CN114644334A - 一种高效去除重金属污染物的多层氮掺碳材料的制备方法 - Google Patents

一种高效去除重金属污染物的多层氮掺碳材料的制备方法 Download PDF

Info

Publication number
CN114644334A
CN114644334A CN202210274183.0A CN202210274183A CN114644334A CN 114644334 A CN114644334 A CN 114644334A CN 202210274183 A CN202210274183 A CN 202210274183A CN 114644334 A CN114644334 A CN 114644334A
Authority
CN
China
Prior art keywords
nacl
zif
solution
carbon material
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210274183.0A
Other languages
English (en)
Other versions
CN114644334B (zh
Inventor
王艺霏
徐丛磊
王豪
于丹宁
徐晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210274183.0A priority Critical patent/CN114644334B/zh
Publication of CN114644334A publication Critical patent/CN114644334A/zh
Application granted granted Critical
Publication of CN114644334B publication Critical patent/CN114644334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高效去除重金属污染物的多层氮掺碳材料的制备方法。其制备步骤包括:1)将2‑甲基咪唑和硝酸锌以4mmol:1mmol的比例分别溶解于40ml甲醇溶液中,超声处理10‑15min,分别搅拌10‑15min,然后将以上两溶液混合,混合液搅拌20‑30min;2)将入1)中处理后的溶液,在90℃下加热6h,后用甲醇和超纯水清洗后2‑3遍后烘干制得ZIF‑8粉末;4)将3)中制备好的材料,经超声处理均匀分散在饱和的NaCl溶液中,期间连续加入混合溶液体积20‑40%的乙醇,后在80℃下烘干制得ZIF‑8@NaCl晶体;5)置于管式炉中氩气保护条件下,在750‑850℃分别加热3h,用超纯水清洗去除复合物中NaCl后制得多层氮掺碳材料(h‑NC)。该材料结构性能稳定强,对重金属污染物的去除效率高、且易于再生大大延长了其使用寿命。

Description

一种高效去除重金属污染物的多层氮掺碳材料的制备方法
技术领域
本发明涉及吸附材料技术领域,具体的说,尤其涉及一种去除重金属污染物的MOFs衍生的多层氮掺碳材料的制备方法。
背景技术
水中重金属污染对人类和生态系统具有高毒性,特别是镉(Cd)离子的持续排放和生物累积效应,对生态环境产生致命的影响,甚至危害人类生命。为了解决这一问题,吸附法因其成本低、操作简单、环保等显著优点受到关注。因此,寻找具有结构稳定、成本低、高选择性的碳基吸附剂材料用于有效的Cd2+去除势在必行。
发明内容
本发明的目的在于提供一种高效去除水体中重金属污染物的碳基材料,该材料具有稳定的结构性能,较高的吸附性能,并且能够进行多个周期循环使用。
本发明的目的是通过以下技术方案实现的:
高效去除水体中重金属污染物的MOFs衍生的多层氮掺碳材料由以下方法制备而成:
1)首先,制备ZIF-8粉末。以4mmol:1mmol称取2-甲基咪唑粉末和六水合硝酸锌,分别溶解于40ml甲醇中,超声处理10-15min,搅拌10-15min,后将两溶液混合,搅拌20-30min,后将混合液倒入100ml水热釜中,在90℃下加热6h,用甲醇和超纯水清洗2-3遍,烘干制得ZIF-8粉末。
2)然后,制备ZIF-8@NaCl。将制得的ZIF-8粉末溶于饱和的NaCl溶液(NaCl:超纯水=3.6g:10ml)中,超声处理10min,期间连续加入混合溶液体积20-40%的乙醇发生NaCl再结晶,在80℃下烘干制得ZIF-8@NaCl晶体。
3)接着,制备h-NC。将ZIF-8@NaCl晶体,在氩气保护条件下于管式炉中烧制3h,烧制温度750-850℃,用超纯水洗去NaCl后烘干制得h-NC材料。
4)最后,重金属去除。将在不同温度制成的多层氮掺碳材料,在30℃,pH=7下,对浓度为0.4-300mg L-1的Cd2+进行去除,根据Langmuir曲线拟合得到相应的最大吸附量。
所述一种高效去除重金属污染物的双碳结构的氮掺碳材料的制备方法,其特征在于:本发明采用NaCl为模板,以ZIF-8为基础碳材料烧制而成,以此改变了氮掺碳材料的微观结构,同时影响氮掺碳材料中的元素含量,从而影响其稳定性和吸附性能。由于NaCl的盐密封作用,其发生分解作用时中间产物被困在氯化钠中,启动原位自组装过程,进一步碳化和除盐后合成双碳分层纳米结构,有利于活性吸附剂与污染物之间的化学相互作用。
本发明要解决的第二个问题是,探究烧制的不同温度,对氮掺碳材料结构和对重金属污染物的吸附性能的影响。一种能高效去除重金属污染物的制备方法,这是本技术的关键所在。因此,在保证氮掺碳材料的结构稳定性和良好吸附性能的前提下,作为优选,本发明通过以下方法制备:
将ZIF-8@NaCl晶体,在氩气保护条件下于管式炉中烧制3h,烧制温度800℃。
本发明的优点如下:本发明通过合理地控制材料烧制时间,得到稳定的三维碳纳米多面体@纳米片结构,并得到合理的碳、氮元素比,从而增加了吸附剂与污染物之间的化学作用,提高了对污染物的去除效率。另一方面,氮掺碳材料的比表面积增大,并存在微孔,大大增加了吸附剂与污染物的接触面积,从而提高了对污染物的去除效果。
附图说明
图1为本发明中材料合成示意图。
图2为吸附效果图。
图3为h-NC-750的(a)TEM低倍图和(b)TEM高倍图;h-NC-800的(c)TEM低倍图和(d)TEM高倍图;h-NC-850的(e)TEM低倍图和(f)TEM高倍图。
具体实施方式
下面结合附图和实例对本发明进行说明。
实施案例1
如图1所示,本发明中h-NC-750制备时碳化的温度为750℃。图3a-b所示为TEM低倍图和TEM高倍图。其具体制备方法如下:
1)称取3.28g的2-甲基咪唑和2.98g的六水合硝酸锌,分别溶解于40ml甲醇中,超声处理10min,搅拌15min,后将两溶液混合,搅拌30min;
2)将1)中混合液倒入100ml水热釜中,在90℃下加热6h,用甲醇和超纯水清洗2遍,烘干制得ZIF-8粉末;
3)取0.8g ZIF-8粉末放入饱和的NaCl溶液(7.2gNaCl溶于20ml超纯水)中,超声处理10min,期间连续加入6ml乙醇,后在80℃下烘干制得ZIF-8@NaCl晶体;
4)将ZIF-8@NaCl晶体,在氩气保护条件下,在管式炉中烧制3h,烧制温度为750℃;
5)通过离心、过滤,用超纯水洗去NaCl后,烘干制得h-NC-750;
6)由此制备的h-NC-750比表面积较小,为1270m2/g,结构紧实,并且结构不稳定,呈非晶态;
7)同时其在30℃,pH=7条件下,对Cd2+的最大吸附量为317mg g-1
实施案例2
如图1所示,本发明中h-NC-800制备时碳化的温度为800℃。图3c-d所示为TEM低倍图和TEM高倍图。其具体制备方法如下:
1)称取3.28g的2-甲基咪唑和2.98g的六水合硝酸锌,分别溶解于40ml甲醇中,超声处理10min,搅拌15min,后将两溶液混合,搅拌30min;
2)将1)中混合液倒入100ml水热釜中,在90℃下加热6h,用甲醇和超纯水清洗2遍,烘干制得ZIF-8粉末;
3)取0.8g ZIF-8粉末放入饱和的NaCl溶液(7.2gNaCl溶于20ml超纯水)中,超声处理10min,期间连续加入6ml乙醇,后在80℃下烘干制得ZIF-8@NaCl晶体;
4)将ZIF-8@NaCl晶体,在氩气保护条件下,在管式炉中烧制3h,烧制温度为800℃;
5)通过离心、过滤,用超纯水洗去NaCl后,烘干制得h-NC-800;
6)由此制备的h-NC-800的比表面积比h-NC-750稍小,为1174m2/g,并且结构稳定有序;
7)同时其在30℃,pH=7条件下,对Cd2+的最大吸附量为356mg g-1,与h-NC-750相比提高近10%。
实施案例3
如图1所示,本发明中h-NC-850制备时碳化的温度为850℃。图3e-f所示为TEM低倍图和TEM高倍图。具体的制备方法如下:
1)称取3.28g的2-甲基咪唑和2.98g的六水合硝酸锌,分别溶解于40ml甲醇中,超声处理10min,搅拌15min,后将两溶液混合,搅拌30min;
2)将1)中混合液倒入100ml水热釜中,在90℃下加热6h,用甲醇和超纯水清洗2遍,烘干制得ZIF-8粉末;
3)取0.8g ZIF-8粉末放入饱和的NaCl溶液(7.2gNaCl溶于20ml超纯水)中,超声处理10min,期间连续加入6ml乙醇,后在80℃下烘干制得ZIF-8@NaCl晶体;
4)将ZIF-8@NaCl晶体,在氩气保护条件下,在管式炉中烧制3h,烧制温度为850℃;
5)通过离心、过滤,用超纯水洗去NaCl后,烘干制得h-NC-850;
6)由此制备得到纳米晶态的h-NC-850,其比表面积相比最小,为1037m2/g,且平面间距更清晰;
7)同时其在30℃,pH=7条件下,对Cd2+的最大吸附量为240mg g-1

Claims (4)

1.一种高效去除重金属污染物多层氮掺碳材料的制备方法,其特征在于,步骤如下:
1)将ZIF-8经超声处理均匀分散于饱和的NaCl溶液中得到混合溶液,期间连续加入混合溶液体积20-40%的乙醇,然后在80℃下烘干制得ZIF-8@NaCl晶体;
2)将ZIF-8@NaCl置于管式炉中,在氩气氛围下,烧制3h,温度控制在750-850℃,然后用超纯水洗去NaCl,烘干制得h-NC。
2.根据权利要求1中所述的制备方法,其特征在于:在管式炉中烧制时温度设为800℃。
3.根据权利要求1中所述的制备方法,其特征在于:0.8g ZIF-8粉末放入饱和的NaCl溶液,NaCl溶液采用7.2gNaCl溶于20ml超纯水。
4.按照权利要求1中所述的方法所制备的h-NC在pH=5-9范围内下对镉离子进行去除。
CN202210274183.0A 2022-03-21 2022-03-21 一种高效去除重金属污染物的多层氮掺碳材料的制备方法 Active CN114644334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210274183.0A CN114644334B (zh) 2022-03-21 2022-03-21 一种高效去除重金属污染物的多层氮掺碳材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210274183.0A CN114644334B (zh) 2022-03-21 2022-03-21 一种高效去除重金属污染物的多层氮掺碳材料的制备方法

Publications (2)

Publication Number Publication Date
CN114644334A true CN114644334A (zh) 2022-06-21
CN114644334B CN114644334B (zh) 2024-02-06

Family

ID=81995478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210274183.0A Active CN114644334B (zh) 2022-03-21 2022-03-21 一种高效去除重金属污染物的多层氮掺碳材料的制备方法

Country Status (1)

Country Link
CN (1) CN114644334B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117326661A (zh) * 2023-11-07 2024-01-02 广州楷宇环保科技有限公司 一种污水处理药剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152281A (zh) * 2015-09-10 2015-12-16 上海大学 核壳结构分级多孔碳材料电容型脱盐电极的制备方法
CN109261141A (zh) * 2018-09-06 2019-01-25 华南协同创新研究院 一种zif-8纳米晶及其制备方法和应用
CN110026245A (zh) * 2019-05-16 2019-07-19 南京林业大学 一种核壳结构可见光催化材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152281A (zh) * 2015-09-10 2015-12-16 上海大学 核壳结构分级多孔碳材料电容型脱盐电极的制备方法
CN109261141A (zh) * 2018-09-06 2019-01-25 华南协同创新研究院 一种zif-8纳米晶及其制备方法和应用
CN110026245A (zh) * 2019-05-16 2019-07-19 南京林业大学 一种核壳结构可见光催化材料及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117326661A (zh) * 2023-11-07 2024-01-02 广州楷宇环保科技有限公司 一种污水处理药剂及其制备方法和应用

Also Published As

Publication number Publication date
CN114644334B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
JP2020510527A (ja) 複合改質わら粒状活性炭吸着材料の製造方法及びリン吸着における使用
Liu et al. Integration of nanosized ZIF-8 particles onto mesoporous TiO 2 nanobeads for enhanced photocatalytic activity
Cheng et al. A novel preparation method for ZnO/γ-Al 2 O 3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles
TW201504159A (zh) 用於穩定的零價奈米顆粒合成的方法及設備
TW201505972A (zh) 使用零價奈米顆粒處理含污染物液體的方法及設備
Yuan et al. Preparation and application of Mg–Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage
CN111250063B (zh) 一种导电锰-钛锂离子筛/石墨烯复合水凝胶的制备及其在盐湖卤水提取锂中的应用
CN106115698A (zh) 一种利用回收废炭制备含氮多孔炭的方法及其产品和应用
CN112521617A (zh) 一种可用于吸附抗生素的多酸基金属有机框架材料及其制备方法和用途
CN114644334A (zh) 一种高效去除重金属污染物的多层氮掺碳材料的制备方法
CN112958061A (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
Zhi et al. Hierarchically porous BiOCl@ NiCo 2 O 4 nanoplates as low-cost and highly efficient catalysts for the discoloration of organic contaminants in aqueous media
CN111790349A (zh) 一种用于吸附重金属离子的吸附剂的制备方法及应用
CN113198515B (zh) 一种三元光催化剂及其制备方法与应用
CN114307878A (zh) 一种含锆有机框架材料复合气凝胶及其制备方法与应用
Zhang et al. A novel post coordination modulation method to synthesize N/S functionalized ZIF-8 for removal of trace heavy metals from drinking water
Cui et al. Recovery of lithium using H4Mn3. 5Ti1. 5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process
CN111574219B (zh) 一种光催化铁酸锂-氧化钛复合块体的制备方法及复合块体
CN111013543B (zh) 一种多孔级的CuBTC配体组装合成方法
Khan et al. Improving capacitive deionization performance through tailored iodine-loaded ZIF-8 composites
CN116803909A (zh) 一种复合材料与负载该复合材料的电极及制备方法
Zhao et al. Adsorptive behavior of prepared metal-organic framework composites on phosphates in aqueous solutions
CN112723346B (zh) 一种用于从混合金属溶液中选择性吸附铜离子的氮掺杂石墨烯量子点杂化膜的制备方法
CN115007120B (zh) 一种选择性吸附锰的介孔复合材料及其制备方法与应用
CN115282938B (zh) 双金属型MOFs-聚多巴胺-无纺布在重金属离子吸附上的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant