CN114645260A - 一种红外增透高导电金刚石半导体的制备方法 - Google Patents

一种红外增透高导电金刚石半导体的制备方法 Download PDF

Info

Publication number
CN114645260A
CN114645260A CN202210240442.8A CN202210240442A CN114645260A CN 114645260 A CN114645260 A CN 114645260A CN 202210240442 A CN202210240442 A CN 202210240442A CN 114645260 A CN114645260 A CN 114645260A
Authority
CN
China
Prior art keywords
diamond
film
nano carbon
carbon film
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210240442.8A
Other languages
English (en)
Other versions
CN114645260B (zh
Inventor
刘金龙
贾燕伟
何健
李成明
陈良贤
魏俊俊
郑宇亭
欧阳晓平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210240442.8A priority Critical patent/CN114645260B/zh
Publication of CN114645260A publication Critical patent/CN114645260A/zh
Application granted granted Critical
Publication of CN114645260B publication Critical patent/CN114645260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种红外增透高导电金刚石半导体的制备方法,属于金刚石功能光电材料领域。通过在金刚石表面生长氢终端纳米碳膜实现金刚石在近红外和长波红外波段增透,同时表面呈现高迁移率P型导电特征,工艺步骤为:a.将光学级单晶或微米晶金刚石自支撑膜双面抛光至表面粗糙度低于1nm;b.将金刚石置于低温氢等离子体中,刻蚀抛光态的表面,裸露出洁净的碳的悬挂键通入甲烷,引入碳源,在光学级金刚石膜表面无界面生长纳米碳膜;c.通过控制金刚石生长温度与时间,在金刚石表面生长出特定厚度的SP2/SP3键混合的纳米碳膜;d.关闭碳源,用氢等离子体活化得到氢终端纳米碳膜表面,实现金刚石表面的导电性增强,进而实现红外增透高导电金刚石半导体的制备。

Description

一种红外增透高导电金刚石半导体的制备方法
技术领域
本发明属于功能光电材料制备技术领域。特别是提供了一种红外波段增透高导电金刚石半导体的制备方法,特点是在光学级金刚石膜上通过无界面生长氢终端纳米碳膜实现近红外和远红外波段光学增透以及导电性的增强。
背景技术
在光电薄膜材料的发展过程中,红外透明导电膜兼具良好的导电性能和高透过率,被广泛的应用到在航空航天、光电传感技术等高科技行业中。其中金刚石由于具有极高的硬度、热导率及良好的耐冲击性能和光学透过性,被认为是全波段透过最佳的光学材料。但是一方面,本征金刚石是一种绝缘材料,无法满足光电材料对半导体导电的需求;另一方面,由于单纯的金刚石光学材料在中红外波段存在本征的吸收,使其无法满足诸多应用需求;另一方面虽然金刚石在远红外波段(10.6μm)具有理论透过率71%,但金刚石膜的实际透过率往往难以达到该理论值。为满足金刚石在长波红外波段的应用,往往需要镀制增透膜。目前常用的增透膜主要为氧化物增透膜如HfO2、Y2O3等。双面镀制增透膜后长波红外波段透过率能够达到90%以上(Materials and Design,105,81(2016))。但是由于增透膜为氧化物,在增透的同时无法得到较好的光电薄膜。此外,在近红外波段用于短波红外成像的夜视仪、对绿色涂料反射免敏感的绿色涂料伪装识别用短波红安外成像仪、近红外波段激光元件等对于短波红外材料也有很高要求,金刚石由于在该波段理论透过率偏低,也难以应用。
发明内容
为了解决上述问题,本发明的目的在于提供一种在光学级金刚石膜上通过无界面生长氢终端纳米碳膜制备红外波段增透高导电金刚石半导体的方法。初期将光学级金刚石自支撑膜双面抛光至表面粗糙度低于1nm,以减少对红外光的表面散射。将金刚石置于低温氢等离子体中,刻蚀表面的吸附物,裸露出洁净的碳的悬挂键。通入甲烷,引入碳源,在光学级金刚石膜表面无界面生长金刚石膜实现与金刚石悬挂键的结合,形成无界面连接。通过控制金刚石生长温度与时间,在金刚石表面生长出特定厚度的SP2/SP3键混合的纳米碳膜实现光学金刚石的宽波段增透。用氢等离子体活化得到氢终端纳米碳膜表面,实现金刚石表面导电性增强。
一种红外增透高导电金刚石半导体的制备方法,其特征在于通过在金刚石膜上上生长氢终端纳米碳膜形成红外波段增透全碳金刚石半导体,纳米碳膜具有高迁移率导电性,具体包括以下步骤:
步骤1:光学级金刚石膜的表面精密加工;
将所选用的厚度50μm以上,直径5mm以上的光学级金刚石自支撑膜进行双面研磨和精密抛光;
1.1金刚石表面研磨
将金刚石膜粘于研磨工装上,使用金刚石磨料研磨至表面磨痕均匀,研磨盘选用合适转速;
1.2金刚石表面精密抛光
将研磨后将金刚石膜进一步粘于抛光工装上,依次使用陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速调制恒定转速,直至金刚石表面达到合适的粗糙度;
步骤2:金刚石表面的酸洗处理;
对抛光后的金刚石膜进行酸洗处理,去除金刚石膜在制备与加工过程中存在的金属磨屑与非金刚石相;将金刚石膜置于硫酸与硝酸按一定比例混合溶液,加热回流,待溶液沸腾后,维持一定时间;随后采用去离子水超声清洗金刚石衬底,吹干;
步骤3:金刚石表面纳米碳膜的生长
3.1金刚石表面的等离子体活化
通入氢气采用低温氢等离子体对洁净化后的金刚石膜表面进行活化,利用氢等离子体刻蚀金刚石表面使得碳氧键以及表面杂质得以去除,并通过氢等离子体刻蚀作用打断金刚石表面碳碳键,露出新鲜的碳悬挂键,为进一步生长纳米碳膜提供基础;
3.2金刚石表面纳米碳膜生长
金刚石表面经活化后,通入甲烷引入碳源,生长纳米碳膜;根据红外增透波段确定纳米碳膜中晶界SP2结构与晶粒SP3结构的比例以及纳米碳膜厚度。
步骤4:金刚石表面氢化处理
采用低温氢等离子体对生长的纳米碳膜进行表面修饰,采用合理的参数实现氢终端,赋予金刚石薄膜表面高迁移率的导电性。
至此实现了在光学级金刚石膜表面镀制了宽波段范围增透导电增强的纳米碳膜,其中纳米金刚石由于具有可控的折射率调整空间,因此能够实现很宽范围波段的增透效果,而且表面呈现高迁移率P型导电特征。
本发明实施过程的关键在于:
1.步骤1.1所述研磨加工,使用150μm、100μm、80μm、60μm、40μm、20μm、10μm的金刚石磨料研磨至表面磨痕均匀,粗糙度500nm以下,研磨盘转速20-100rmp。
2.步骤1.2所述抛光加工使用50μm、20μm、10μm的陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速100-1500rmp。直至金刚石表面的粗糙度低于1nm。
3.步骤1所述经抛光后的金刚石光学窗口材料在10.6μm的红外透过率要求大于60%;优选地,金刚石光学窗口材料在10.6μm的红外透过率要求大于65%;进一步优选,金刚石光学窗口材料在10.6μm的红外透过率要求大于70%。
4.步骤2所述对抛光后的金刚石膜进行酸洗处理,硫酸:硝酸浓度为5:1的溶液;加热回流,待溶液沸腾后,煮沸30-60min。随后采用去离子水超声清洗金刚石衬底1-3遍,超声波功率为50-300W,每次清洗30min,吹干。以去除金刚石膜在制备与加工过程中存在的金属磨屑与非金刚石相,避免为后续镀制纳米碳膜过程中引入界面缺陷与杂质。
5.步骤3.1所述采用低温氢等离子体对单晶金刚石衬底表面进行活化,活化温度600-700℃,时间5-10min。
6.步骤3.2所述纳米碳膜的生长,为避免与金刚石窗口材料间的生长界面,采用从微米金刚石膜生长工艺向纳米金刚石碳膜生长工艺过渡的方式实现。过渡层厚度以纳米碳膜的1/10计算。过渡层生长温度800-850℃,甲烷浓度0.1-2%。
7.步骤3.2所述纳米碳膜的生长通过沉积温度与碳源浓度等参数阶梯渐变实现。参数包括生长温度650-750℃,甲烷浓度0.1-2%,生长时间为1-9h。
8.步骤3.2所述纳米碳膜的折射率可通过控制碳膜中晶界SP2结构与晶粒SP3结构的比值进行调整。纳米碳膜的生长参数依据在固定波段能够获得纳米碳膜的折射率满足多晶金刚石膜折射率的平方根确定。纳米碳膜的厚度根据增透波长除以纳米碳膜的折射率,再除以4确定,以该值获得增透效果最佳。
9.步骤4所述纳米碳膜的氢化处理可在生长之后关闭碳源实现。参数包括氢化温度600-700℃,处理时间为5-10min。
10.作为金刚石窗口材料的光学级金刚石膜可以是多晶金刚石膜,也可以是单晶金刚石膜。
11.用于生长纳米碳膜的碳源可使用气态碳源如甲烷等,也可以使用固态碳源。
本发明的优点是:
1.基于纳米碳膜中SP2和SP3组分的调整,可以实现对纳米碳膜折射率的调控,从而实现对金刚石窗口宽波段的减反增透作用,增透范围覆盖近红外/中红外以及远红外等波段,可满足短波成像夜视仪、激光光学元件等多领域应用需求;
2.金刚石表面纳米碳膜在实现增透同时具有高的表面导电性,可同时满足特殊光电器件对光学增透和半导体特性要求,且氢终端纳米碳膜呈现高迁移率导电特征,有利于相应电子器件的开发。
3.金刚石表面增透高导电半导体整个工艺均在化学气相沉积过程中实现,其合成过程工艺连续性好,合成工艺简单。
附图说明
1.图1为金刚石与金刚石/纳米碳膜材料的红外透过率图谱。
2.图2为氢终端金刚石与金刚石/纳米碳膜材料的迁移率随时间变化图
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步说明。
实施例1
将所选用的厚度300μm,尺寸10mm*10mm的光学级多晶金刚石自支撑膜进行双面精密抛光,依次使用150μm、100μm、80μm、60μm、40μm、20μm、10μm的金刚石磨料研磨至表面磨痕均匀,研磨盘转速50rmp,磨至粗糙度为218nm。进一步依次使用50μm、20μm、10μm的陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速1000rmp,抛光后金刚石表面的粗糙度为2.3nm。抛光后的金刚石膜在10.6μm的红外透过率为68.0%。将金刚石膜置于硫酸:硝酸浓度为5:1的溶液,煮沸60min。随后采用去离子水超声清洗金刚石衬底2遍,超声波功率为240W,每次清洗30min,吹干。采用氢等离子体对金刚石表面活化,活化温度700℃,活化时间10min。金刚石表面经活化后,等离子体中引入碳源,生长纳米碳膜。生长温度750℃,甲烷浓度0.1%,生长时间8h。过渡层共生长0.8h,生长温度850℃,甲烷浓度0.1%。生长后关闭碳源实现。温度降至温度700℃,等离子体氢化时间为8min。自此获得了纳米碳膜红外增透导电增强金刚石半导体,如图1为金刚石与金刚石/纳米碳膜材料的红外透过率图谱,可见金刚石/纳米碳膜材料在近红外与长波红外透过率得到显著增强。图2为氢终端金刚石与金刚石/纳米碳膜材料的迁移率随时间变化图,具有氢终端纳米碳膜的金刚石表面迁移率稳定后达到1000cm2/Vs以上,表面导电性得到显著增强。
实施例2
将所选用的厚度500μm,直径10mm的光学级多晶金刚石自支撑膜进行双面精密抛光,依次使用150μm、100μm、80μm、60μm、40μm、20μm、10μm的金刚石磨料研磨至表面磨痕均匀,研磨盘转速40rmp,磨至粗糙度为305nm。进一步依次使用50μm、20μm、10μm的陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速1200rmp,抛光后金刚石表面的粗糙度为1.9nm。抛光后的金刚石膜在10.6μm的红外透过率为66.7%。将金刚石膜置于硫酸:硝酸浓度为5:1的溶液,煮沸60min。随后采用去离子水超声清洗金刚石衬底2遍,超声波功率为300W,每次清洗30min,吹干。采用氢等离子体对金刚石表面活化,活化温度700℃,活化时间8min。金刚石表面经活化后,等离子体中引入碳源,生长纳米碳膜。生长温度730℃,甲烷浓度0.5%,生长时间2h。过渡层共生长0.2h,沉积温度800℃,甲烷浓度0.5%。生长后关闭碳源实现。温度降至温度700℃,等离子体氢化时间为10min。自此获得了纳米碳膜增透导电增强金刚石半导体。金刚石/纳米碳膜材料在近红外与长波红外透过率得到显著增强,具有氢终端纳米碳膜的金刚石表面迁移率稳定后达到860cm2/Vs以上,表面导电性得到显著增强。
实施例3
将所选用的厚度800μm,尺寸10mm*10mm的光学级多晶金刚石自支撑膜进行双面精密抛光,依次使用150μm、100μm、80μm、60μm、40μm、20μm、10μm的金刚石磨料研磨至表面磨痕均匀,研磨盘转速50rmp,磨至粗糙度为250nm。进一步依次使用50μm、20μm、10μm的陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速1000rmp,抛光后金刚石表面的粗糙度为1.6nm。抛光后的金刚石膜在10.6μm的红外透过率为68.5%。将金刚石膜置于硫酸:硝酸浓度为5:1的溶液,煮沸60min。随后采用去离子水超声清洗金刚石衬底2遍,超声波功率为240W,每次清洗30min,吹干。采用氢等离子体对金刚石表面活化,活化温度650℃,活化时间5min。金刚石表面经活化后,等离子体中引入碳源,生长纳米碳膜。生长温度650℃,甲烷浓度1%,生长时间1h。过渡层共生长0.1h,沉积温度由800℃,甲烷浓度由1%。生长后关闭碳源实现。温度降至温度650℃,等离子体氢化时间为5min。自此获得了纳米碳膜增透导电增强金刚石半导体。金刚石/纳米碳膜材料在近红外与长波红外透过率得到显著增强,具有氢终端纳米碳膜的金刚石表面迁移率稳定后达到940cm2/Vs以上,表面导电性得到显著增强。
实施例4
将所选用的厚度1000μm,直径10mm的光学级多晶金刚石自支撑膜进行双面精密抛光,依次使用150μm、100μm、80μm、60μm、40μm、20μm、10μm的金刚石磨料研磨至表面磨痕均匀,研磨盘转速80rmp,磨至粗糙度为140nm。进一步依次使用50μm、20μm、10μm的陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速1200rmp,抛光后金刚石表面的粗糙度为2.1nm。抛光后的金刚石膜在10.6μm的红外透过率为65.3%。将金刚石膜置于硫酸:硝酸浓度为5:1的溶液,煮沸60min。随后采用去离子水超声清洗金刚石衬底2遍,超声波功率为200W,每次清洗30min,吹干。采用氢等离子体对金刚石表面活化,活化温度600℃,活化时间10min。金刚石表面经活化后,等离子体中引入碳源,生长纳米碳膜。生长温度700℃,甲烷浓度0.5%,生长时间4h。过渡层共生长0.4h,沉积温度830℃,甲烷浓度0.5%。生长后关闭碳源实现。温度降至温度680℃,生长时间为10min。自此获得了纳米碳膜增透导电增强金刚石半导体。金刚石/纳米碳膜材料在近红外与长波红外透过率得到显著增强,具有氢终端纳米碳膜的金刚石表面迁移率稳定后达到1105cm2/Vs以上,表面导电性得到显著增强。

Claims (10)

1.一种红外增透高导电金刚石半导体的制备方法,其特征在于通过在金刚石膜上生长氢终端纳米碳膜形成红外波段增透全碳金刚石半导体,纳米碳膜具有高迁移率导电性,具体包括以下步骤:
步骤1:光学级金刚石膜的表面精密加工;
将所选用的厚度50μm以上,直径5mm以上的光学级金刚石自支撑膜进行双面研磨和精密抛光;
1.1金刚石表面研磨
将金刚石膜粘于研磨工装上,使用金刚石磨料研磨至表面磨痕均匀,研磨盘选用合适转速;
1.2金刚石表面精密抛光
将研磨后将金刚石膜进一步粘于抛光工装上,依次使用陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速调制恒定转速,直至金刚石表面达到合适的粗糙度;
步骤2:金刚石表面的酸洗处理;
对抛光后的金刚石膜进行酸洗处理,去除金刚石膜在制备与加工过程中存在的金属磨屑与非金刚石相;将金刚石膜置于硫酸与硝酸按一定比例混合溶液,加热回流,待溶液沸腾后,维持一定时间;随后采用去离子水超声清洗金刚石衬底,吹干;
步骤3:金刚石表面纳米碳膜的生长
3.1金刚石表面的等离子体活化
通入氢气采用低温氢等离子体对洁净化后的金刚石膜表面进行活化,利用氢等离子体刻蚀金刚石表面使得碳氧键以及表面杂质得以去除,并通过氢等离子体刻蚀作用打断金刚石表面碳碳键,露出新鲜的碳悬挂键,为进一步生长纳米碳膜提供基础;
3.2金刚石表面纳米碳膜生长
金刚石表面经活化后,通入甲烷引入碳源,生长纳米碳膜;根据红外增透波段确定纳米碳膜中晶界SP2结构与晶粒SP3结构的比例以及纳米碳膜厚度;
步骤4:金刚石表面氢化处理
采用低温氢等离子体对生长的纳米碳膜进行表面修饰,采用合理的参数实现氢终端,赋予金刚石薄膜表面高迁移率的导电性。
2.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤1.1光学级金刚石膜研磨工艺使用150μm、100μm、80μm、60μm、40μm、20μm、10μm的金刚石磨料研磨至表面磨痕均匀,研磨盘转速20-100rmp,粗糙度500nm以下。
3.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤1.2光学级金刚石膜精密抛光工艺使用50μm、20μm、10μm的陶瓷基抛光盘对金刚石表面进行抛光,抛光盘转速100-1500rmp,直至金刚石表面的粗糙度低于1nm。
4.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于抛光后的金刚石膜在10.6μm的红外透过率要求大于60%。
5.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤2所述酸洗处理中硫酸硝酸浓度比例为5:1;加热回流,待溶液沸腾后,煮沸30-60min;随后采用去离子水超声清洗金刚石衬底1-3遍,超声波功率为50-300W,每次清洗30min,吹干。
6.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤3.1所述采用低温氢等离子体对单晶金刚石衬底表面进行活化,活化温度600-700℃,时间5-10min。
7.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤3.2所述纳米碳膜的生长,采用从微米金刚石膜生长工艺向纳米金刚石碳膜生长工艺过渡的方式实现,过渡层厚度以纳米碳膜的1/10计算;过渡层生长温度800-850℃,甲烷浓度0.1-2%。
8.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤3.2所述纳米碳膜的生长工艺参数依据在固定波段能够获得纳米碳膜的折射率满足多晶金刚石膜折射率的平方根确定;纳米碳膜的厚度根据增透波长除以纳米碳膜的折射率,再除以4确定,以该值获得增透效果最佳。
9.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤3.2中纳米碳膜的折射率可通过控制碳膜中晶界SP2结构与晶粒SP3结构的比值进行调整;纳米碳膜的生长通过沉积温度与碳源浓度参数阶梯渐变实现;参数包括生长温度650-750℃,甲烷浓度0.1-2%,生长时间为1-9h。
10.根据权利要求1所述红外增透高导电金刚石半导体的制备方法,其特征在于步骤4所述纳米碳膜的氢化处理可在生长之后关闭碳源实现。参数包括氢化温度600-700℃,处理时间为5-10min;所述用于生长纳米碳膜的碳源为气态碳源或固态碳源。
CN202210240442.8A 2022-03-10 2022-03-10 一种红外增透高导电金刚石半导体的制备方法 Active CN114645260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210240442.8A CN114645260B (zh) 2022-03-10 2022-03-10 一种红外增透高导电金刚石半导体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210240442.8A CN114645260B (zh) 2022-03-10 2022-03-10 一种红外增透高导电金刚石半导体的制备方法

Publications (2)

Publication Number Publication Date
CN114645260A true CN114645260A (zh) 2022-06-21
CN114645260B CN114645260B (zh) 2022-09-09

Family

ID=81993076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210240442.8A Active CN114645260B (zh) 2022-03-10 2022-03-10 一种红外增透高导电金刚石半导体的制备方法

Country Status (1)

Country Link
CN (1) CN114645260B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247017A (zh) * 2023-02-06 2023-06-09 中国人民解放军国防科技大学 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233802A (ja) * 2003-01-31 2004-08-19 Kobe Steel Ltd 遠赤外光学部品
RO125404A0 (ro) * 2009-11-20 2010-04-30 Institutul Naţional Pentru Fizica Laserilor, Plasmei Şi Radiaţiei Strat antireflex dur din carbon cu legături tip diamantifer () obţinut prin metoda arcului termoionic în vid ()
CN107275192A (zh) * 2017-07-10 2017-10-20 北京科技大学 基于低成本单晶金刚石制备高性能金刚石半导体的方法
CN113832430A (zh) * 2021-09-29 2021-12-24 太原理工大学 一种金刚石基非晶碳-氧化钇梯度复合增透膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233802A (ja) * 2003-01-31 2004-08-19 Kobe Steel Ltd 遠赤外光学部品
RO125404A0 (ro) * 2009-11-20 2010-04-30 Institutul Naţional Pentru Fizica Laserilor, Plasmei Şi Radiaţiei Strat antireflex dur din carbon cu legături tip diamantifer () obţinut prin metoda arcului termoionic în vid ()
CN107275192A (zh) * 2017-07-10 2017-10-20 北京科技大学 基于低成本单晶金刚石制备高性能金刚石半导体的方法
CN113832430A (zh) * 2021-09-29 2021-12-24 太原理工大学 一种金刚石基非晶碳-氧化钇梯度复合增透膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘金龙 等: "氢终结金刚石表面P型导电沟道稳定性研究", 《材料热处理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247017A (zh) * 2023-02-06 2023-06-09 中国人民解放军国防科技大学 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用

Also Published As

Publication number Publication date
CN114645260B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Deng et al. Atomic-scale flattening mechanism of 4H-SiC (0 0 0 1) in plasma assisted polishing
CN101673668B (zh) 一种氮化镓晶体抛光的方法
CN112430803A (zh) 一种自支撑超薄金刚石膜的制备方法
TW201723212A (zh) SiC複合基板及其製造方法
CN114645260B (zh) 一种红外增透高导电金刚石半导体的制备方法
CN103506928B (zh) 超硬半导体材料抛光方法
KR102578946B1 (ko) 복합 기판 및 복합 기판의 제조 방법
CN100593842C (zh) 一种纳米晶金刚石薄膜场效应晶体管的制备方法
CN1166049A (zh) 用粘贴法制造soi基片的方法及soi基片
CN108023017B (zh) 一种有机无机复合钙钛矿材料的单晶薄膜及其制备方法和应用
CN107275192A (zh) 基于低成本单晶金刚石制备高性能金刚石半导体的方法
CN103114323A (zh) 一种用于GaN单晶衬底的表面抛光方法
CN107539976A (zh) 一种二氧化碳制备超洁净石墨烯的方法
CN101323982B (zh) 一种高质量立方氮化硼薄膜的制备方法
CN104947068A (zh) 一种金刚石热沉片的制备方法
CN101303973A (zh) 一种n-ZnO/p-自支撑金刚石薄膜异质结的制备方法
CN111564534B (zh) 一种单光子源的制备方法及单光子源和集成光学器件
CN103286672B (zh) 快速获得具有原子台阶表面的SiC晶片抛光方法
CN101692468B (zh) 金刚石薄膜的光敏晶体管的制备方法
Das et al. Controlling the opto-electronic properties of nc-SiOx: H films by promotion of< 220> orientation in the growth of ultra-nanocrystallites at the grain boundary
CN101174597A (zh) GaN单晶衬底和GaN单晶衬底的表面加工方法
CN110055589A (zh) 大尺寸单层六方氮化硼单晶或薄膜及制备方法
CN101872718B (zh) 石墨烯晶片的制备方法
CN109065508A (zh) 一种反向台面复合结构超薄晶片及其制备方法
CN115874282A (zh) 一种提高大面积单晶金刚石拼接生长质量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant