPR/Cas9编辑突变。(A)编辑突变体与野生型(WT)表型对比;(B)编辑靶点测序分析;(C)编辑突变体与野生型(WT)株高和穗位高值比较,**代表P<0.01;(D)编辑突变体与野生型(WT)节间长度比较。
图8为d13突变体的等位测验。(A):d13、编辑突变体与F1杂交种表型对比;(B):d13、编辑突变体与F1杂交种的株高和穗位高测量值比较。
图9为株高和百粒重性状ZmD13基因的关联分析。左图为株高曼哈顿图;右图为百粒重曼哈顿图。
具体实施方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例一、玉米ZmD13基因的克隆及其应用
1.玉米株高突变体d13的筛选及表型鉴定
1.1玉米株高突变体d13的筛选
对玉米自交系昌7-2材料进行EMS诱变,EMS诱变果穗成熟后得到约10,000粒诱变一代(M1)种子,将M1种子单粒播种,自交后单穗收获。M2代种子20粒种成穗行,从苗期到成熟期开展性状调查。在其中一个穗行中发现5株半矮化突变体,将其命名为dwarf13(d13)。后又对该d13突变体穗行进行自交获得M3和M4代,后代表型观察发现半矮化突变性状可稳定遗传。
1.2 d13突变体的表型鉴定及激素含量测定
玉米d13突变体的矮化表型在5叶期即可观察发现,拔节期更为明显。成熟d13株高和穗位仅为野生型昌7-2(图1中WT代表)的50%左右(图1中A)。进一步对突变体和野生型的茎节数目和长度进行调查发现,d13茎节数目与野生型WT无显著差异,但是每个茎节的长度均比野生型短(图1中B和E)。其中穗上3节和穗下4节缩短最为显著。对M4代群体中野生型WT和d13突变体其他农艺性状进行调查发现,除矮化外,d13突变体的叶片和雄穗主轴长度变短(图1中C、D和F)。取拔节期的d13和野生型WT第4茎节分别横切和纵切,扫描电镜观察发现,d13细胞的长度和宽度均显著小于野生型WT,表明d13细胞伸长受到抑制(图2中A-F)。在暗培养条件下,d13突变体表现出明显的幼苗矮小和中胚轴不伸长等脱黄化现象(图3)。
表型测定方法如下:
株高测量:待植株生长到散粉后期,测量d13突变体和昌7-2自交系从地面到雄穗顶部的距离,用平均值来表示,单位厘米(cm)。穗位高测量:测量从地面到第一雌穗柄着生的茎节高度,长度用平均值表示,单位厘米(cm)。节间数统计和节间长测量:当材料成熟时,统计植株地上部节数,雌穗所在的节记为“0”,穗位下一节记为“-1”,穗位上一节记为“+1”,依次类推,测量每个节间的长度,用平均值表示,单位厘米(cm)。叶长测量:测量从叶脉基部到叶尖距离,长度用平均值表示,单位厘米(cm)。叶宽的测量:测量叶片上与主脉垂直方向上的最宽处,长度用平均值表示,单位厘米(cm)。雄穗长测量:测量雄穗从基部到顶端的长度,用平均值表示,单位厘米(cm)。
进一步取拔节期的d13和野生型WT的茎尖生长点进行BRs含量测定发现,d13中的油菜素内酯活性BL含量显著下降,约为野生型的46%,而CS含量较野生型升高。(图4)。由此推测d13很可能是一个BR合成缺陷突变体。突变体中CS升高可能为BR合成中的反馈调节作用引起。
内源油菜素内酯活性CS及BL含量的测定方法如下:
取拔节期d13突变体和野生型玉米茎尖生长点,液氮保存。每个样品设置3个生物学重复。激素含量测定委托南京钟鼎生物技术有限公司。
主要的试剂和耗材:油菜素内酯(BL)标准品、油菜素甾酮(CS)标准品和6-脱氧油菜素甾酮(6DCS)标准品来源于Sigma公司,Tedia公司的色谱级乙腈,安捷伦公司的BondElut小柱,phenomenon公司的strata-X小柱。
实验步骤:1)将样品研磨至粉末状,称取全部样品放入新的试管中;2)加入4℃预冷的80%甲醇10mL,4℃提取2h;10000rpm/min,离心5分钟,取上清液过BondElut预装柱,加3mL甲醇洗脱;4)过strata-X小柱,用3mL甲醇洗脱;5)用氮气吹干甲醇,加入200μl甲醇溶解;6)将液体过0.222μm孔径滤膜,将滤液放入HPLC-MS/MS检测。样品中激素含量(ng/g)=体积系数(mL)×检测浓度(ng/mL)/质量系数(g),其中体积系数为样品最终溶解时所用的溶液体积,质量系数为称取的样品质量。
1.3 ZmD13基因的遗传分析及图位克隆
将d13(父本)与B73(母本)自交系杂交构建F2分离群体,表型调查和卡方检验表明,矮化与正常植株的分离比符合3:1分离规律,d13突变性状受隐性单基因控制。(表1)。
表1 遗传分离比检验
Figure BDA0003545883660000081
χ2(0.05)=3.84
提取双亲及F2分离群体中78株d13突变体的DNA,利用靶向测序基因型分型技术(20K GBTS)对样品的基因型进行检测。经数据分析,双亲间可用的多态性SNP标记共7,029个,均匀覆盖玉米10条染色体,平均每Mb约3个SNP。分别计算每个SNP标记的SNP index(即突变亲本d13的基因型频率),并分析全基因组SNP index变化规律。在3号染色体短臂1-18Mb区间内,标记SNP index值超过0.5并逐渐趋近于1,表明该区间与目标性状连锁,是候选区段。分析78个样本在该区段的基因型变化发现,最小初定位区间位于4.1-6.0Mb区间。进一步扩大定位群体,开发7个双亲间有多态性的InDel标记,将区间缩小到了200kb(图5中A)。根据Gramene(http://gramene.org/)网站预测结果,该区间还有5个蛋白编码基因。测序分析发现其中一个编码细胞色素P450酶的新基因,在第8外显子上,存在一个C-T的突变,符合EMS诱变特点(图5中B和C)。该单碱基变异形成了一个终止密码子,d13突变体蛋白翻译提前终止,较野生型缺少了10个氨基酸推测该基因就是候选基因,并将其命名为ZmD13。ZmD13基因的CDS序列如序列表中序列2所示,其所编码的ZmD13蛋白的氨基酸序列如序列表中序列1所示。ZmD13基因的d13突变体蛋白的氨基酸序列如序列表中序列3所示,d13突变体蛋白的编码序列如序列表中序列4所示。
分析ZmD13启动子序列,发现了6个油菜素内酯合成调控转录因子ZmRAVL1和ZmBES1/BZR1的潜在结合元件E-Box,及一个ZmILI1转录因子结合位点(图5中D)。推测ZmD13在玉米BR合成及调控中具有重要作用。
1.4 ZmD13基因的组织表达分析
分别取野生型玉米B73植株苗期、拔节期及抽雄期不同组织部位,提取RNA,利用qRT-PCR对ZmD13基因的组织表达特异性进行分析。结果表明ZmD13为组成型表达基因,在苗期叶片中表达量最高,在抽雄期叶片和雄穗中表达量较高(图6)。
1.5 ZmD13基因的CRISPR/Cas9敲除验证和等位测验
1.5.1 CRISPR/Cas9重组载体的构建
本发明所使用的CRISPR/Cas9基础载体(CPB载体),均由中国农业科学院作物科学研究所谢传晓研究员惠赠(相关文献:Li C,et al..RNA-guided Cas9 as an in vivodesired-target mutator in maize.Plant Biotechnol J.2017Dec;15(12):1566-1576.doi:10.1111/pbi.12739.Epub 2017 May 12.PMID:28379609.)。
在ZmD13蛋白的活性中心血红素结合结构域(heme binding domain)序列上选取2个靶点。构建双靶点sgRNA和Cas9蛋白的表达盒,并将其插入双元表达载体CPB,完成CRISPR/Cas9敲除载体构建。
两个靶向ZmD13的sgRNA分别为sgRNA1和sgRNA2。其中sgRNA1靶点的核苷酸序列为5’-GAAGAGGCGGAAAACCGACG-3’,靶向于ZmD13基因的序列表中序列2的第1044-1063位;sgRNA2靶点的核苷酸序列为5’-GGCTTCACCCCTTTTGGCGG-3’,靶向于ZmD13基因的序列表中序列2的第1324-1343位。
目的片段(双靶点sgRNA和Cas9蛋白的表达盒)的获得与纯化:
目的片段的制备所用引物:
Figure BDA0003545883660000091
目标片段U6-2启动子由site1-U6-2-F(site2-U6-2-F)、site1-U6-2-R(site2-U6-2-R)引物进行扩增得到。目标片段sgRNA片段由site1-sgRNA-F(site2-sgRNA-F)和site1-sgRNA-R(site2-sgRNA-R)引物进行扩增得到。具体步骤:以CPB载体为DNA模板,进行PCR反应,扩增程序为95℃预变性3min;95℃变性30s,58℃退火20s,68℃延伸20s,35个循环;68℃延伸5min,12℃保存。
用1%琼脂糖凝胶电泳检测后,使用M5 Gel Extraction Kit试剂盒进行对U6-2启动子和sgRNA片段进行胶回收。
靶点片段的制备主要使用重叠PCR技术,具体步骤如下:
1)重叠PCR体系1共25μL:U6-2启动子和sgRNA片段胶回收产物DNA各2μL、2×Hieff
Figure BDA0003545883660000101
PCR Master Mix(上海翊圣生物科技有限公司,Cat#10136es03)12.5μL和8.5μL的ddH2O。2)重叠PCR体系1程序:95℃预变性3min;94℃变性30s,65℃退火30s,72℃延伸30s,共5个循环。
3)重叠PCR体系2共50μL:加入反应体系1的PCR产物25μL,引物site1-U6-2-F(site2-U6-2-F)和site1-sgRNA-R(site2-sgRNA-R)各1μL、2×Hieff
Figure BDA0003545883660000102
PCR MasterMix(上海翊圣生物科技有限公司,Cat#10136es03)12.5μL和10.5μL的ddH2O。4)重叠PCR体系2程序:95℃预变性3min;94℃变性30s,65℃退火30s,72℃延伸30s,共30个循环;72℃终延伸5min。
重叠PCR反应后得到重叠片段,用1%琼脂糖凝胶电泳检测,用M5 Gel ExtractionKit试剂盒进行胶回收,-20℃保存。重叠PCR产物中含有目的片段即U6-2::gRNA::sgRNA(U6-2::gRNA1::sgRNA或U6-2::gRNA2::sgRNA)(序列表中序列5的第300-802位核苷酸或序列表中序列5的第803-1305位核苷酸)。
CPB酶切载体的制备和回收:利用HindIII对CPB载体进行消化,其反应体系共50μL:5μL的CPB载体DNA(200ng/μL)、5μL的10×Buffer、1μL的HindIII内切酶、39μL的ddH2O。反应程序:37℃金属浴1h,反应完成后1%的琼脂糖凝胶电泳。酶切载体回收是使用M5 GelExtraction Kit试剂盒(北京聚合美生物科技有限公司,Cat#MF209)。具体步骤如下:1)离心吸附柱中内加500μL柱平衡液(BL),静置1min,室温下12000g离心1min,弃废液。2)将琼脂糖凝胶置于紫外灯下,迅速切出目的片段,置于2mL离心管内称重。3)按1mg凝胶加入1μL膜结合液(MB)的比例加入MB,混匀,55℃金属浴至胶块完全溶解。4)凝胶溶液冷却至室温,转移置离心吸附柱内,静置1min,室温下12000g离心1min,弃废液。5)加入600μL膜漂洗液,室温下12000g离心1min,弃废液,重复一次。6)加入50μL的ddH2O洗脱,静置1min,室温下12000g离心1min收集纯化的DNA片段,-20℃保存。得到CPB酶切载体。
目的片段与酶切载体的连接及转化
使用
Figure BDA0003545883660000111
Plus One Step Cloning Kit试剂盒(上海翊圣生物科技有限公司,Cat#10911es20)连接酶切后的线性载体(即上述CPB酶切载体)和靶点片段(即上述重叠PCR产物)。反应体系是10μL的2×Hieff
Figure BDA0003545883660000112
Enzyme Premix、50ng的酶切线性载体、200ng的目的片段,用ddH2O补足至20μL。具体步骤如下:1)混匀后短暂离心,置于50℃金属浴中反应20min;2)在冰上解冻克隆感受态细胞(DH 5α Chemically Competent Cell,Cat#11802ES);3)取10μL重组载体产物,加入到100μL感受态细胞中,轻弹管壁数下混匀,冰浴30min;4)42℃热激90s,冰浴孵育2min;加入900μL LB液体培养基,37℃孵育10min;5)37℃,200rpm,摇菌45min;5000rpm离心3min,弃掉900μL上清;用剩余培养基将菌体重悬,用无菌涂布棒在含有硫酸卡纳霉素抗性的平板上轻轻涂匀;6)待菌液被吸收,将平板倒置,于37℃过夜培养;7)用无菌的枪头将单个菌落挑至PCR板孔内作为PCR模板,进行菌落PCR,所用PCR引物为:5’-AACTGTAGAGTCCTGTTGTC-3’和5’-CATTCGCCATTCAGGCTGC-3’;8)用1%琼脂糖凝胶电泳检测,选取含有1438bp(序列表中序列7的第30-1467位核苷酸)条带的阳性克隆,送去赛默飞世尔科技公司进行测序,测序结果表明,重组载体阳性克隆含有双靶点U6-2::gRNA1::sgRNA::U6-2::gRNA2::sgRNA(序列表中序列5)和Cas9蛋白的表达盒(序列表中序列6)。将阳性单克隆菌摇菌培养,然后从培养菌液中提取质粒,即得到CRISPR-Cas9重组质粒ZmD13-gRNA1-gRNA2。
1.5.2重组质粒的遗传转化
将重组质粒ZmD13-gRNA1-gRNA2转入农杆菌EHA105菌株中得到重组农杆菌EHA105/ZmD13-gRNA1-gRNA2,使用重组农杆菌EHA105/ZmD13-gRNA1-gRNA2转化玉米B104(北京博美兴奥科技有限公司)幼胚。剥离50-100个幼胚到含有无菌侵染培养基的2mL离心管中,然后用侵染培养基洗涤3次幼胚。洗涤液倒掉后,加入1-1.5mL农杆菌悬浮液(OD550nm=0.3-0.4)到幼胚中,轻轻颠倒离心管20次,浸没幼胚垂直静止离心管5分钟,幼胚侵染完成。将幼胚和侵染液转移到共培养培养基上,认真吸净共培养培养基表面农杆菌悬浮液残液。调整幼胚的方向,胚轴面要与培养基表面接触(角质鳞片面朝上)。用封口膜密封培养皿,20℃暗培养3天。共培养三天后,幼胚被转到静息培养基上28℃暗培养7天。用封口膜密封培养皿。所有的共培养幼胚均转到静息和选择培养基上。在静息培养基上幼胚28℃暗培养七天后,所有幼胚被转到含有1.5mg/L草铵膦的选择培养基I上,开始选择两周。两周后,幼胚被转到提高到3mg/L草铵膦的选择培养基II上,隔两到三周,转板一次。在侵染6周后,转化的幼胚中能够观察到少数迅速生长出II型愈伤组织。每一个生长出II型愈伤组织的幼胚被认为是单独的转化。单个生长出II型愈伤组织要命名编号,继续选择。抗性II型幼胚愈伤组织转到再生培养基I(2.5mg/L草铵膦),25℃暗培养2-3周。在此阶段后,多数体细胞幼胚变成膨胀、不透明、白色,出现胚芽鞘。转移成熟的细胞幼胚愈伤到再生培养基II。光照培养(25℃,80 to 100μE/m2/s光强;16:8-h光周期)。一周内,体细胞愈伤长出幼苗和根,10天后可以转到培养瓶。培养瓶中促根壮苗。幼苗(5cm)被移到土壤,得到基因编辑玉米T0代植株,T0代玉米自交获得T1代。
对基因编辑T0和T1代植株的靶点序列使用引物5’-GCGCCTAAACATCAGCAGA-3’和5’-ACAACACCGAGGAGCACAC-3’进行PCR扩增检测并测序,共获得6个双纯合突变体分别命名为ZmD13-cr1、ZmD13-cr2,ZmD13-cr3,ZmD13-cr4,ZmD13-cr5和ZmD13-cr6。对6个双纯合突变体进行表型测定和观察,结果显示6个双纯合突变体的表型与d13突变体表型高度相似,表现为茎节缩短,植株矮化,株高和穗位高分别约为野生型转基因受体自交系B104(图7中WT)的61.0%~69.5%和75.6%~92.9%(表2和图7)。
表2.基因编辑突变体和野生型B104株高和穗位高比较
Figure BDA0003545883660000121
6个双纯合突变体中,ZmD13-cr1与野生型玉米B104基因组相比,在ZmD13基因的靶点1和靶点2,分别发生了“G”的1个核苷酸的缺失和“C”的1个核苷酸的缺失(即缺失了序列表中序列2的第1060位核苷酸和1341位核苷酸),造成ZmD13蛋白功能缺失;
上述ZmD13-cr1突变体中突变后的ZmD13-cr1蛋白质的氨基酸序列如序列表中序列7所示,其编码序列如序列表中序列8所示。
ZmD13-cr2与野生型玉米B104基因组相比,在ZmD13基因的靶点1和靶点2发生了大片段序列删除,即缺失了序列表中序列2的第1059-1340位的282个核苷酸,造成ZmD13蛋白功能缺失;
上述ZmD13-cr2突变体中突变后的ZmD13-cr2蛋白质的氨基酸序列如序列表中序列9所示,其编码序列如序列表中序列10所示。
1.5.3等位测验
此外为进一步验证ZmD13是调控d13表型的关键基因,本发明还进行了等位测验,即将d13分别和ZmD13基因编辑突变体ZmD13-cr1及野生型杂交,分析不同杂交后代表型。结果表明,d13和ZmD13-cr1杂交产生的F1代植株(图8中d13×ZmD13-cr1所代表)株高、穗位和茎节长度均显著低于d13和野生型(WT)杂交产生的F1(图8中d13×WT)。其中株高和穗位降低的比例分别为25.9%和28.6%。以上结果证明了ZmD13具有调控株高功能。
1.6 ZmD13基因自然变异初步挖掘
为挖掘ZmD13基因调控株高发育的自然等位变异,本发明从Maizego网站(http://www.maizego.org/)下载了华中农大严建斌教授公布的513份玉米自交系基因型数据及株高等相关表型数据。提取ZmD13基因及其上游8kb和下游6kb的标记数据,经过滤后获得119个SNP位点。利用一般线性模型(GLM)对表型和基因型进行关联分析发现,共有6个SNP位点与株高性状显著关联,其中1个位于ZmD13基因第二外显子,3个位于3’UTR。此外,本发明还发现3’UTR的3个位点与玉米百粒重性状显著关联(图9)。以上结果表明ZmD13基因具有株高和产量改良的潜在应用价值。
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。
序列表
<110> 中国农业科学院作物科学研究所
<120> ZmD13蛋白在调控玉米株高中的应用
<130> GNCSQ211360
<160> 10
<170> PatentIn version 3.5
<210> 1
<211> 503
<212> PRT
<213> 玉米(Zea mays)
<400> 1
Met Ser Thr Thr Thr Leu Gln Leu Val Pro Trp Pro Pro Glu Pro Ala
1 5 10 15
Arg Ala Ala Val Leu Leu Val Ala Ala Val Val Cys Leu Trp Val Leu
20 25 30
Leu Ser Arg Arg Arg Ala Ala Gly Gly Ser Lys Asp Lys Glu Arg Ala
35 40 45
Ala Arg Leu Pro Pro Gly Ser Phe Gly Trp Pro Leu Val Gly Glu Thr
50 55 60
Leu Asp Phe Val Ser Cys Ala Tyr Ser Ser Arg Pro Glu Ala Phe Val
65 70 75 80
Asp Lys Arg Arg Leu Leu His Gly Ser Ala Val Phe Arg Ser His Leu
85 90 95
Phe Gly Ser Ala Thr Val Val Thr Ser Asp Ala Glu Val Ser Arg Phe
100 105 110
Val Leu His Ser Asp Ala Arg Ala Phe Val Pro Trp Tyr Pro Arg Ser
115 120 125
Leu Thr Glu Leu Met Gly Glu Ser Ser Ile Leu Leu Ile Asn Gly Ser
130 135 140
Leu Gln Arg Arg Val His Gly Leu Val Gly Ala Phe Phe Lys Ser Pro
145 150 155 160
Gln Leu Lys Ala Gln Val Thr Ala Asp Met Gln Arg Arg Leu Ala Pro
165 170 175
Ala Leu Ala Ala Trp Lys Val Arg Cys Ala Ser Ala Pro Pro Leu Arg
180 185 190
Ile Gln Asp His Ala Lys Thr Ile Val Phe Glu Ile Leu Val Arg Gly
195 200 205
Leu Ile Gly Leu Glu Ala Gly Pro Glu Met Gln Gln Leu Lys His Gln
210 215 220
Phe Gln Glu Phe Ile Val Gly Leu Met Ser Leu Pro Ile Lys Leu Pro
225 230 235 240
Gly Thr Arg Leu Tyr Arg Ser Leu Gln Ala Lys Lys Arg Met Ala Thr
245 250 255
Leu Ile Gln Gly Ile Ile Gln Glu Lys Arg Arg Arg Arg Arg Ala Ala
260 265 270
Leu Glu Asp Gly Gly Glu Gly Glu Gly Glu Ala Gly Pro Pro Arg Asp
275 280 285
Val Ile Asp Val Leu Ile Ser Gly Gly Asp Glu Leu Thr Asp Glu Leu
290 295 300
Ile Ser Asp Asn Met Ile Asp Leu Met Ile Pro Ala Glu Asp Ser Val
305 310 315 320
Pro Val Leu Ile Thr Leu Ala Val Lys Tyr Leu Ser Glu Cys Pro Leu
325 330 335
Ala Leu Gln Gln Leu Glu Glu Glu Asn Met Gln Leu Lys Arg Arg Lys
340 345 350
Thr Asp Val Gly Glu Thr Leu Gln Trp Thr Asp Tyr Met Ser Leu Ser
355 360 365
Phe Thr Gln His Val Ile Thr Glu Thr Leu Arg Met Gly Asn Ile Ile
370 375 380
Asn Gly Ile Met Arg Lys Ala Val Arg Asp Val Glu Val Lys Gly His
385 390 395 400
Leu Ile Pro Lys Gly Trp Cys Val Phe Val Tyr Phe Arg Ser Val His
405 410 415
Leu Asp Asp Lys Arg Tyr Asp Glu Pro Tyr Arg Phe Asn Pro Trp Arg
420 425 430
Trp Lys Glu Lys Asp Thr Ser Thr Met Gly Phe Thr Pro Phe Gly Gly
435 440 445
Gly Gln Arg Leu Cys Pro Gly Leu Asp Leu Ala Arg Leu Glu Ala Ser
450 455 460
Ile Phe Leu His His Leu Val Thr Ser Phe Arg Trp Val Ala Glu Glu
465 470 475 480
Asp His Ile Val Asn Phe Pro Thr Val Arg Leu Lys Arg Gly Met Pro
485 490 495
Val Arg Leu Thr Ser Lys Asp
500
<210> 2
<211> 1512
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgtcgacca ccaccctgca gctggttccg tggccgccgg agccggcgcg cgccgccgtg 60
ctgcttgttg cggcggtcgt ctgcctgtgg gtgcttctgt cacgcaggcg ggccgccgga 120
gggagcaagg acaaggagcg ggcggcccgg ctcccgcccg gcagcttcgg gtggccgctg 180
gtgggcgaga cgctggactt cgtgtcctgc gcctactcct cccgcccgga ggccttcgtc 240
gacaagcgcc gcctgctgca cgggagcgcg gtgttccggt cgcacctgtt cggctcggcg 300
acggtggtga cgtcggacgc ggaggtgagc cggttcgtgc tgcacagcga cgcgcgcgcc 360
ttcgtgccct ggtacccgcg gtcgctgacg gagctcatgg gcgagtcctc catcctgctc 420
atcaacggca gcctgcagcg gcgcgtgcac ggcctcgtcg gcgccttctt caagtcgccg 480
cagctcaagg cgcaggtcac cgccgacatg cagcgccgcc tcgcgcccgc gctcgccgcc 540
tggaaggttc ggtgcgcctc cgcgccgccg ctccgcatcc aggaccacgc caagacgatc 600
gtgttcgaga tcctggtgag gggtctgatc gggctggagg caggcccgga gatgcagcag 660
ctcaagcacc agttccagga attcattgtc ggcctcatgt ccctccccat caagctgccg 720
gggactaggc tctacaggtc cctccaggcc aagaagagga tggccacgct gatacagggg 780
atcatacagg agaagaggcg gcggcggagg gccgcccttg aggatggcgg agagggcgag 840
ggcgaggccg gtcccccgcg cgacgtcatc gacgtgctca taagcggcgg cgacgagctc 900
accgacgagc tcatatccga caacatgatc gacctgatga tccccgccga ggactctgtg 960
cccgtgctca tcacgctcgc cgtcaagtat ctcagcgagt gcccgcttgc tctgcaacaa 1020
cttgaggagg agaacatgca gctgaagagg cggaaaaccg acgtgggaga gaccttgcag 1080
tggacggact acatgtcact gtcgttcaca caacatgtga taacggagac actgcggatg 1140
gggaatatca tcaacgggat catgcgcaaa gcggtgcggg acgtggaggt gaaggggcac 1200
ctcatcccca agggctggtg cgtgttcgtg tacttccggt cggtccacct cgacgacaag 1260
cgctacgacg agccctacag gttcaacccg tggaggtgga aggagaagga cacgagcacc 1320
atgggcttca ccccttttgg cggtgggcag aggctgtgcc caggcctgga tctggccagg 1380
ctggaagctt ccatctttct ccatcacctg gtgaccagct tcaggtgggt ggcggaggag 1440
gaccacatcg tcaacttccc aaccgtgcgg ctcaagcgag gcatgcccgt caggctcacc 1500
agcaaagact ag 1512
<210> 3
<211> 492
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Ser Thr Thr Thr Leu Gln Leu Val Pro Trp Pro Pro Glu Pro Ala
1 5 10 15
Arg Ala Ala Val Leu Leu Val Ala Ala Val Val Cys Leu Trp Val Leu
20 25 30
Leu Ser Arg Arg Arg Ala Ala Gly Gly Ser Lys Asp Lys Glu Arg Ala
35 40 45
Ala Arg Leu Pro Pro Gly Ser Phe Gly Trp Pro Leu Val Gly Glu Thr
50 55 60
Leu Asp Phe Val Ser Cys Ala Tyr Ser Ser Arg Pro Glu Ala Phe Val
65 70 75 80
Asp Lys Arg Arg Leu Leu His Gly Ser Ala Val Phe Arg Ser His Leu
85 90 95
Phe Gly Ser Ala Thr Val Val Thr Ser Asp Ala Glu Val Ser Arg Phe
100 105 110
Val Leu His Ser Asp Ala Arg Ala Phe Val Pro Trp Tyr Pro Arg Ser
115 120 125
Leu Thr Glu Leu Met Gly Glu Ser Ser Ile Leu Leu Ile Asn Gly Ser
130 135 140
Leu Gln Arg Arg Val His Gly Leu Val Gly Ala Phe Phe Lys Ser Pro
145 150 155 160
Gln Leu Lys Ala Gln Val Thr Ala Asp Met Gln Arg Arg Leu Ala Pro
165 170 175
Ala Leu Ala Ala Trp Lys Val Arg Cys Ala Ser Ala Pro Pro Leu Arg
180 185 190
Ile Gln Asp His Ala Lys Thr Ile Val Phe Glu Ile Leu Val Arg Gly
195 200 205
Leu Ile Gly Leu Glu Ala Gly Pro Glu Met Gln Gln Leu Lys His Gln
210 215 220
Phe Gln Glu Phe Ile Val Gly Leu Met Ser Leu Pro Ile Lys Leu Pro
225 230 235 240
Gly Thr Arg Leu Tyr Arg Ser Leu Gln Ala Lys Lys Arg Met Ala Thr
245 250 255
Leu Ile Gln Gly Ile Ile Gln Glu Lys Arg Arg Arg Arg Arg Ala Ala
260 265 270
Leu Glu Asp Gly Gly Glu Gly Glu Gly Glu Ala Gly Pro Pro Arg Asp
275 280 285
Val Ile Asp Val Leu Ile Ser Gly Gly Asp Glu Leu Thr Asp Glu Leu
290 295 300
Ile Ser Asp Asn Met Ile Asp Leu Met Ile Pro Ala Glu Asp Ser Val
305 310 315 320
Pro Val Leu Ile Thr Leu Ala Val Lys Tyr Leu Ser Glu Cys Pro Leu
325 330 335
Ala Leu Gln Gln Leu Glu Glu Glu Asn Met Gln Leu Lys Arg Arg Lys
340 345 350
Thr Asp Val Gly Glu Thr Leu Gln Trp Thr Asp Tyr Met Ser Leu Ser
355 360 365
Phe Thr Gln His Val Ile Thr Glu Thr Leu Arg Met Gly Asn Ile Ile
370 375 380
Asn Gly Ile Met Arg Lys Ala Val Arg Asp Val Glu Val Lys Gly His
385 390 395 400
Leu Ile Pro Lys Gly Trp Cys Val Phe Val Tyr Phe Arg Ser Val His
405 410 415
Leu Asp Asp Lys Arg Tyr Asp Glu Pro Tyr Arg Phe Asn Pro Trp Arg
420 425 430
Trp Lys Glu Lys Asp Thr Ser Thr Met Gly Phe Thr Pro Phe Gly Gly
435 440 445
Gly Gln Arg Leu Cys Pro Gly Leu Asp Leu Ala Arg Leu Glu Ala Ser
450 455 460
Ile Phe Leu His His Leu Val Thr Ser Phe Arg Trp Val Ala Glu Glu
465 470 475 480
Asp His Ile Val Asn Phe Pro Thr Val Arg Leu Lys
485 490
<210> 4
<211> 1512
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atgtcgacca ccaccctgca gctggttccg tggccgccgg agccggcgcg cgccgccgtg 60
ctgcttgttg cggcggtcgt ctgcctgtgg gtgcttctgt cacgcaggcg ggccgccgga 120
gggagcaagg acaaggagcg ggcggcccgg ctcccgcccg gcagcttcgg gtggccgctg 180
gtgggcgaga cgctggactt cgtgtcctgc gcctactcct cccgcccgga ggccttcgtc 240
gacaagcgcc gcctgctgca cgggagcgcg gtgttccggt cgcacctgtt cggctcggcg 300
acggtggtga cgtcggacgc ggaggtgagc cggttcgtgc tgcacagcga cgcgcgcgcc 360
ttcgtgccct ggtacccgcg gtcgctgacg gagctcatgg gcgagtcctc catcctgctc 420
atcaacggca gcctgcagcg gcgcgtgcac ggcctcgtcg gcgccttctt caagtcgccg 480
cagctcaagg cgcaggtcac cgccgacatg cagcgccgcc tcgcgcccgc gctcgccgcc 540
tggaaggttc ggtgcgcctc cgcgccgccg ctccgcatcc aggaccacgc caagacgatc 600
gtgttcgaga tcctggtgag gggtctgatc gggctggagg caggcccgga gatgcagcag 660
ctcaagcacc agttccagga attcattgtc ggcctcatgt ccctccccat caagctgccg 720
gggactaggc tctacaggtc cctccaggcc aagaagagga tggccacgct gatacagggg 780
atcatacagg agaagaggcg gcggcggagg gccgcccttg aggatggcgg agagggcgag 840
ggcgaggccg gtcccccgcg cgacgtcatc gacgtgctca taagcggcgg cgacgagctc 900
accgacgagc tcatatccga caacatgatc gacctgatga tccccgccga ggactctgtg 960
cccgtgctca tcacgctcgc cgtcaagtat ctcagcgagt gcccgcttgc tctgcaacaa 1020
cttgaggagg agaacatgca gctgaagagg cggaaaaccg acgtgggaga gaccttgcag 1080
tggacggact acatgtcact gtcgttcaca caacatgtga taacggagac actgcggatg 1140
gggaatatca tcaacgggat catgcgcaaa gcggtgcggg acgtggaggt gaaggggcac 1200
ctcatcccca agggctggtg cgtgttcgtg tacttccggt cggtccacct cgacgacaag 1260
cgctacgacg agccctacag gttcaacccg tggaggtgga aggagaagga cacgagcacc 1320
atgggcttca ccccttttgg cggtgggcag aggctgtgcc caggcctgga tctggccagg 1380
ctggaagctt ccatctttct ccatcacctg gtgaccagct tcaggtgggt ggcggaggag 1440
gaccacatcg tcaacttccc aaccgtgcgg ctcaagtgag gcatgcccgt caggctcacc 1500
agcaaagact ag 1512
<210> 5
<211> 1486
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
aggagaacac atgcacacta aaaagataaa actgtagagt cctgttgtca aaatactcaa 60
ttgtccttta gaccatgtct aactgttcat ttatatgatt ctctaaaaca ctgatattat 120
tgtagtacta tagattatat tattcgtaga gtaaagttta aatatatgta taaagataga 180
taaactgcac ttcaaacaag tgtgacaaaa aaaatatgtg gtaatttttt ataacttaga 240
catgcaatgc tcattatctc tagagagggg cacgaccggg tcacgctgca ctgcacaagc 300
taattggccc ttacaaaata gctagacgtg caggtggctg gatgtgcgct ccctgaatat 360
caacttgtgt ctcctccgat tcagtccgca gatgaaactt ggtaataact gcagctgatc 420
cgtcgtcatt catgctatgc aggggattcg atcttcagca tgtgcagtgc aggcaacaac 480
aatctacgtt gtctgggctt gcgataggta cacgaccacg agggaaggca acgcgtgatg 540
tatgggccgc gcctaagcat ccagcccacg cgggcgtgcg cgtcgtcgct acggcttgcg 600
ggggaaggga tcaagggacg aaccgagaac tagtaccaga ccggccagcg agcattgcag 660
acaccggctt ataagttcag ctgcgaccac cgctccgaag aggcggaaaa ccgacggttt 720
tagagctaga aatagcaagt taaaataagg ctagtccgtt atcaacttga aaaagtggca 780
ccgagtcggt gcttttttta agctaattgg cccttacaaa atagctagac gtgcaggtgg 840
ctggatgtgc gctccctgaa tatcaacttg tgtctcctcc gattcagtcc gcagatgaaa 900
cttggtaata actgcagctg atccgtcgtc attcatgcta tgcaggggat tcgatcttca 960
gcatgtgcag tgcaggcaac aacaatctac gttgtctggg cttgcgatag gtacacgacc 1020
acgagggaag gcaacgcgtg atgtatgggc cgcgcctaag catccagccc acgcgggcgt 1080
gcgcgtcgtc gctacggctt gcgggggaag ggatcaaggg acgaaccgag aactagtacc 1140
agaccggcca gcgagcattg cagacaccgg cttataagtt cagctgcgac caccgctccg 1200
gcttcacccc ttttggcggg ttttagagct agaaatagca agttaaaata aggctagtcc 1260
gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt ttaagcttgg cactggccgt 1320
cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc gccttgcagc 1380
acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcaccgatc gcccttccca 1440
acagttgcgc agcctgaatg gcgaatgcta gagcagcttg agcttg 1486
<210> 6
<211> 6271
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
aagcttgtgc agtgcagcgt gacccggtcg tgcccctctc tagagataat gagcattgca 60
tgtctaagtt ataaaaaatt accacatatt ttttttgtca cacttgtttg aagtgcagtt 120
tatctatctt tatacatata tttaaacttt actctacgaa taatataatc tatagtacta 180
caataatatc agtgttttag agaatcatat aaatgaacag ttagacatgg tctaaaggac 240
aattgagtat tttgacaaca ggactctaca gttttatctt tttagtgtgc atgtgttctc 300
cttttttttt gcaaatagct tcacctatat aatacttcat ccattttatt agtacatcca 360
tttagggttt agggttaatg gtttttatag actaattttt ttagtacatc tattttattc 420
tattttagcc tctaaattaa gaaaactaaa actctatttt agttttttta tttaataatt 480
tagatataaa atagaataaa ataaagtgac taaaaattaa acaaataccc tttaagaaat 540
taaaaaaact aaggaaacat ttttcttgtt tcgagtagat aatgccagcc tgttaaacgc 600
cgtcgacgag tctaacggac accaaccagc gaaccagcag cgtcgcgtcg ggccaagcga 660
agcagacggc acggcatctc tgtcgctgcc tctggacccc tctcgagagt tccgctccac 720
cgttggactt gctccgctgt cggcatccag aaattgcgtg gcggagcggc agacgtgagc 780
cggcacggca ggcggcctcc tcctcctctc acggcaccgg cagctacggg ggattccttt 840
cccaccgctc cttcgctttc ccttcctcgc ccgccgtaat aaatagacac cccctccaca 900
ccctctttcc ccaacctcgt gttgttcgga gcgcacacac acacaaccag atctccccca 960
aatccacccg tcggcacctc cgcttcaagg tacgccgctc gtcctccccc cccccccctc 1020
tctaccttct ctagatcggc gttccggtcc atggttaggg cccggtagtt ctacttctgt 1080
tcatgtttgt gttagatccg tgtttgtgtt agatccgtgc tgctagcgtt cgtacacgga 1140
tgcgacctgt acgtcagaca cgttctgatt gctaacttgc cagtgtttct ctttggggaa 1200
tcctgggatg gctctagccg ttccgcagac gggatcgatt tcatgatttt ttttgtttcg 1260
ttgcataggg tttggtttgc ccttttcctt tatttcaata tatgccgtgc acttgtttgt 1320
cgggtcatct tttcatgctt ttttttgtct tggttgtgat gatgtggtct ggttgggcgg 1380
tcgttctaga tcggagtaga attctgtttc aaactacctg gtggatttat taattttgga 1440
tctgtatgtg tgtgccatac atattcatag ttacgaattg aagatgatgg atggaaatat 1500
cgatctagga taggtataca tgttgatgcg ggttttactg atgcatatac agagatgctt 1560
tttgttcgct tggttgtgat gatgtggtgt ggttgggcgg tcgttcattc gttctagatc 1620
ggagtagaat actgtttcaa actacctggt gtatttatta attttggaac tgtatgtgtg 1680
tgtcatacat cttcatagtt acgagtttaa gatggatgga aatatcgatc taggataggt 1740
atacatgttg atgtgggttt tactgatgca tatacatgat ggcatatgca gcatctattc 1800
atatgctcta accttgagta cctatctatt ataataaaca agtatgtttt ataattattt 1860
tgatcttgat atacttggat gatggcatat gcagcagcta tatgtggatt tttttagccc 1920
tgccttcata cgctatttat ttgcttggta ctgtttcttt tgtcgatgct caccctgttg 1980
tttggtgtta cttctgcaga tggactataa ggaccacgac ggagactaca aggatcatga 2040
tattgattac aaagacgatg acgataagat ggccccaaag aagaagcgga aggtcggtat 2100
ccacggagtc ccagcagccg acaagaagta cagcatcggc ctggacatcg gcaccaactc 2160
tgtgggctgg gccgtgatca ccgacgagta caaggtgccc agcaagaaat tcaaggtgct 2220
gggcaacacc gaccggcaca gcatcaagaa gaacctgatc ggagccctgc tgttcgacag 2280
cggcgaaaca gccgaggcca cccggctgaa gagaaccgcc agaagaagat acaccagacg 2340
gaagaaccgg atctgctatc tgcaagagat cttcagcaac gagatggcca aggtggacga 2400
cagcttcttc cacagactgg aagagtcctt cctggtggaa gaggataaga agcacgagcg 2460
gcaccccatc ttcggcaaca tcgtggacga ggtggcctac cacgagaagt accccaccat 2520
ctaccacctg agaaagaaac tggtggacag caccgacaag gccgacctgc ggctgatcta 2580
tctggccctg gcccacatga tcaagttccg gggccacttc ctgatcgagg gcgacctgaa 2640
ccccgacaac agcgacgtgg acaagctgtt catccagctg gtgcagacct acaaccagct 2700
gttcgaggaa aaccccatca acgccagcgg cgtggacgcc aaggccatcc tgtctgccag 2760
actgagcaag agcagacggc tggaaaatct gatcgcccag ctgcccggcg agaagaagaa 2820
tggcctgttc ggaaacctga ttgccctgag cctgggcctg acccccaact tcaagagcaa 2880
cttcgacctg gccgaggatg ccaaactgca gctgagcaag gacacctacg acgacgacct 2940
ggacaacctg ctggcccaga tcggcgacca gtacgccgac ctgtttctgg ccgccaagaa 3000
cctgtccgac gccatcctgc tgagcgacat cctgagagtg aacaccgaga tcaccaaggc 3060
ccccctgagc gcctctatga tcaagagata cgacgagcac caccaggacc tgaccctgct 3120
gaaagctctc gtgcggcagc agctgcctga gaagtacaaa gagattttct tcgaccagag 3180
caagaacggc tacgccggct acattgacgg cggagccagc caggaagagt tctacaagtt 3240
catcaagccc atcctggaaa agatggacgg caccgaggaa ctgctcgtga agctgaacag 3300
agaggacctg ctgcggaagc agcggacctt cgacaacggc agcatccccc accagatcca 3360
cctgggagag ctgcacgcca ttctgcggcg gcaggaagat ttttacccat tcctgaagga 3420
caaccgggaa aagatcgaga agatcctgac cttccgcatc ccctactacg tgggccctct 3480
ggccagggga aacagcagat tcgcctggat gaccagaaag agcgaggaaa ccatcacccc 3540
ctggaacttc gaggaagtgg tggacaaggg cgcttccgcc cagagcttca tcgagcggat 3600
gaccaacttc gataagaacc tgcccaacga gaaggtgctg cccaagcaca gcctgctgta 3660
cgagtacttc accgtgtata acgagctgac caaagtgaaa tacgtgaccg agggaatgag 3720
aaagcccgcc ttcctgagcg gcgagcagaa aaaggccatc gtggacctgc tgttcaagac 3780
caaccggaaa gtgaccgtga agcagctgaa agaggactac ttcaagaaaa tcgagtgctt 3840
cgactccgtg gaaatctccg gcgtggaaga tcggttcaac gcctccctgg gcacatacca 3900
cgatctgctg aaaattatca aggacaagga cttcctggac aatgaggaaa acgaggacat 3960
tctggaagat atcgtgctga ccctgacact gtttgaggac agagagatga tcgaggaacg 4020
gctgaaaacc tatgcccacc tgttcgacga caaagtgatg aagcagctga agcggcggag 4080
atacaccggc tggggcaggc tgagccggaa gctgatcaac ggcatccggg acaagcagtc 4140
cggcaagaca atcctggatt tcctgaagtc cgacggcttc gccaacagaa acttcatgca 4200
gctgatccac gacgacagcc tgacctttaa agaggacatc cagaaagccc aggtgtccgg 4260
ccagggcgat agcctgcacg agcacattgc caatctggcc ggcagccccg ccattaagaa 4320
gggcatcctg cagacagtga aggtggtgga cgagctcgtg aaagtgatgg gccggcacaa 4380
gcccgagaac atcgtgatcg aaatggccag agagaaccag accacccaga agggacagaa 4440
gaacagccgc gagagaatga agcggatcga agagggcatc aaagagctgg gcagccagat 4500
cctgaaagaa caccccgtgg aaaacaccca gctgcagaac gagaagctgt acctgtacta 4560
cctgcagaat gggcgggata tgtacgtgga ccaggaactg gacatcaacc ggctgtccga 4620
ctacgatgtg gaccatatcg tgcctcagag ctttctgaag gacgactcca tcgacaacaa 4680
ggtgctgacc agaagcgaca agaaccgggg caagagcgac aacgtgccct ccgaagaggt 4740
cgtgaagaag atgaagaact actggcggca gctgctgaac gccaagctga ttacccagag 4800
aaagttcgac aatctgacca aggccgagag aggcggcctg agcgaactgg ataaggccgg 4860
cttcatcaag agacagctgg tggaaacccg gcagatcaca aagcacgtgg cacagatcct 4920
ggactcccgg atgaacacta agtacgacga gaatgacaag ctgatccggg aagtgaaagt 4980
gatcaccctg aagtccaagc tggtgtccga tttccggaag gatttccagt tttacaaagt 5040
gcgcgagatc aacaactacc accacgccca cgacgcctac ctgaacgccg tcgtgggaac 5100
cgccctgatc aaaaagtacc ctaagctgga aagcgagttc gtgtacggcg actacaaggt 5160
gtacgacgtg cggaagatga tcgccaagag cgagcaggaa atcggcaagg ctaccgccaa 5220
gtacttcttc tacagcaaca tcatgaactt tttcaagacc gagattaccc tggccaacgg 5280
cgagatccgg aagcggcctc tgatcgagac aaacggcgaa accggggaga tcgtgtggga 5340
taagggccgg gattttgcca ccgtgcggaa agtgctgagc atgccccaag tgaatatcgt 5400
gaaaaagacc gaggtgcaga caggcggctt cagcaaagag tctatcctgc ccaagaggaa 5460
cagcgataag ctgatcgcca gaaagaagga ctgggaccct aagaagtacg gcggcttcga 5520
cagccccacc gtggcctatt ctgtgctggt ggtggccaaa gtggaaaagg gcaagtccaa 5580
gaaactgaag agtgtgaaag agctgctggg gatcaccatc atggaaagaa gcagcttcga 5640
gaagaatccc atcgactttc tggaagccaa gggctacaaa gaagtgaaaa aggacctgat 5700
catcaagctg cctaagtact ccctgttcga gctggaaaac ggccggaaga gaatgctggc 5760
ctctgccggc gaactgcaga agggaaacga actggccctg ccctccaaat atgtgaactt 5820
cctgtacctg gccagccact atgagaagct gaagggctcc cccgaggata atgagcagaa 5880
acagctgttt gtggaacagc acaagcacta cctggacgag atcatcgagc agatcagcga 5940
gttctccaag agagtgatcc tggccgacgc taatctggac aaagtgctgt ccgcctacaa 6000
caagcaccgg gataagccca tcagagagca ggccgagaat atcatccacc tgtttaccct 6060
gaccaatctg ggagcccctg ccgccttcaa gtactttgac accaccatcg accggaagag 6120
gtacaccagc accaaagagg tgctggacgc caccctgatc caccagagca tcaccggcct 6180
gtacgagaca cggatcgacc tgtctcagct gggaggcgac aaaaggccgg cggccacgaa 6240
aaaggccggc caggcaaaaa agaaaaagta a 6271
<210> 7
<211> 372
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 7
Met Ser Thr Thr Thr Leu Gln Leu Val Pro Trp Pro Pro Glu Pro Ala
1 5 10 15
Arg Ala Ala Val Leu Leu Val Ala Ala Val Val Cys Leu Trp Val Leu
20 25 30
Leu Ser Arg Arg Arg Ala Ala Gly Gly Ser Lys Asp Lys Glu Arg Ala
35 40 45
Ala Arg Leu Pro Pro Gly Ser Phe Gly Trp Pro Leu Val Gly Glu Thr
50 55 60
Leu Asp Phe Val Ser Cys Ala Tyr Ser Ser Arg Pro Glu Ala Phe Val
65 70 75 80
Asp Lys Arg Arg Leu Leu His Gly Ser Ala Val Phe Arg Ser His Leu
85 90 95
Phe Gly Ser Ala Thr Val Val Thr Ser Asp Ala Glu Val Ser Arg Phe
100 105 110
Val Leu His Ser Asp Ala Arg Ala Phe Val Pro Trp Tyr Pro Arg Ser
115 120 125
Leu Thr Glu Leu Met Gly Glu Ser Ser Ile Leu Leu Ile Asn Gly Ser
130 135 140
Leu Gln Arg Arg Val His Gly Leu Val Gly Ala Phe Phe Lys Ser Pro
145 150 155 160
Gln Leu Lys Ala Gln Val Thr Ala Asp Met Gln Arg Arg Leu Ala Pro
165 170 175
Ala Leu Ala Ala Trp Lys Val Arg Cys Ala Ser Ala Pro Pro Leu Arg
180 185 190
Ile Gln Asp His Ala Lys Thr Ile Val Phe Glu Ile Leu Val Arg Gly
195 200 205
Leu Ile Gly Leu Glu Ala Gly Pro Glu Met Gln Gln Leu Lys His Gln
210 215 220
Phe Gln Glu Phe Ile Val Gly Leu Met Ser Leu Pro Ile Lys Leu Pro
225 230 235 240
Gly Thr Arg Leu Tyr Arg Ser Leu Gln Ala Lys Lys Arg Met Ala Thr
245 250 255
Leu Ile Gln Gly Ile Ile Gln Glu Lys Arg Arg Arg Arg Arg Ala Ala
260 265 270
Leu Glu Asp Gly Gly Glu Gly Glu Gly Glu Ala Gly Pro Pro Arg Asp
275 280 285
Val Ile Asp Val Leu Ile Ser Gly Gly Asp Glu Leu Thr Asp Glu Leu
290 295 300
Ile Ser Asp Asn Met Ile Asp Leu Met Ile Pro Ala Glu Asp Ser Val
305 310 315 320
Pro Val Leu Ile Thr Leu Ala Val Lys Tyr Leu Ser Glu Cys Pro Leu
325 330 335
Ala Leu Gln Gln Leu Glu Glu Glu Asn Met Gln Leu Lys Arg Arg Lys
340 345 350
Thr Thr Trp Glu Arg Pro Cys Ser Gly Arg Thr Thr Cys His Cys Arg
355 360 365
Ser His Asn Met
370
<210> 8
<211> 1511
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
atgtcgacca ccaccctgca gctggttccg tggccgccgg agccggcgcg cgccgccgtg 60
ctgcttgttg cggcggtcgt ctgcctgtgg gtgcttctgt cacgcaggcg ggccgccgga 120
gggagcaagg acaaggagcg ggcggcccgg ctcccgcccg gcagcttcgg gtggccgctg 180
gtgggcgaga cgctggactt cgtgtcctgc gcctactcct cccgcccgga ggccttcgtc 240
gacaagcgcc gcctgctgca cgggagcgcg gtgttccggt cgcacctgtt cggctcggcg 300
acggtggtga cgtcggacgc ggaggtgagc cggttcgtgc tgcacagcga cgcgcgcgcc 360
ttcgtgccct ggtacccgcg gtcgctgacg gagctcatgg gcgagtcctc catcctgctc 420
atcaacggca gcctgcagcg gcgcgtgcac ggcctcgtcg gcgccttctt caagtcgccg 480
cagctcaagg cgcaggtcac cgccgacatg cagcgccgcc tcgcgcccgc gctcgccgcc 540
tggaaggttc ggtgcgcctc cgcgccgccg ctccgcatcc aggaccacgc caagacgatc 600
gtgttcgaga tcctggtgag gggtctgatc gggctggagg caggcccgga gatgcagcag 660
ctcaagcacc agttccagga attcattgtc ggcctcatgt ccctccccat caagctgccg 720
gggactaggc tctacaggtc cctccaggcc aagaagagga tggccacgct gatacagggg 780
atcatacagg agaagaggcg gcggcggagg gccgcccttg aggatggcgg agagggcgag 840
ggcgaggccg gtcccccgcg cgacgtcatc gacgtgctca taagcggcgg cgacgagctc 900
accgacgagc tcatatccga caacatgatc gacctgatga tccccgccga ggactctgtg 960
cccgtgctca tcacgctcgc cgtcaagtat ctcagcgagt gcccgcttgc tctgcaacaa 1020
cttgaggagg agaacatgca gctgaagagg cggaaaacca cgtgggagag accttgcagt 1080
ggacggacta catgtcactg tcgttcacac aacatgtgat aacggagaca ctgcggatgg 1140
ggaatatcat caacgggatc atgcgcaaag cggtgcggga cgtggaggtg aaggggcacc 1200
tcatccccaa gggctggtgc gtgttcgtgt acttccggtc ggtccacctc gacgacaagc 1260
gctacgacga gccctacagg ttcaacccgt ggaggtggaa ggagaaggac acgagcacca 1320
tgggcttcac cccttttggc ggtgggcaga ggctgtgccc aggcctggat ctggccaggc 1380
tggaagcttc catctttctc catcacctgg tgaccagctt caggtgggtg gcggaggagg 1440
accacatcgt caacttccca accgtgcggc tcaagcgagg catgcccgtc aggctcacca 1500
gcaaagacta g 1511
<210> 9
<211> 409
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 9
Met Ser Thr Thr Thr Leu Gln Leu Val Pro Trp Pro Pro Glu Pro Ala
1 5 10 15
Arg Ala Ala Val Leu Leu Val Ala Ala Val Val Cys Leu Trp Val Leu
20 25 30
Leu Ser Arg Arg Arg Ala Ala Gly Gly Ser Lys Asp Lys Glu Arg Ala
35 40 45
Ala Arg Leu Pro Pro Gly Ser Phe Gly Trp Pro Leu Val Gly Glu Thr
50 55 60
Leu Asp Phe Val Ser Cys Ala Tyr Ser Ser Arg Pro Glu Ala Phe Val
65 70 75 80
Asp Lys Arg Arg Leu Leu His Gly Ser Ala Val Phe Arg Ser His Leu
85 90 95
Phe Gly Ser Ala Thr Val Val Thr Ser Asp Ala Glu Val Ser Arg Phe
100 105 110
Val Leu His Ser Asp Ala Arg Ala Phe Val Pro Trp Tyr Pro Arg Ser
115 120 125
Leu Thr Glu Leu Met Gly Glu Ser Ser Ile Leu Leu Ile Asn Gly Ser
130 135 140
Leu Gln Arg Arg Val His Gly Leu Val Gly Ala Phe Phe Lys Ser Pro
145 150 155 160
Gln Leu Lys Ala Gln Val Thr Ala Asp Met Gln Arg Arg Leu Ala Pro
165 170 175
Ala Leu Ala Ala Trp Lys Val Arg Cys Ala Ser Ala Pro Pro Leu Arg
180 185 190
Ile Gln Asp His Ala Lys Thr Ile Val Phe Glu Ile Leu Val Arg Gly
195 200 205
Leu Ile Gly Leu Glu Ala Gly Pro Glu Met Gln Gln Leu Lys His Gln
210 215 220
Phe Gln Glu Phe Ile Val Gly Leu Met Ser Leu Pro Ile Lys Leu Pro
225 230 235 240
Gly Thr Arg Leu Tyr Arg Ser Leu Gln Ala Lys Lys Arg Met Ala Thr
245 250 255
Leu Ile Gln Gly Ile Ile Gln Glu Lys Arg Arg Arg Arg Arg Ala Ala
260 265 270
Leu Glu Asp Gly Gly Glu Gly Glu Gly Glu Ala Gly Pro Pro Arg Asp
275 280 285
Val Ile Asp Val Leu Ile Ser Gly Gly Asp Glu Leu Thr Asp Glu Leu
290 295 300
Ile Ser Asp Asn Met Ile Asp Leu Met Ile Pro Ala Glu Asp Ser Val
305 310 315 320
Pro Val Leu Ile Thr Leu Ala Val Lys Tyr Leu Ser Glu Cys Pro Leu
325 330 335
Ala Leu Gln Gln Leu Glu Glu Glu Asn Met Gln Leu Lys Arg Arg Lys
340 345 350
Thr Gly Gly Gln Arg Leu Cys Pro Gly Leu Asp Leu Ala Arg Leu Glu
355 360 365
Ala Ser Ile Phe Leu His His Leu Val Thr Ser Phe Arg Trp Val Ala
370 375 380
Glu Glu Asp His Ile Val Asn Phe Pro Thr Val Arg Leu Lys Arg Gly
385 390 395 400
Met Pro Val Arg Leu Thr Ser Lys Asp
405
<210> 10
<211> 1230
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
atgtcgacca ccaccctgca gctggttccg tggccgccgg agccggcgcg cgccgccgtg 60
ctgcttgttg cggcggtcgt ctgcctgtgg gtgcttctgt cacgcaggcg ggccgccgga 120
gggagcaagg acaaggagcg ggcggcccgg ctcccgcccg gcagcttcgg gtggccgctg 180
gtgggcgaga cgctggactt cgtgtcctgc gcctactcct cccgcccgga ggccttcgtc 240
gacaagcgcc gcctgctgca cgggagcgcg gtgttccggt cgcacctgtt cggctcggcg 300
acggtggtga cgtcggacgc ggaggtgagc cggttcgtgc tgcacagcga cgcgcgcgcc 360
ttcgtgccct ggtacccgcg gtcgctgacg gagctcatgg gcgagtcctc catcctgctc 420
atcaacggca gcctgcagcg gcgcgtgcac ggcctcgtcg gcgccttctt caagtcgccg 480
cagctcaagg cgcaggtcac cgccgacatg cagcgccgcc tcgcgcccgc gctcgccgcc 540
tggaaggttc ggtgcgcctc cgcgccgccg ctccgcatcc aggaccacgc caagacgatc 600
gtgttcgaga tcctggtgag gggtctgatc gggctggagg caggcccgga gatgcagcag 660
ctcaagcacc agttccagga attcattgtc ggcctcatgt ccctccccat caagctgccg 720
gggactaggc tctacaggtc cctccaggcc aagaagagga tggccacgct gatacagggg 780
atcatacagg agaagaggcg gcggcggagg gccgcccttg aggatggcgg agagggcgag 840
ggcgaggccg gtcccccgcg cgacgtcatc gacgtgctca taagcggcgg cgacgagctc 900
accgacgagc tcatatccga caacatgatc gacctgatga tccccgccga ggactctgtg 960
cccgtgctca tcacgctcgc cgtcaagtat ctcagcgagt gcccgcttgc tctgcaacaa 1020
cttgaggagg agaacatgca gctgaagagg cggaaaaccg gtgggcagag gctgtgccca 1080
ggcctggatc tggccaggct ggaagcttcc atctttctcc atcacctggt gaccagcttc 1140
aggtgggtgg cggaggagga ccacatcgtc aacttcccaa ccgtgcggct caagcgaggc 1200
atgcccgtca ggctcaccag caaagactag 1230

Claims (10)

1.蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质的应用,其特征在于:所述应用为下述任一种:
P1、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物株高或降低植物株高中的应用;
P2、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物茎节长度或缩短植物茎节长度中的应用;
P3、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物细胞伸长或抑制植物细胞伸长中的应用;
P4、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物叶长或缩短植物叶长中的应用;
P5、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在调控植物穗长或缩短植物穗长中的应用;
P6、所述蛋白质或调控所述蛋白质活性或含量的物质或调控所述蛋白质编码基因表达的物质在植物育种或品质改良中的应用;
所述蛋白质是如下A1)、A2)、A3)、A4)或A5)的蛋白质:
A1)氨基酸序列是序列表中序列1的蛋白质;
A2)氨基酸序列是序列表中序列3的蛋白质;
A3)氨基酸序列是序列表中序列7的蛋白质;
A4)氨基酸序列是序列表中序列9的蛋白质;
A5)将A1)、A2)、A3)或A4)所示的氨基酸序列经过一个以上氨基酸残基的取代和/或缺失和/或添加得到的且具有相同功能的由A1)、A2)、A3)或A4)衍生的或与A1)、A2)、A3)或A4)所示的蛋白质具有80%以上的同一性且具有相同功能的蛋白质;
A6)在A1)、A2)、A3)、A4)或A5)的N末端或/和C末端连接蛋白标签得到的融合蛋白质。
2.根据权利要求1所述的应用,其特征在于:所述蛋白质来源于玉米。
3.与权利要求1或2中所述蛋白质相关的生物材料的下述任一种应用:
Q1、所述生物材料在调控植物株高或降低植物株高中的应用;
Q2、所述生物材料在调控植物茎节长度或缩短植物茎节长度中的应用;
Q3、所述生物材料在调控植物细胞伸长或抑制植物细胞伸长中的应用;
Q4、所述生物材料在调控植物叶长或缩短植物叶长中的应用;
Q5、所述生物材料在调控植物穗长或缩短植物穗长中的应用;
Q7、所述生物材料在植物育种或品质改良中的应用;
所述生物材料为下述B1)至B9)中的任一种:
B1)编码权利要求1中所述蛋白质的核酸分子;
B2)含有B1)所述核酸分子的表达盒;
B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;
B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物;
B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系;
B6)含有B1)所述核酸分子的转基因植物组织、或含有B2)所述表达盒的转基因植物组织;
B7)含有B1)所述核酸分子的转基因植物器官、或含有B2)所述表达盒的转基因植物器官;
B8)抑制或降低权利要求1中所述蛋白质的编码基因的表达或权利要求1中所述蛋白质活性的核酸分子;
B9)含有B8)所述核酸分子的表达盒、重组载体、重组微生物或转基因植物细胞系。
4.根据权利要求3所述的应用,其特征在于:所述核酸分子为如下b1)或b2)或b3)或b4)或b5)或b6)所示的DNA分子:
b1)编码序列是序列表中序列2所示的DNA分子;
b2)核苷酸序列是序列表中序列4所示的DNA分子;
b3)编码序列是序列表中序列8所示的DNA分子;
b4)编码序列是序列表中序列10所示的DNA分子;
b5)与b1)、b2)、b3)或b4)限定的核苷酸序列具有90%或90%以上同一性,且编码权利要求1中所述蛋白质的DNA分子;
b6)在严格条件下与b1)、b2)、b3)或b4)限定的核苷酸序列杂交,且编码权利要求1中所述蛋白质的DNA分子;
B8)所述核酸分子为表达靶向上文A1)所述蛋白编码基因的gRNA的DNA分子或靶向上文A1)所述蛋白编码基因的gRNA;
5.根据权利要求1-4中任一权利要求所述的应用,其特征在于:所述植物为玉米。
6.一种降低植物株高和/或降低植物茎节长度和/或降低植物细胞伸长和/或降低植物分枝数和/或降低植物叶长和/或降低植物穗长的方法,包括通过抑制或降低植物中权利要求1中所述的蛋白质活性和/或的抑制或降低权利要求1中所述的蛋白质编码基因的表达量来降低植物株高和/或降低植物茎节长度和/或降低植物细胞伸长和/或降低植物叶长和/或降低植物穗长。
7.根据权利要求6所述的方法,其特征在于:所述方法包括向所述植物中导入降低或抑制权利要求1中所述的蛋白编码基因表达和/或降低或抑制权利要求1中所述的蛋白的活性的物质;所述降低或抑制权利要求1中所述蛋白编码基因表达和/或降低或抑制权利要求1中所述的蛋白的活性的物质为如下c1)-c4)任一种物质:
c1)抑制或降低权利要求1中A1)所述蛋白编码基因表达和/或权利要求1中A1)所述蛋白的活性的核酸分子;
c2)含有c1)所述核酸分子的表达盒;
c3)含有c1)所述核酸分子的重组载体、或含有c2)所述表达盒的重组载体;
c4)含有c1)所述核酸分子的重组微生物、或含有c2)所述表达盒的重组微生物、或含有c3)所述重组载体的重组微生物。
8.根据权利要求7所述的方法,其特征在于:
c1)所述的核酸分子为表达靶向所述权利要求1中A1)所述蛋白编码基因的gRNA的DNA分子或靶向权利要求1中A1)所述蛋白编码基因的gRNA;
所述gRNA的靶序列对应于序列表中序列2的第1044-1063位和/或序列表中序列2的第1324-1343位核苷酸。
9.根据权利要求6所述的方法,其特征在于:所述抑制或降低植物基因组中权利要求1中所述蛋白质的编码基因的表达和/或权利要求1中A1)所述蛋白的活性为将植物基因组进行下述至少一种突变:
1)缺失了植物基因组中序列表中序列2的第1060位的1个核苷酸“G”和第1341位的1个核苷酸“C”;
2)缺失了植物基因组中序列表中序列2的第1059-1340位的282个核苷酸;
所述植物为玉米。
10.权利要求1或2中所述的蛋白质和/或权利要求3或4中所述的生物材料。
CN202210248548.2A 2022-03-14 2022-03-14 ZmD13蛋白在调控玉米株高中的应用 Active CN114657157B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210248548.2A CN114657157B (zh) 2022-03-14 2022-03-14 ZmD13蛋白在调控玉米株高中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210248548.2A CN114657157B (zh) 2022-03-14 2022-03-14 ZmD13蛋白在调控玉米株高中的应用

Publications (2)

Publication Number Publication Date
CN114657157A true CN114657157A (zh) 2022-06-24
CN114657157B CN114657157B (zh) 2024-03-01

Family

ID=82029757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210248548.2A Active CN114657157B (zh) 2022-03-14 2022-03-14 ZmD13蛋白在调控玉米株高中的应用

Country Status (1)

Country Link
CN (1) CN114657157B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976055A (zh) * 2023-01-10 2023-04-18 四川农业大学 一种玉米矮秆基因及其分子标记

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060235217A1 (en) * 2000-04-17 2006-10-19 Nickolai Alexandrov Sequence-determined DNA fragments encoding cytochrome P450 proteins
CN101362799A (zh) * 2007-08-10 2009-02-11 中国科学院上海生命科学研究院 调控植物株高的基因及其应用
CN101466259A (zh) * 2005-05-10 2009-06-24 孟山都技术有限公司 用于植物改良的基因及其用途
CN103627716A (zh) * 2013-12-06 2014-03-12 山东农业大学 一种用于改良玉米株型和提高玉米产量的基因的获得方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060235217A1 (en) * 2000-04-17 2006-10-19 Nickolai Alexandrov Sequence-determined DNA fragments encoding cytochrome P450 proteins
CN101466259A (zh) * 2005-05-10 2009-06-24 孟山都技术有限公司 用于植物改良的基因及其用途
CN101362799A (zh) * 2007-08-10 2009-02-11 中国科学院上海生命科学研究院 调控植物株高的基因及其应用
CN103627716A (zh) * 2013-12-06 2014-03-12 山东农业大学 一种用于改良玉米株型和提高玉米产量的基因的获得方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"putative cytochrome P450 superfamily protein [Zea mays]", NCBI REFERENCE SEQUENCE: NP_001170664.1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976055A (zh) * 2023-01-10 2023-04-18 四川农业大学 一种玉米矮秆基因及其分子标记
CN115976055B (zh) * 2023-01-10 2024-04-16 四川农业大学 一种玉米矮秆基因及其分子标记

Also Published As

Publication number Publication date
CN114657157B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN114369147B (zh) Bfne基因在番茄株型改良和生物产量提高中的应用
CN112250742A (zh) 蛋白质及其相关生物材料在调控植物机械强度中的用途
CN114657157B (zh) ZmD13蛋白在调控玉米株高中的应用
CN117757836A (zh) OsHR突变型基因在提高水稻对褐飞虱抗性中的应用
CN111171127B (zh) 紫云英lhy基因及其应用
CN117106817A (zh) 草莓FvMAPK12基因及其编码蛋白和生物材料在调控果实产量和品质中的应用
CN114958867B (zh) 玉米穗粒重和产量调控基因kwe2、其编码蛋白、功能标记、表达载体及应用
CN114262713B (zh) E41基因在调控植物胚胎发育中的应用
CN114703199B (zh) 一种植物抗旱性相关的基因TaCML46及应用
CN112646016B (zh) 改变玉米开花期的基因及方法
CN110878314B (zh) 一种调控番茄茸毛的hl-2基因及其应用
CN108191980B (zh) C4水稻底盘受体材料的设计、创制与应用
CN102675437B (zh) 调节植物器官大小和花器官内部非对称性的方法
CN110229801B (zh) 一种控制水稻叶片衰老的基因及其编码的蛋白质
CN114516908B (zh) 水稻粒形调控蛋白hos59及其编码基因和应用
CN114644701B (zh) 来源于玉米的蛋白及其相关生物材料的应用
CN112646013B (zh) 玉米开花期基因及其应用
CN114606244B (zh) 紫云英agl18基因及其应用
CN111218460B (zh) 棉花GhACO基因在促进植物开花中的应用
CN108841839B (zh) 蛋白质TabZIP60在调控植物对氮素吸收中的应用
CN118853601A (zh) 谷氨酰胺合成酶及其基因BnaGLN1;2a在油菜氮高效育种中的应用
CN115948434A (zh) OsPHOT1基因在提高水稻抗高温和/或黑暗性能中的应用
CN112760339A (zh) 一种快速驯化四倍体野生稻落粒性的方法
CN116063437A (zh) 水稻RNA表观修饰相关基因OsREF及其协同改良产量和抗逆应用
CN118308417A (zh) 水稻sp1基因在培育高产及氮高效的转基因植物中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant