CN114649949A - 大容量双向隔离式直流-直流转换器及其控制方法 - Google Patents

大容量双向隔离式直流-直流转换器及其控制方法 Download PDF

Info

Publication number
CN114649949A
CN114649949A CN202011638772.XA CN202011638772A CN114649949A CN 114649949 A CN114649949 A CN 114649949A CN 202011638772 A CN202011638772 A CN 202011638772A CN 114649949 A CN114649949 A CN 114649949A
Authority
CN
China
Prior art keywords
voltage
converter
stage
low
voltage stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011638772.XA
Other languages
English (en)
Inventor
金元坤
崔德宽
金冈敏
许珉
李阿罗
房兑浩
沈炫佑
金头昊
全秀珉
朴智勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Mobis Co Ltd
Original Assignee
Hyundai Mobis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Mobis Co Ltd filed Critical Hyundai Mobis Co Ltd
Publication of CN114649949A publication Critical patent/CN114649949A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles

Abstract

提供一种大容量双向隔离式直流‑直流转换器及其控制方法,以满足双向大容量隔离式LDC(直流‑直流转换器)的最新要求。本公开提供了一种新的双向隔离式LDC,其中具有不同功率电路拓扑的两个转换器并行操作以便同时启用降压模式和升压模式。所述两个应用的转换器是具有全桥同步整流的相移全桥转换器和有源钳位正向转换器。根据本发明,可以实现应用了全桥同步整流的相移全桥转换器和有源钳位正向转换器两者的优点。因此,可以最小化输出电压和电流纹波,从而在最小化产品运行时产生的电磁波同时,提高了LDC输出功率的质量。

Description

大容量双向隔离式直流-直流转换器及其控制方法
相关申请的交叉引用
本申请要求于2020年12月21日提交的申请号为10-2020-0179562的韩国专利申请的优先权,该专利申请的公开以其整体通过引用并入本文。
技术领域
本公开涉及一种大容量双向电隔离式直流-直流转换器(Low Voltage DC-DCconverter,LDC)及其控制方法。
背景技术
直流-直流转换器,换句话说是低压直流-直流转换器(LDC),其是通过更换内燃机的交流发电机而应用于环境友好型车辆(HEV,PHEV,EV,FCV等)的直流电源设备,是一种从车辆接收高压电池电力(例如,180V至450V)以为低压电池(例如,12V)充电或为电气元件提供所需的电力的重要设备。LDC用于减轻发动机负担,以提高燃油效率并应对不断增加的电负荷。
LDC组件主要由处于高压级的功率转换组件、处于低压级的功率转换组件以及负责功率传送和高压与低压之间的电绝缘的磁性组件组成。
常规的LDC具有从车辆中的高压电池(high-voltage battery,HVB)接收电力,并通过内部电力转换过程以低电压(例如,12V)水平输出电力的单向功能。
近年来,响应于用户需求,车辆的电负荷一直在增加(4kW级),并且能够将功率从低压电池(例如,12V)的电源传送至高压级的双向LDC是必需的。即,需要不仅能够将功率从高压级传送至低压级(降压)的常规单向LDC的功能,而且还能够将功率从低压级传送至高压级(升压)的双向LDC。
当将这种双向LDC应用于车辆时,诸如给高压直流电链路电容器充电(因此,可以删除现有的高压直流电链路电容器的初始充电电路),在紧急情况下给高压电池充电(这可以对高压电池的过放电进行临时保护),并且可以对低压电池进行自我诊断(检测出过放电,劣化等)的各种功能都是可能的,因此,与仅应用现有的单向LDC的情况相比,具有各种优势。
发明内容
如上所述,由于响应于来自用户的最新需求导致的车辆电力负荷的增加,功率容量需要扩大,除了现有的单向隔离式LDC(降压型),还需要用于传送低压功率(例如,12V)至高压级的具有升压功能的LDC(升压型)。本公开提供了一种新的LDC,以满足这种大容量双向隔离式LDC的要求。
为了解决上述问题,本公开提供了一种新的双向隔离式LDC,其中,具有不同功率电路拓扑的两个转换器并行操作,以实现降压模式操作(4kW或更高)和升压模式操作(1.2kW或更高)。这两个转换器分别是具有全桥同步整流的相移全桥转换器,和有源钳位正向转换器。
与其他拓扑相比,应用了全桥同步整流的相移全桥转换器可以(以低成本)将用于高低压级的功率半导体器件的电压额定规格降低一半。随着输出电压(或电流)频率变为切换频率的两倍,可以在最小化半导体功率损耗降的同时,有效减小输出级的无源元件(电感器,电容器等)的尺寸和容量。另外,可以实现一种双向转换器,其能够通过使用拓扑结构中施加到低压级的电感器接收低压功率来将功率传送至高压侧。但是,由于与其他拓扑相比需要更多数量的功率半导体,并且功率半导体的最大切换占空比被限制为50%或更小,因此,如果转换器的输入电压(高电压)波动范围大,则很难获得在整个输入电压波动范围内的最大输出。
另外,与其他拓扑相比,有源钳位正向转换器可以使所使用的功率半导体的数量最小化(因此,实现了低成本),并且由于功率半导体器件的最大切换占空比可以设置为50%或更多(高达75%或更高),甚至在转换器的输入电压(高压)波动很大时,最大输出可能超过整个输入电压波动范围。然而,当增加转换器的输出容量时,难以体现大容量,并且与其他拓扑相比,半导体功率损耗相对较大,因此在效率方面存在缺点。
本公开提出的LDC是新结构的LDC,其中,两个转换器的并行操作结构应用于所述新结构的LDC以利用上述两个转换器的优点。另外,通过适当地控制两个转换器工作时功率半导体元件的切换时间的差异,可以使从转换器输出的电压和电流纹波最小化,从而在由产品运行时生成电磁波最小化的同时提高LDC输出功率的质量。
通过参考附图描述的特定实施例,本公开的配置和操作将变得更加显而易见。
附图说明
结合附图以进行以下详细描述,某些实施例的上述和其他方面、特征以及优点将变得更加明显,其中:
图1是根据本公开实施例的能够双向功率传送的大容量隔离式直流-直流转换器(LDC)的电路图;
图2是用于说明降压模式操作的电路图;
图3是在降压模式下控制双向转换器(100)的功率半导体器件时的每个单元的操作时序图;
图4是在降压模式下控制单向转换器(200)的功率半导体器件时的每个单元的操作时序图;
图5是在降压模式下控制双向转换器(100)和单向转换器(200)的输出时的每个单元的操作时序图;
图6是在降压模式下在控制环路操作之前设置双向转换器(100)和单向转换器(200)的每个功率半导体的切换周期、Tph以及最大PWM占空比的过程的流程图;
图7是用于说明升压模式操作的电路图;以及
图8是在升压模式下控制双向转换器(100)的功率半导体器件时的每个单元的操作时序图。
具体实施方式
从以下结合附图的实施例中,将清楚地理解本实施例的优点和特征以及用于解决该问题的方法。然而,本公开不限于实施例,并且可以以各种其他形式实现本公开。提供这些实施例仅是为了更完整地说明本公开并使本领域普通技术人员能够充分理解本公开的范围,并且本公开的范围仅由权利要求限定。另外,本文中使用的术语是用于描述实施例,而不是意在限制本公开。在本说明书中,除非上下文另外明确指出,否则单数表达包括复数表达。应当进一步理解,在本说明书中使用的术语“包括”或“包含”指定存在所述特征、整数、步骤、操作、元件和/或组件,但是不排除一个或多个其他特征、整数、步骤、操作、元件、组件和/或其组合的存在或增加。
在下文中,将参考附图详细描述本公开的优选实施例。在实施例的描述中,当相关的已知配置或功能的详细描述可能使本公开的主题模糊时,将省略其详细描述。
图1是根据本公开实施例的能够双向功率传送的大容量隔离式直流-直流转换器(LDC)的电路图。
1.首先,将描述每个单元的代表性组件。
·HVB:安装在车辆中的高压电池
·C_DCLINK:连接到LDC高压输出级的直流电链路电容器
·HV_R:在升压模式操作下,连接至高压输出级的外部负荷仿真电阻器
·LVB:安装在车辆中的低压电池(例如,12V)
·LV_R:在降压模式操作下,连接到低压输出级的外部负荷仿真电阻器
·100:双向隔离式转换器(降压/升压转换器)
-降压模式操作:HV(相移全桥:Q1至Q4)→LV(全桥同步整流器:Q5至Q8)
-升压模式操作:LV(电流馈电有源钳位全桥:Q5至Q8,Q13)→HV(全桥整流器:Q1至Q4)
·200:单向隔离式转换器(降压转换器)
-降压模式操作:HV(有源钳位正向)→LV(同步整流器)
2.双向隔离式转换器100的组件如下。
·Q1至Q4:高压(HV)功率半导体。将高压直流电转换为高压交流电。在升压模式下将高压交流电整流为高压直流电。
·TR1:变压器,其转换高压交流电和低压交流电之间功率,并使高压级和低压级电绝缘。
·Q5至Q8:低压(LV)功率半导体,其将低压交流电整流为低压直流电,并在升压模式下将低压直流电转换为低压交流电
·Q13:作为低压(LV)功率半导体开关运行,以减小Q5至Q8的电压应力
·L1:电感器,其在降压模式下平滑输出电压,在升压模式下存储和传送升压功率能量
·Ci:高压(HV)电容器(平滑输入电压)
·Co:低压(LV)电容器(平滑输出电压)
·Cc1:钳位电容器,其在升压模式下降低功率半导体Q5至Q8的漏极到源极电压的应力
·VSEN1:高压级电压传感器
·ISEN1:高压级电流传感器
·VSEN2:低压级电压传感器
·ISEN3:低压级电流传感器
3.单向隔离式转换器200的组件如下。
·Q9,Q10:高压(HV)功率半导体,其将高压直流电转换为高压交流电
·TR2:变压器,其将功率从高压交流电转换为低压交流电,并使高压级与低压级电绝缘
·Q11,Q12:低压(LV)功率半导体(用作同步整流器)
·L2:电感器,其平滑输出电压
·Cc2:钳位电容器,其降低功率半导体Q1,Q2的漏极到源极电压的应力
·ISEN2:高压级电流传感器
·ISEN4:低压级电流传感器
参照图2,将描述降压模式操作。降压模式操作可以是以下操作:通过LDC内部电路的功率转换过程从高压级接收功率并输出降压后的功率至低电压(例如,12V电平)。就是说,如图2所示,在降压模式操作中,可以从高压电池(HVB)输入LDC电源。当从HVB向LDC施加高电压时,两个转换器(即双向转换器100和单向转换器200)可以开始同时并行操作,并且可以将两个转换器的输出功率之和提供给车辆的低压电池(LVB)和电力负荷(LV_R)。
从LDC输出的电压(或电流)应具有尽可能低的电压(或电流)纹波,以改善电能质量和电磁波特性(EMI,EMC等)。当双向转换器100和单向转换器200并行操作时,可以通过适当地调节每个转换器的功率半导体切换开始时间来使LDC的输出电压(或电流)纹波最小化。
另外,可以通过由控制器控制用于控制每个转换器的功率半导体元件的切换电压(PWM)的最大占空比来控制双向转换器100和单向转换器200的输出功率。通过根据输出功率限制每个转换器的最大输出功率(最大占空比控制),可以最小化LDC内部电路的半导体功率损耗(即,最大化LDC效率)。
在图2中示出了用于控制两个转换器的输入和输出级的电压和电流感测位置。即,可以通过电压传感器VSEN1来感测LDC的输入级处的高电压,并且可以通过电流传感器ISEN1来感测在高压电路中流动的电流并将该电流用于输入电流控制。另外,可以通过电压传感器VSEN2感测来自LDC的低压级的输出电压,并且可以通过电流传感器ISEN3和ISEN4感测在低压电路中流动的输出电流,并将输出电流用于控制每个转换器的电流输出。
图3示出了在降压模式操作下控制双向转换器100的功率半导体器件的方法以及每个组件的操作时序图。
功率半导体Q1至Q4执行相移全桥切换操作,并且切换周期为Tsw,Tsw为控制器中的预设值。可以设置功率半导体Q5至Q8以执行同步整流切换,从而考虑到Q1至Q4的切换时间以最大化效率(因此,最小化损耗)。
如图3所示,对于LDC最终输出电流,输出电流的操作频率可以是相移全桥切换的功率半导体器件切换频率的两倍(因此,操作周期为Tsw/2)。变压器TR1的输入电压/电流可由半导体器件的切换模式确定,如图3所示。Q5和Q8可以以同步整流模式施加切换信号,以便在Q1和Q4执行切换操作时以最小的损耗将输出功率传送至输出级。同样,Q6和Q7可以以同步整流模式施加切换信号,以便在Q2和Q3执行切换操作时以最小的损耗将输出功率传送至输出级。
图4示出了在降压模式操作中控制单向转换器200的功率半导体器件的方法以及每个组件的操作时序图。
功率半导体器件Q9和Q10可以执行有源钳位正向转换切换(active-clampforward conversion switching)。在这种情况下,切换周期可以是Tsw/2,Tsw/2是在控制器中预先设置的值。选择Tsw/2作为切换频率的原因是通过在双向转换器100的降压模式操作期间将其设置为与输出电压/电流频率相同,从而减少由于输出电压(或电流)合成效应引起的纹波。考虑到Q9和Q10的切换定时,可以将变压器TR2的次级侧上的功率半导体器件Q11和Q12设置为执行同步整流切换以最大化效率(最小化损耗)。
如图4所示,LDC输出电流的操作频率可以与功率半导体器件的切换频率相同(操作周期为Tsw/2)。变压器TR2的输入电压/电流可以由功率半导体器件的切换模式确定,其显示在图4中。Q11和Q12可以以同步整流模式施加切换信号,以便在Q9和Q10执行切换操作时以最小的损耗将输出功率传送至输出级。
图5是在降压模式操作中控制双向转换器100和单向转换器200的输出时每个组件的操作时序图。
如图5所示,双向转换器100的功率半导体器件切换周期可以是Tsw,并且单向转换器200的功率半导体器件切换周期可以是Tsw/2。然而,由双向转换器100和单向转换器200的操作产生的输出电压(或电流)的频率,即周期,可以等于Tsw/2。
图5所示的Tph表示双向转换器100与单向转换器200之间的切换开始时间之差。即,Tph表示双向转换器100的Q4切换开始的时间与单向转换器200在Q10切换开始的时间之差。当以与Tph一样多的时间间隔施加切换信号时,双向转换器100的最小输出电流点和单向转换器200的最大输出电流点可以如图5中的点(A)一样重合。因此,双向转换器100和单向转换器200的合成输出电压(或电流)纹波可被最小化并输出。为了找到最佳的Tph值,可以检查根据LDC输入电压和输出功率的先前实验数据,然后将该实验数据用于实际控制。
在降压模式操作中,LDC输出功率可以由双向转换器100和单向转换器200的输出功率之和确定,并且每个转换器的输出功率可以通过限制最大切换占空比来控制。可以分配每个转换器的输出功率,以便在检查先前的实验数据后可以使半导体器件的功率损耗最小化,并且将分配的输出功率用于实际控制。
图6示出了到目前为止描述的在降压模式操作期间在控制环路操作之前设置双向转换器100和单向转换器200的切换周期的过程,并且还示出了根据输出功率设置Tph并设置功率半导体器件的最大PWM占空比的过程。
当在步骤10中开始降压模式操作时,可以在步骤20中施加降压模式电压输出命令。
可以在步骤30中设置转换器的功率半导体器件的切换周期。可以使用先前的实验数据来设置切换周期,并且对于双向转换器100可以将切换周期设置为Tsw,对于单向转换器200可以将切换周期设置为Tsw/2。
接下来,可以在步骤40中监视降压模式下的转换器的输出功率。这可以通过感测输出电压或电流的值来计算。
基于输出功率监视值,可以在步骤50中设置Tph(即,转换器之间的切换开始时间之差)和每个转换器的功率半导体器件的最大PWM占空比。如先前所述,这些可以根据先前的实验数据而设置。
当这种设置过程完成时,降压模式控制回路(输出电压和电流的控制)可以在步骤60中操作。
图7是升压模式操作的电路图。
如图7所示,升压模式可以是的功率从低压电池(LVB)接收并且通过LDC内部电路的功率转换过程传送至高压级的操作模式。升压模式操作可以包括三个操作:①直流电链路电容器的初始充电、②对高压电池进行充电,以及③根据输出负荷的类型向高压负荷供电。
对于①直流电链路电容器的初始充电,可以将与高压输出级平行连接的大容量电容器的电压从初始电压0V充电至目标高压。对于②给高压电池充电的操作,当HVB过度放电时,用户可以暂时将HVB充电到目标电压,以便向车辆的高压负荷提供高压。对于③,当需要使用LVB的功率而不是HVB的功率向高压级负荷供电时,可以执行向高压负荷的供电。
在升压模式操作中,如图7所示,单向转换器200可以关闭功率半导体开关Q11和Q12以停用单向转换器200,并且可以仅激活双向转换器100的操作。在升压模式下,可以下述过程执行双向转换器100的操作。
首先,如果在连接LVB的同时功率半导体Q5至Q8导通,则电流从LVB电源流向电感器L1,因此存储了电能。在这种情况下,在变压器TR1的低压输入侧不会出现电势差,因此,没有电能传送至高压级。如果能量存储在电感器L1后,Q5和Q8打开并且Q6和Q7关闭以及Q5和Q8关闭并且Q6和Q7打开,由于电位差,电流被注入变压器TR1的低压侧,从而使得交流电源能量通过变压器TR1被传送至高压侧。传递到高压侧的交流电功率可以使功率半导体开关Q1至Q4用作整流器,从而将整流的直流电功率能量输出到高压输出级以执行升压操作。
在升压模式下用于LDC控制的电压/电流感测可以与图3所示的相同。可以通过电压传感器VSEN2感测输入到LDC的低压,并且可以通过电流传感器ISEN3感测在低压电路中流动的电流并将该电流用于输入电流控制。另外,可以通过电压传感器VSEN1感测高压级的输出电压,并且可以通过电流传感器ISEN1感测在高压电路中流动的输出电流并将该电流用于输出电流控制。
图8示出了用于在升压模式操作中控制双向转换器100的功率半导体器件的方法以及每个组件的操作时序图。
如图8所示,升压模式操作可以分为两个操作部分,Tc部分和Tp部分。Tc部分可以是导通所有功率半导体器件Q5至Q8的部分,并且可以是电感器L1存储12V电池能量的部分。Tp部分可以是将电感器L1中存储的能量传送至高压侧的功率输出部分,也可以是在Tsw开关部分期间执行Q5和Q8打开并且Q6和Q7关闭以及Q5和Q8关闭并且Q6和Q7打开的部分。在Tp部分中,可以使用切换器件Q13和钳位电容器Cc1来减小在切换期间产生的Q5至Q8的漏极到源极电压的浪涌。当器件Q13导通时,当切换到Q5至Q8的漏极到源极电压时,可能会产生由钳位电容器电压钳位的电压。
与未施加功率半导体Q5至Q8的情况相比,通过应用开关Q13和电容器Ccl,可以将功率半导体Q5至Q8的电压规格降低约1/2,因此应用开关Q13和电容器Cc在材料成本方面是有利的。如图8所示,通过对功率半导体器件Q1至Q4进行整流,
通过对Q1至Q4进行整流,升压输出电流可能变为功率半导体Q5至Q8切换频率的两倍,这有助于减少升压输出电压(或电流)的纹波。在这种情况下,为了对Q1至Q4进行整流,可以将所有功率半导体Q1至Q4关闭并作为二极管整流器进行操作。为了提高效率,功率半导体器件的同步整流切换操作也可以适用。
根据本公开,可以实现施加了全桥同步整流的相移全桥转换器和有源钳位正向转换器两者的优点。因此,可以通过适当地控制两个转换器工作时功率半导体元件的切换时间的差异来使从转换器输出的电压和电流纹波最小化,从而在由产品运行时生成的电磁波最小化的同时提高LDC输出功率的质量。响应于LDC所需的不断增加的电磁波法规(使转换器输出电压和电流的纹波最小化)的趋势,可以提供一种满足电磁波标准的良好解决方案(移除EMC滤波器的效果)。
另外,车辆LDC为了提高车辆燃料效率而需要高效的操作。当应用本公开中提出的LDC时,根据LDC输出功率来适当地限制两个转换器中的每个转换器的最大输出(限于最大占空比),因此,可以具有能够在LDC操作期间通过最小化器件功率损耗以最佳效率点运行的优点。
尽管以上已经详细描述了本公开的实施例,但是应当理解,对于本领域技术人员显而易见的是本文所述的基本发明构思的许多变化和修改仍将落入如所附权利要求中所定义的本发明实施例的精神和范围内。因此,应当理解,上述实施例基本上仅用于说明性目的,而不以任何方式限制本发明。另外,本公开的范围应由所附权利要求及其合法等同物而不是详细描述来确定,并且在权利要求的定义和范围内的各种变更和修改都包括在权利要求中。

Claims (14)

1.一种大容量双向隔离式直流-直流转换器,包括:
高压级,其具有高压电池;
低压级,其具有低压电池;
双向转换器,其被配置为,在降压模式下,降压所述高压级的电压并将降压后的电压传送至所述低压级,并且在升压模式下,升压所述低压级的电压并将升压后的电压传送至所述高压级;以及
单向转换器,其与所述双向转换器平行连接,并被配置为,在所述降压模式下,降压所述高压级的电压并将降压后的电压传送至所述低压级,并且在所述升压模式下,所述单向转换器被停用,
其中,所述双向转换器形成为相移全桥转换器电路,并且所述单向转换器形成为有源钳位正向转换器电路。
2.根据权利要求1所述的转换器,其中,所述双向转换器包括:
在所述降压模式下,
至少一个第一功率半导体,其被配置为相对于所述高压级的电压执行相移全桥切换;
变压器,被配置为降压由所述至少一个第一功率半导体切换的电压,将降压后的电压传送至所述低压级,并且使所述高压级与所述低压级电绝缘;以及
至少一个第二功率半导体,其被配置为相对于从所述变压器输出的电压执行同步整流切换并将结果提供给所述低压级。
3.根据权利要求1所述的转换器,其中,所述双向转换器包括:
在所述升压模式下
至少一个第一功率半导体,其被配置为相对于低压级电压执行有源钳位全桥切换;
变压器,其被配置升压由所述至少一个第一功率半导体切换的电压,将升压后的电压传送至所述高压级,并且使所述低压级与所述高压级电绝缘;以及
至少一个第二功率半导体,其被配置为相对于从所述变压器输出的电压执行全桥整流切换,并将结果提供给所述高压级。
4.根据权利要求1所述的转换器,其中,所述双向转换器包括:
在所述降压模式下,至少一个第一功率半导体,被配置为相对于高压级电压执行相移全桥切换;第一变压器,其被配置为降压由所述至少一个第一功率半导体切换的电压,将所述降压后的电压传送至所述低压级,并且使所述高压级与所述低压级电绝缘;以及至少一个第二功率半导体,其被配置为相对于从所述第一变压器输出的电压执行同步整流切换并将结果提供给所述低压级;以及
在所述升压模式中,至少一个第三功率半导体,其被配置为相对于所述低压级的电压执行有源钳位全桥切换;第二变压器,其被配置为升压由所述至少一个第三功率半导体切换的电压,将升压后的电压传送至所述高压级,并且使所述低压级和所述高压级电绝缘;以及至少一个第四功率半导体,其被配置为相对于从所述第二变压器输出的电压执行全桥整流切换,并将结果提供给所述高压级。
5.根据权利要求1所述的转换器,其中,所述单向转换器包括:
在所述降压模式下,
至少一个第一功率半导体,其被配置为相对于所述高压级的电压执行有源钳位正向转换切换;
变压器,其被配置降压由所述至少一个第一功率半导体切换的电压,将降压后的电压传送至所述低压级,并且使所述高压级与所述低压级电绝缘;以及
至少一个第二功率半导体,其被配置为相对于从所述变压器输出的电压执行同步整流切换并将结果提供给所述低压级。
6.根据权利要求1所述的转换器,其中,在所述降压模式下,所述双向转换器的功率半导体切换周期是所述单向转换器的功率半导体切换周期的两倍。
7.根据权利要求1所述的转换器,其中,在所述降压模式下,所述双向转换器的功率半导体切换开始时间和所述单向转换器的功率半导体切换开始时间不同。
8.一种控制大容量双向隔离式直流-直流转换器的方法,所述转换器包括双向转换器,其被配置为,在降压模式下,降压高压级的电压并将降压后的电压传送至低压级,并且在升压模式下,升压所述低压级的电压并将升压后的电压传送至所述高压级;以及单向转换器,其与所述双向转换器平行连接,并被配置为在降压模式下,降压所述高压级的电压并将降压后的电压传送至所述低压级,
所述方法包括:
在所述降压模式下,执行所述双向转换器和所述单向转换器的同时并行操作,以将所述的两个转换器的输出功率之和传送至所述低压级,以便降压所述高压级的电压并将降压后的电压传送至所述低压级;以及
在所述升压模式下,使所述双向转换器升压电压并停用所述单向转换器,以便升压所述低压级的电压并将升压后的电压传送至所述高压级。
9.根据权利要求8所述的方法,包括:
在所述降压模式下,所述双向转换器
相对于所述高压级的电压执行相移全桥切换;
降压由所述相移全桥切换所切换的电压,并在所述高压级与所述低压级电隔离的同时输出所述降压后的电压;以及
相对于从所述变压器输出的电压执行同步整流切换,并将结果提供给所述低压级。
10.根据权利要求8所述的方法,包括:
在所述升压模式下,所述双向转换器
相对于低压级电压执行有源钳位全桥切换;
升压由所述有源钳位全桥切换所切换的电压,并在所述低压级与所述高压级电隔离的同时输出升压后的电压;以及
相对于从所述变压器输出的电压执行全桥整流切换,并将结果提供给所述高压级。
11.根据权利要求8所述的方法,包括:
在所述降压模式下,所述双向转换器相对于所述高压级的电压执行相移全桥切换;降压由所述相移全桥切换所切换的电压,并在所述高压级与所述低压级电隔离的同时输出降压后的电压;相对于从所述变压器输出的电压执行同步整流切换,并将结果提供给所述低压级;以及
在所述升压模式下,所述双向转换器相对于低压级电压执行有源钳位全桥切换;升压由所述有源钳位全桥切换所切换的电压,并在所述低压级与所述高压级电隔离的同时输出升压后的电压;相对于从所述变压器输出的电压执行全桥整流切换,并将结果提供给所述高压级。
12.根据权利要求8所述的方法,包括:
在所述降压模式下,所述单向转换器
相对于所述高压级的电压执行有源钳位正向转换切换;
降压由所述有源钳位正向转换切换所切换的电压,并在所述高压级与所述低压级电隔离的同时输出所述降压后的电压;以及
相对于从所述变压器输出的电压执行同步整流切换,并将结果提供给所述低压级。
13.根据权利要求8所述的方法,其中,在所述降压模式下,所述双向转换器的功率半导体切换周期是所述单向转换器的功率半导体切换周期的两倍。
14.根据权利要求8所述的方法,其中,在所述降压模式下,所述双向转换器的功率半导体切换开始时间和所述单向转换器的功率半导体切换开始时间不同。
CN202011638772.XA 2020-12-21 2020-12-31 大容量双向隔离式直流-直流转换器及其控制方法 Pending CN114649949A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200179562A KR102619173B1 (ko) 2020-12-21 2020-12-21 양방향 절연형 대용량 dc-dc 컨버터 및 그 제어방법
KR10-2020-0179562 2020-12-21

Publications (1)

Publication Number Publication Date
CN114649949A true CN114649949A (zh) 2022-06-21

Family

ID=81846697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011638772.XA Pending CN114649949A (zh) 2020-12-21 2020-12-31 大容量双向隔离式直流-直流转换器及其控制方法

Country Status (4)

Country Link
US (1) US11431253B2 (zh)
KR (1) KR102619173B1 (zh)
CN (1) CN114649949A (zh)
DE (1) DE102020135085A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085934A (ko) * 2020-12-15 2022-06-23 현대모비스 주식회사 양방향 절연형 dc-dc 컨버터 및 그 제어장치와 운용방법
US11979084B2 (en) * 2022-08-23 2024-05-07 Raytheon Company Active clamp DC/DC converter including current sense peak control mode control

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215683B1 (en) 1998-10-13 2001-04-10 Lucent Technologies Inc. Power converter with voltage dependent switchable modes
DE10216252A1 (de) 2002-04-12 2003-11-06 Infineon Technologies Ag Spannungswandler und Verfahren zur Wandlung einer Eingangsspannung in eine Ausgangspannung
US7149096B2 (en) * 2004-02-18 2006-12-12 Astec International Limited Power converter with interleaved topology
US7006364B2 (en) 2004-03-15 2006-02-28 Delta Electronics, Inc. Driving circuit for DC/DC converter
US7254047B2 (en) * 2004-11-19 2007-08-07 Virginia Tech Intellectual Properties, Inc. Power converters having output capacitor resonant with autotransformer leakage inductance
US7286376B2 (en) * 2005-11-23 2007-10-23 System General Corp. Soft-switching power converter having power saving circuit for light load operations
US7830686B2 (en) * 2007-06-05 2010-11-09 Honeywell International Inc. Isolated high power bi-directional DC-DC converter
JP4874874B2 (ja) * 2007-06-06 2012-02-15 トヨタ自動車株式会社 車両の電源装置
JP4401418B2 (ja) * 2008-04-18 2010-01-20 シャープ株式会社 双方向dc/dcコンバータおよびパワーコンディショナ
US8274173B2 (en) * 2008-12-02 2012-09-25 General Electric Company Auxiliary drive apparatus and method of manufacturing same
US8486570B2 (en) * 2008-12-02 2013-07-16 General Electric Company Apparatus for high efficiency operation of fuel cell systems and method of manufacturing same
US8587963B2 (en) * 2009-01-21 2013-11-19 Fsp Technology Inc. Resonant converter equipped with multiple output circuits to provide multiple power outlets
JP5157987B2 (ja) * 2009-03-25 2013-03-06 株式会社豊田自動織機 絶縁形dc−dcコンバータ
US9331499B2 (en) * 2010-08-18 2016-05-03 Volterra Semiconductor LLC System, method, module, and energy exchanger for optimizing output of series-connected photovoltaic and electrochemical devices
US9762115B2 (en) * 2011-02-03 2017-09-12 Viswa N. Sharma Bidirectional multimode power converter
CA2836980C (en) 2011-06-24 2020-11-17 L-3 Communications Magnet-Motor Gmbh Galvanically isolated dc/dc converter and method of controlling a galvanically isolated dc/dc converter
KR101251064B1 (ko) * 2011-06-29 2013-04-05 한국에너지기술연구원 고승압비 다중입력 양방향 dc-dc 컨버터
US8970162B2 (en) * 2011-07-12 2015-03-03 Texas Instruments Incorporated System and method for balancing electrical energy storage devices via differential power bus and capacitive load switched-mode power supply
US9143044B2 (en) * 2011-09-13 2015-09-22 Futurewei Technologies, Inc. Apparatus and method for pulse width modulation control for switching power converters
US9906147B2 (en) * 2011-09-14 2018-02-27 Futurewei Technologies, Inc. Adaptive dead time control apparatus and method for switching power converters
US8908393B2 (en) * 2011-09-14 2014-12-09 Futurewei Technologies, Inc. Soft transition apparatus and method for switching power converters
DE102011082730A1 (de) 2011-09-15 2013-03-21 Robert Bosch Gmbh Bidirektionaler Gleichspannungswandler
US9819218B2 (en) * 2011-09-28 2017-11-14 Kyocera Corporation Power conditioner system and power-storage power conditioner
US9178420B1 (en) 2012-08-06 2015-11-03 Maxim Integrated Products, Inc. Inductive bypass, storage and release improves buck response
DE102013201637A1 (de) * 2013-01-31 2014-07-31 Robert Bosch Gmbh Energieübertragungsanordnung
US20150055374A1 (en) * 2013-08-22 2015-02-26 Fujitsu Telecom Networks Limited Switching power supply apparatus corresponding to zero voltage switching system
KR101520257B1 (ko) 2013-10-29 2015-06-05 한국전기연구원 양방향 dc-dc 컨버터 및 이를 이용한 배터리 충전 방법
JP5943952B2 (ja) * 2014-03-26 2016-07-05 株式会社豊田中央研究所 電源システム
US9614442B2 (en) * 2014-04-16 2017-04-04 The Regents Of The University Of Colorado, A Body Corporate Modular DC-DC Converter including a DC transformer module
US20150365003A1 (en) * 2014-06-12 2015-12-17 Laurence P. Sadwick Power Conversion System
US9931951B2 (en) * 2014-06-13 2018-04-03 University Of Maryland Integrated dual-output grid-to-vehicle (G2V) and vehicle-to-grid (V2G) onboard charger for plug-in electric vehicles
US9800129B2 (en) 2014-08-08 2017-10-24 Raytheon Company Bidirectional low voltage power supply (LVPS) with single pulse width modulator (PWM), cryogenic cooler system, and method
US20160072393A1 (en) * 2014-09-05 2016-03-10 Murata Manufacturing Co., Ltd. Bidirectional current-sense circuit
WO2016073645A1 (en) * 2014-11-04 2016-05-12 Progranalog Corp. Configurable power management integrated circuit
US20160181925A1 (en) * 2014-12-17 2016-06-23 National Chung Shan Institute Of Science And Technology Bidirectional dc-dc converter
JP6207775B2 (ja) * 2015-02-02 2017-10-04 三菱電機株式会社 Dc/dcコンバータ
US10069421B2 (en) 2015-02-05 2018-09-04 Infineon Technologies Austria Ag Multi-phase switching voltage regulator having asymmetric phase inductance
WO2016149154A2 (en) * 2015-03-13 2016-09-22 Rompower Energy Systems Inc. Method and apparatus for obtaining soft switching in all the switching elements through current shaping and intelligent control
CN107925356B (zh) * 2015-08-06 2020-11-10 日立汽车系统株式会社 Dcdc转换器一体型充电器
US20170170739A1 (en) * 2015-12-11 2017-06-15 National Chung-Shan Institute Of Science & Technology Solar power converter with isolated bipolar full-bridge resonant circuit
US9941702B2 (en) * 2015-12-28 2018-04-10 King Fahd University Of Petroleum And Minerals Fault ride-through and power smoothing system
US9825546B2 (en) * 2016-03-30 2017-11-21 Infineon Technologies Austria Ag Circuits and methods for auxiliary secondary supply generation with self-starting primary side driver in isolated power converters
KR101884686B1 (ko) * 2016-05-23 2018-08-30 숭실대학교산학협력단 능동 클램프 풀브릿지 컨버터 및 그 구동방법
KR101923317B1 (ko) 2016-07-04 2018-11-28 숭실대학교산학협력단 양방향 풀브릿지 컨버터 및 그 구동방법
KR101988089B1 (ko) * 2016-11-04 2019-06-12 현대자동차주식회사 출력 가변 회로 및 이를 이용한 컨버터 제어기
EP3324528A1 (de) 2016-11-21 2018-05-23 Siemens Aktiengesellschaft Gleichspannungswandler und verfahren zu dessen betrieb
CN109428490B (zh) * 2017-08-15 2020-10-16 台达电子企业管理(上海)有限公司 多单元功率变换系统
KR102022705B1 (ko) * 2017-11-13 2019-09-18 주식회사 이진스 전기자동차용 충전 및 저전압 변환 복합회로
CN107994799A (zh) * 2018-01-09 2018-05-04 青岛大学 多绕组同时/分时供电电流型单级多输入高频环节逆变器
US10630202B2 (en) * 2018-01-17 2020-04-21 The Florida International University Board Of Trustees Three phase inverter system using an eight-switch-three-phase unfolder
SG10201903086XA (en) * 2018-04-05 2019-11-28 Univ Nanyang Tech Dual Voltage And Current Loop Linearization Control and Voltage Balancing Control For Solid State Transformer
WO2019199964A1 (en) * 2018-04-10 2019-10-17 University Of Maryland College Park Vehicle on-board charger for bi-directional charging of low/high voltage batteries
CN109861356B (zh) * 2018-05-09 2023-03-24 台达电子工业股份有限公司 冲击电流抑制模块、车载双向充电机及控制方法
US10742127B2 (en) * 2018-07-03 2020-08-11 Utah State University Battery integrated modular multifunction converter for grid energy storage systems
US10483862B1 (en) * 2018-10-25 2019-11-19 Vanner, Inc. Bi-directional isolated DC-DC converter for the electrification of transportation
CN109703399B (zh) * 2018-12-27 2021-05-18 台达电子企业管理(上海)有限公司 车载充放电系统及其所适用的控制方法
CN109728624A (zh) * 2018-12-27 2019-05-07 台达电子企业管理(上海)有限公司 车载充放电系统
CN110350796B (zh) * 2019-06-25 2020-11-06 华为技术有限公司 一种功率转换模块、车载充电机和电动汽车
DE102019212888A1 (de) 2019-08-28 2021-03-04 Robert Bosch Gmbh Ansteuerverfahren für einen Gleichspannungswandler und Gleichspannungswandler

Also Published As

Publication number Publication date
KR102619173B1 (ko) 2024-01-03
US20220200454A1 (en) 2022-06-23
DE102020135085A1 (de) 2022-06-23
KR20220089763A (ko) 2022-06-29
US11431253B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
US10541549B2 (en) Power supply apparatus
CN102237707B (zh) 混合式发动机驱动发电机的输出控制装置
US11296533B2 (en) Vehicle power supply device
US20170117731A1 (en) Power source device
KR20210156107A (ko) 차량용 배터리 충전 장치 및 방법
US11870360B2 (en) Bidirectional insulating DC-DC converter, control apparatus therefor, and operating method thereof
JP2018148637A (ja) 充電装置、及び車載電源装置
CN114649949A (zh) 大容量双向隔离式直流-直流转换器及其控制方法
US11757364B2 (en) Parallel interleaving operated bidirectional DC-DC converter and method and apparatus for controlling the same
JPH08317508A (ja) 電気自動車用充電装置
CN114944759A (zh) Dc-dc转换器和车辆
KR101832841B1 (ko) 통합형 모터 구동회로
KR20210018598A (ko) 차량용 전력 변환 시스템 및 그 제어 방법
JP7459286B2 (ja) 双方向dc-dcコンバータ
US7116012B2 (en) Stable power conversion circuits
JP2000102177A (ja) ハイブリッド車用充電装置
CN112572189B (zh) 车载充放电系统及具有其的车辆
Gurrala et al. A novel bidirectional DC-DC converter with battery protection
CN112583061B (zh) 车载充电系统及具有其的车辆
TWI664790B (zh) 分散式單級車載充電裝置及其方法
US11757352B2 (en) Power conversion system for electrically driven mobility device and method for controlling same
CN112583090B (zh) 车载充电系统及具有其的车辆
US20240006908A1 (en) Apparatus and/or system for providing pulsating buffer converter with a boost circuit
KR20210115215A (ko) 저전압 직류 변환기
Voruganti et al. A Novel Bidirectional DC-DC Converter with Battery Protection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination