CN114643043A - 一种磁控石墨烯基微纳马达及其制备方法 - Google Patents

一种磁控石墨烯基微纳马达及其制备方法 Download PDF

Info

Publication number
CN114643043A
CN114643043A CN202210311236.1A CN202210311236A CN114643043A CN 114643043 A CN114643043 A CN 114643043A CN 202210311236 A CN202210311236 A CN 202210311236A CN 114643043 A CN114643043 A CN 114643043A
Authority
CN
China
Prior art keywords
carbon
fecl
microspheres
magnetic control
nano motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210311236.1A
Other languages
English (en)
Other versions
CN114643043B (zh
Inventor
陈云
郭媛慧
谢斌
严璐
侯茂祥
陈新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202210311236.1A priority Critical patent/CN114643043B/zh
Publication of CN114643043A publication Critical patent/CN114643043A/zh
Application granted granted Critical
Publication of CN114643043B publication Critical patent/CN114643043B/zh
Priority to US17/968,960 priority patent/US11745160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/324Inorganic material layers containing free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种磁控石墨烯基微纳马达及其制备方法,包括以下步骤:A、将FeCl3晶体粉末与去离子水混合配置成FeCl3溶液;B、将碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3‑碳基微球;C、将FeCl3‑碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,在富氧环境中利用激光器对FeCl3‑碳基微球进行激光处理,得到磁控石墨烯基微纳马达。本技术方案提出的一种磁控石墨烯基微纳马达及其制备方法,步骤简单,操作性强,能有效提升微纳马达的比表面积和孔隙率,可实现水体中多种不同的重金属离子和有机污染物的有效吸附。

Description

一种磁控石墨烯基微纳马达及其制备方法
技术领域
本发明涉及催化式自驱动微纳马达技术领域,尤其涉及一种磁控石墨烯基微纳马达及其制备方法。
背景技术
随着近几十年工业化和城市化的进程加快,电镀、采矿、电池制造等工业不断发展,造成水体中汞、镉、铬、铅等重金属元素含量超标,水资源中重金属污染日益严重。重金属在水环境中可以长期稳定存在,继而随着食物链在生物体内层层富集,对生物系统有害。重金属污染具有高毒性、环境持久性、隐蔽性、生物蓄积性等特性,是公认的危害最严重的污染物之一。因此,水资源中的重金属快速高效去除和回收问题亟待解决。
目前存在的污水去除和回收的方式有很多,运用化学沉淀法、膜过滤法、和吸附法等方法的研究有很多。其中,纳米技术的发展,进一步提高了吸附材料在污水处理中的效率。催化式自驱动微纳马达在水资源重金属污染处理方面得到了广泛的应用,各种形状的微纳马达层出不穷,通过马达自身的吸附特性以及微纳马达在尺寸上占据的高比表面积的优势,显著提高了吸附材料在污水处理的效率,以及通过微纳马达高速自驱动运动大幅缩短污水处理时间。
中国专利CN112978877A公开了一种基于微纳马达的动态净化污水处理方法,其通过将扁藻功能化附着上δ-MnO2@PI/Fe3O4,产生具有氧化性的羟基自由基来达到去除污染物的目的。该专利的不足之处在于通过给扁藻负载实现功能化的机械强度低,负载容易脱落失效,影响回收和重复利用率。且用具有强氧化性的羟基对污染水仅能实现消毒、除色、除有机物等功能,对其他有害重金属离子,如Pb2+、Cr6+、Cu2+等,无法进行针对性处理。
中国专利CN106215864A公开了一种吸附重金属离子的磁性氧化石墨烯污水处理剂及制备方法,通过硅氧烷偶联剂对磁性纳米四氧化三铁和氧化石墨烯进行改性处理,形成可对重金属离子针对性处理的处理剂。该专利的不足之处在于该污水处理剂吸附范围有限且不容易回收,容易造成水体的二次污染。
总体来说,对于利用微纳马达进行水污染处理的现有技术中,现有微纳马达存在处理类型单一、各种重金属离子去除功能化有局限性的技术问题,同时还存在处理剂吸附范围、效率和吸附量等不可兼得的技术缺陷。
发明内容
本发明的目的在于提出一种磁控石墨烯基微纳马达的制备方法,步骤简单,操作性强,能有效提升微纳马达的比表面积和孔隙率,可实现水体中多种不同的重金属离子和有机污染物的有效吸附,以克服现有技术中的不足之处。
本发明的另一个目的在于提出一种由上述制备方法制备而成的磁控石墨烯基微纳马达,可以同时吸附水体中多种不同的重金属离子和有机污染物,能有效提升微纳马达在污水处理上的多样性和灵活性。
为达此目的,本发明采用以下技术方案:
一种磁控石墨烯基微纳马达的制备方法,包括以下步骤:
A、将FeCl3晶体粉末与去离子水混合配置成FeCl3溶液;
B、将碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3-碳基微球;
C、将FeCl3-碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,在富氧环境中利用激光器对FeCl3-碳基微球进行激光处理,得到磁控石墨烯基微纳马达。
2.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于:步骤A中,按照质量比,所述FeCl3晶体粉末和所述去离子水的混合比例为1:(2~4)。
优选的,步骤B中,所述碳基微球包括聚酰亚胺微球和聚醚酰亚胺微球中的任意一种。
优选的,步骤B中,所述表面附着有FeCl3溶液的碳基微球的加热温度为40~60℃。
优选的,步骤C中,当真空腔内的气体被抽走至真空腔内的真空度达到(4~5)×10-5Torr时通入氧气,且持续将真空腔内的气体抽走并不断通入氧气,令真空腔内的压力稳定在(3.2~4.2)×10-5Torr。
优选的,步骤C中,所述激光器进行激光处理时发出激光波长为350~360nm的紫外激光,且所述紫外激光的激光功率为10~15W。
优选的,步骤B中在将碳基微球完全浸泡在FeCl3溶液之前,还包括清洗步骤:
将碳基微球放置于等离子体清洗仪的工作区域,向等离子体清洗仪的工作区域通入氧气对碳基微球进行清洗。
优选的,所述等离子体清洗仪中氧气的通入压力为0.1~0.3Nl/h,碳基微球的清洗时间为4~6min。
优选的,还包括步骤D;
D、将金属靶材安装于磁控溅射镀膜机,将磁控石墨烯基微纳马达放置于磁控溅射镀膜机的镀膜工作区内进行镀膜,其中,所述金属靶材为过渡金属氧化物、Pt和Ag中的任意一种或多种的组合。
一种磁控石墨烯基微纳马达,由上述的一种磁控石墨烯基微纳马达的制备方法制备而成。
本申请实施例提供的技术方案可以包括以下有益效果:
1、加工所使用的原材料碳基微球选用范围广泛,简单易得,同时采用激光加工技术可实现大规模批量生产。
2、碳基微球加工出的石墨烯微球具有多孔的特性,在微纳吸附材料比表面积高的优势基础上,继续提升了比表面积和孔隙率,增大了催化剂与污染水的接触面积,提高了重金属粒子和有机污染物的去除效率。
3、通过激光处理一步加工出掺杂Fe3O4的石墨烯微球,自带磁控特性,提升了磁控石墨烯基微纳马达的回收利用率和机械性能,从而避免水体的二次污染。
具体实施方式
一种磁控石墨烯基微纳马达的制备方法,其特征在于,包括以下步骤:
A、将FeCl3晶体粉末与去离子水混合配置成FeCl3溶液;
B、将碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3-碳基微球;
C、将FeCl3-碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,在富氧环境中利用激光器对FeCl3-碳基微球进行激光处理,得到磁控石墨烯基微纳马达。
目前存在的污水去除和回收的方式有很多,运用化学沉淀法、膜过滤法、和吸附法等方法的研究有很多。其中,纳米技术的发展,进一步提高了吸附材料在污水处理中的效率。催化式自驱动微纳马达在水资源重金属污染处理方面得到了广泛的应用,各种形状的微纳马达层出不穷,通过马达自身的吸附特性以及微纳马达在尺寸上占据的高比表面积的优势,显著提高了吸附材料在污水处理的效率,以及通过微纳马达高速自驱动运动大幅缩短污水处理时间。但对于利用微纳马达进行水污染处理的现有技术中,现有微纳马达仍然存在处理类型单一、各种重金属离子去除功能化有局限性的技术问题,同时还存在处理剂吸附范围、效率和吸附量等不可兼得的技术缺陷。
为了解决上述技术问题,本技术方案提出了一种磁控石墨烯基微纳马达的制备方法,首先通过FeCl3晶体粉末与去离子水混合制备成均匀的FeCl3水溶液,然后将碳基微球完全浸泡于FeCl3溶液后取出可获得表面附着有FeCl3溶液的碳基微球,随后加热使FeCl3溶液在碳基微球表面均匀结晶FeCl3·6H2O后,为避免加热后FeCl3会吸收真空腔内空气中的水分,因此需要将碳基微球放置于真空腔中继续加热直至真空腔中不再含有水分子。
在富氧环境中利用激光器对FeCl3-碳基微球进行激光处理,激光可透过FeCl3结晶层同时作用于FeCl3结晶和碳基微球,形成掺杂有Fe3O4的石墨烯微球,即磁控石墨烯基微纳马达。这是由于激光光束的单光子能量大,采用激光作用于覆盖有FeCl3结晶的碳基微球时,FeCl3中的三价铁与氧气发生氧化还原反应生成Fe3O4纳米粒子。同时,激光光束由于光热效应可以穿透FeCl3晶体作用于碳基微球上,非金属材料碳基微球中各元素之间的分子键在高能量的光子作用下断裂,非金属材料中的各种元素分离并重新组合,使得碳基微球中的大多数的碳元素重新组合成石墨烯,而碳基微球中的一部分碳元素会与氧原子形成一氧化碳和二氧化碳等气体,为了避免加工产生的气体影响激光处理的继续进行,本方案中需要不断抽走真空腔内产生的气体并不断通入氧气,令真空腔内时刻保持富氧状态。激光诱导出的石墨烯表面具有大量的孔洞,便于Fe3O4纳米粒子在其表面上的固定和附着,形成掺杂有Fe3O4的石墨烯微球。
在富氧环境下加工出的多孔石墨烯在比表面积增大的同时表面有大量的含氧基团,含氧基团的存在可与重金属离子、有机污染物发生络合反应吸附,达到吸附去除水体中重金属离子和有机污染物的目的,从而实现高效、大量的重金属离子和有机污染物的吸附,同时结合掺杂有Fe3O4的功能化石墨烯球,其自带的磁控特性使Fe3O4-石墨烯微球具有磁控可回收特性,有利于避免水体的二次污染。
进一步地,相比起现有技术中的微纳马达及其制备方法,本方案还具有以下优点:
(1)加工所使用的原材料碳基微球选用范围广泛,简单易得,同时采用激光加工技术可实现大规模批量生产。
(2)碳基微球加工出的石墨烯微球具有多孔的特性,在微纳吸附材料比表面积高的优势基础上,继续提升了比表面积和孔隙率,增大了催化剂与污染水的接触面积,提高了重金属粒子和有机污染物的去除效率。
(3)通过激光处理一步加工出掺杂Fe3O4的石墨烯微球,自带磁控特性,提升了磁控自驱动马达的回收利用率和机械性能,从而避免水体的二次污染。
更进一步说明,步骤A中,按照质量比,所述FeCl3晶体粉末和所述去离子水的混合比例为1:(2~4)。
FeCl3晶体粉末和去离子水的混合比例与经过激光处理后掺杂于石墨烯微球中的Fe3O4含量有关,若混合比例太低,则容易导致掺杂于石墨烯微球中的Fe3O4含量过低,若混合比例太高,则容易使FeCl3水溶液在碳基微球表面形成的结晶太厚,导致激光无法完全透过结晶层将位于中间的碳基微球完全转化成石墨烯。
优选的,步骤A中,按照质量比,所述FeCl3晶体粉末和所述去离子水的混合比例为1:2。
更进一步说明,步骤B中,所述碳基微球包括聚酰亚胺微球和聚醚酰亚胺微球中的任意一种。
碳基微球易于获得,且相比起其他形状的碳基材料在水中的阻力更小,还更利于激光处理,简化加工步骤。
更进一步说明,步骤B中,所述表面附着有FeCl3溶液的碳基微球的加热温度为40~60℃。
FeCl3易溶于水并且有强烈的吸水性,FeCl3水溶液暴露于空气中时,比较难在低于40℃的温度下结晶并附着于碳基微球表面。而温度高于60℃时,FeCl3水溶液由于水分蒸干过快,水溶液中形成的盐酸也会和水分子一起挥发出来,对加工环境和操作人员造成伤害。
更进一步说明,步骤C中,当真空腔内的气体被抽走至真空腔内的真空度达到(4~5)×10-5Torr时通入氧气,且持续将真空腔内的气体抽走并不断通入氧气,令真空腔内的压力稳定在(3.2~4.2)×10-5Torr。
优选的,步骤C中,当真空腔内的空气被抽走至真空腔内的真空度达到5×10-5Torr时通入氧气,并令真空腔内的压力动态保持在3.5×10-5Torr。
更进一步说明,步骤C中,所述激光器进行激光处理时发出激光波长为350~360nm的紫外激光,且所述紫外激光的激光功率为10~15W。
使用紫外激光的目的是利用紫外激光的加工方式是通过破坏分子键来实现物质的转变、加工精度高、可进行微细材料的加工等特点,可实现在碳基微球加工过程中不对碳基微球造成大的形变损伤。紫外激光的激光波长更优选为355nm,激光功率更优选为10W,可避免加工电流太大直接刻蚀掉碳基微球。
更进一步说明,步骤B中在将碳基微球完全浸泡在FeCl3溶液之前,还包括清洗步骤:
将碳基微球放置于等离子体清洗仪的工作区域,向等离子体清洗仪的工作区域通入氧气对碳基微球进行清洗。
在本技术方案的一个优选实施例中,在将碳基微球完全浸泡在FeCl3溶液之前,还包括清洗步骤:将碳基微球放置于等离子体清洗仪的工作区域,向等离子体清洗仪的工作区域通入氧气对碳基微球进行清洗。本方案首先在浸泡之前对碳基微球进行清洗,利用等离子体清洗仪开机后通入氧气,形成的等离子体轰击碳基微球表面,有利于提升碳基微球表面的亲水性,便于更多的FeCl3附着在碳基微球表面。
更进一步说明,所述等离子体清洗仪中氧气的通入压力为0.1~0.3Nl/h,碳基微球的清洗时间为4~6min。
优选的,等离子体清洗仪中氧气的通入压力为0.2Nl/h,碳基微球的清洗时间为5min。
更进一步说明,还包括步骤D;
D、将金属靶材安装于磁控溅射镀膜机,将磁控石墨烯基微纳马达放置于磁控溅射镀膜机的镀膜工作区内进行镀膜,其中,所述金属靶材为过渡金属氧化物、Pt和Ag中的任意一种或多种的组合。
在本技术方案的一个优选实施例中,还可在磁控石墨烯基微纳马达表面溅射一层利用过渡金属氧化物、Pt和Ag中的任意一种或多种的组合作为金属靶材而形成的相应的功能化金属镀膜。由于过渡金属氧化物、Pt和Ag起到催化作用,当在水体中利用H2O2进行杀菌、除味和除臭时,功能化的金属镀膜可以使H2O2快速分解出水和大量的氧气,因此将其作为镀膜覆盖在Fe3O4-石墨烯微球表面,可在水体中催化产生气泡实现快速移动的同时产生具有强氧化性的羟基,便于帮助H2O2快速实现水体消毒、除色、除味以及去除有机污染物的目的。
优选的,步骤D中,所述过滤金属氧化物包括MnO2、CuO2、CuO和ZnO中的任意一种或多种的组合。
一种磁控石墨烯基微纳马达,由上述的一种磁控石墨烯基微纳马达的制备方法制备而成。
本技术方案还提出了一种由上述制备方法制备而成的磁控石墨烯基微纳马达,有利于同时吸附水体中多种不同的重金属离子和有机污染物,能有效提升微纳马达在污水处理上的多样性和灵活性。
下面通过具体实施方式来进一步说明本发明的技术方案。
实施例1-一种磁控石墨烯基微纳马达的制备方法
A、按照质量比,将FeCl3晶体粉末与去离子水按照1:2的比例混合配置成FeCl3溶液;
B、将碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球在40℃的温度下进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3-碳基微球;
C、将FeCl3-碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,当真空腔内的气体被抽走至真空腔内的真空度达到5×10-5Torr时通入氧气,且持续将真空腔内的气体抽走并不断通入氧气,令真空腔内的压力稳定在3.5×10-5Torr;在富氧环境中利用激光波长为355nm、激光功率为10W的紫外激光对FeCl3-碳基微球进行激光处理,得到磁控石墨烯基微纳马达。
实施例2-一种磁控石墨烯基微纳马达的制备方法
A、按照质量比,将FeCl3晶体粉末与去离子水按照1:3的比例混合配置成FeCl3溶液;
B、将碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球在50℃的温度下进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3-碳基微球;
C、将FeCl3-碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,当真空腔内的气体被抽走至真空腔内的真空度达到4.5×10-5Torr时通入氧气,且持续将真空腔内的气体抽走并不断通入氧气,令真空腔内的压力稳定在4.2×10-5Torr;在富氧环境中利用激光波长为355nm、激光功率为10W的紫外激光对FeCl3-碳基微球进行激光处理,得到磁控石墨烯基微纳马达。
实施例3-一种磁控石墨烯基微纳马达的制备方法
A、按照质量比,将FeCl3晶体粉末与去离子水按照1:4的比例混合配置成FeCl3溶液;
B、将碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球在60℃的温度下进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3-碳基微球;
C、将FeCl3-碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,当真空腔内的气体被抽走至真空腔内的真空度达到4×10-5Torr时通入氧气,且持续将真空腔内的气体抽走并不断通入氧气,令真空腔内的压力稳定在3.2×10-5Torr;在富氧环境中利用激光波长为355nm、激光功率为10W的紫外激光对FeCl3-碳基微球进行激光处理,得到磁控石墨烯基微纳马达。
实施例4-一种磁控石墨烯基微纳马达的制备方法
A、按照质量比,将FeCl3晶体粉末与去离子水按照1:2的比例混合配置成FeCl3溶液;
B、将碳基微球放置于等离子体清洗仪的工作区域,向等离子体清洗仪的工作区域通入压力为0.2Nl/h的氧气对碳基微球进行清洗,且清洗时间为5min;将清洗后的碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球在40℃的温度下进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3-碳基微球;
C、将FeCl3-碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,当真空腔内的气体被抽走至真空腔内的真空度达到5×10-5Torr时通入氧气,且持续将真空腔内的气体抽走并不断通入氧气,令真空腔内的压力稳定在3.5×10-5Torr;在富氧环境中利用激光波长为355nm、激光功率为10W的紫外激光对FeCl3-碳基微球进行激光处理,得到磁控石墨烯基微纳马达。
利用实施例1-4制备得到的磁控石墨烯基微纳马达分别按照以下步骤进行污水处理实验:
步骤一,对污水样品进行取样,利用电感耦合等离子体发射光谱仪对污水样品中的Pb2+、Cu2+和Cd2+的初始浓度进行测定和记录,利用紫外-可见光分光光度计对污水样品的萘初始浓度进行测定和记录;
步骤二,将污水样品分成等量的4份,往污水样品中分别投入5g的由实施例1-4制备得到的磁控石墨烯基微纳马达,并等待1h的反应时间;
步骤三,通过磁场强度为1mT的电磁铁将污水样品中的磁控石墨烯基微纳马达进行回收;
步骤四,利用能量色散X射线光谱仪对回收后的磁控石墨烯基微纳马达的表面元素进行测定,利用电感耦合等离子体发射光谱仪对处理后的污水样品的Pb2+、Cu2+和Cd2+的离子浓度进行测定和记录,利用紫外-可见光分光光度计对处理后的污水样品的萘浓度进行测定和记录,其结果如下表1所示。
表1利用磁控石墨烯基微纳马达对污水样品进行处理前后的检测结果
检测结果 未处理 实施例1 实施例2 实施例3 实施例4
Pb<sup>2+</sup>浓度(μg/L) 1.9 0.35 0.82 1.25 0.06
Cu<sup>2+</sup>浓度(mg/L) 12.8 1.03 2.60 4.81 0.24
Cd<sup>2+</sup>浓度(mg/L) 9.6 0.86 1.29 3.32 0.06
萘浓度(mg/L) 19.3 2.63 5.95 13.30 0.13
从表1的检测结果可以得知,利用本方案一种磁控石墨烯基微纳马达的制备方法制备的磁控石墨烯基微纳马达对污水样品进行处理,均能有效地吸附水体中多种不同的重金属离子和有机污染物;利用能量色散X射线光谱仪对回收后的磁控石墨烯基微纳马达的表面元素进行测定,检测到回收后的磁控石墨烯基微纳马达的表面均存在Pb2+、Cu2+和Cd2+
另外,根据实施例1和实施例4的检测结果可以得知,本方案首先在浸泡之前对碳基微球进行清洗,利用等离子体清洗仪开机后通入氧气,形成的等离子体轰击碳基微球表面,有利于提升碳基微球表面的亲水性,便于更多的FeCl3附着在碳基微球表面,从而更有助于磁控石墨烯基微纳马达对重金属离子和有机污染物的附着。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

1.一种磁控石墨烯基微纳马达的制备方法,其特征在于,包括以下步骤:
A、将FeCl3晶体粉末与去离子水混合配置成FeCl3溶液;
B、将碳基微球完全浸泡在FeCl3溶液后取出,将表面附着有FeCl3溶液的碳基微球进行加热,直至碳基微球表面的FeCl3结晶,得到FeCl3-碳基微球;
C、将FeCl3-碳基微球放置在真空腔后继续进行加热,直至真空腔中不再含有水分子,然后持续将真空腔内的气体抽走并不断通入氧气,在富氧环境中利用激光器对FeCl3-碳基微球进行激光处理,得到磁控石墨烯基微纳马达。
2.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于:步骤A中,按照质量比,所述FeCl3晶体粉末和所述去离子水的混合比例为1:(2~4)。
3.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于:步骤B中,所述碳基微球包括聚酰亚胺微球和聚醚酰亚胺微球中的任意一种。
4.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于:步骤B中,所述表面附着有FeCl3溶液的碳基微球的加热温度为40~60℃。
5.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于:步骤C中,当真空腔内的气体被抽走至真空腔内的真空度达到(4~5)×10-5Torr时通入氧气,且持续将真空腔内的气体抽走并不断通入氧气,令真空腔内的压力稳定在(3.2~4.2)×10- 5Torr。
6.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于:步骤C中,所述激光器进行激光处理时发出激光波长为350~360nm的紫外激光,且所述紫外激光的激光功率为10~15W。
7.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于,步骤B中在将碳基微球完全浸泡在FeCl3溶液之前,还包括清洗步骤:
将碳基微球放置于等离子体清洗仪的工作区域,向等离子体清洗仪的工作区域通入氧气对碳基微球进行清洗。
8.根据权利要求7所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于:所述等离子体清洗仪中氧气的通入压力为0.1~0.3Nl/h,碳基微球的清洗时间为4~6min。
9.根据权利要求1所述的一种磁控石墨烯基微纳马达的制备方法,其特征在于,还包括步骤D;
D、将金属靶材安装于磁控溅射镀膜机,将磁控石墨烯基微纳马达放置于磁控溅射镀膜机的镀膜工作区内进行镀膜,其中,所述金属靶材为过渡金属氧化物、Pt和Ag中的任意一种或多种的组合。
10.一种磁控石墨烯基微纳马达,其特征在于:由权利要求1~9任意一项所述的一种磁控石墨烯基微纳马达的制备方法制备而成。
CN202210311236.1A 2022-03-28 2022-03-28 一种磁控石墨烯基微纳马达及其制备方法 Active CN114643043B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210311236.1A CN114643043B (zh) 2022-03-28 2022-03-28 一种磁控石墨烯基微纳马达及其制备方法
US17/968,960 US11745160B2 (en) 2022-03-28 2022-10-19 Magnetically-controlled graphene-based micro-/nano-motor and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210311236.1A CN114643043B (zh) 2022-03-28 2022-03-28 一种磁控石墨烯基微纳马达及其制备方法

Publications (2)

Publication Number Publication Date
CN114643043A true CN114643043A (zh) 2022-06-21
CN114643043B CN114643043B (zh) 2022-09-02

Family

ID=81996271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210311236.1A Active CN114643043B (zh) 2022-03-28 2022-03-28 一种磁控石墨烯基微纳马达及其制备方法

Country Status (2)

Country Link
US (1) US11745160B2 (zh)
CN (1) CN114643043B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117226806A (zh) * 2023-09-26 2023-12-15 广东工业大学 一种集群磁控微纳机器人及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120574A (zh) * 2011-03-15 2011-07-13 东南大学 制备大范围二维纳米材料石墨烯的方法
CN105381784A (zh) * 2015-11-17 2016-03-09 苏州科技学院 一种磁性氧化石墨烯复合材料的制备方法和应用
CN108745329A (zh) * 2018-05-28 2018-11-06 娈疯 一种以水分子为二次激发对象的等离子体活性炭再生方法
WO2019136423A1 (en) * 2018-01-08 2019-07-11 Virginia Commonwealth University Graphene-based materials for the efficient removal of pollutants from water
CN112427009A (zh) * 2020-11-18 2021-03-02 昆明理工大学 一种纳米马达吸附材料的制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215864A (zh) 2016-07-25 2016-12-14 合众(佛山)化工有限公司 一种吸附重金属离子的磁性氧化石墨烯污水处理剂及其制备方法
EP3594185A1 (en) * 2018-07-13 2020-01-15 Fundació Institut de Bioenginyeria de Catalunya (IBEC) Water treatment
CN112978877A (zh) 2021-01-31 2021-06-18 福建工程学院 一种基于微纳马达的动态净化污水处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120574A (zh) * 2011-03-15 2011-07-13 东南大学 制备大范围二维纳米材料石墨烯的方法
CN105381784A (zh) * 2015-11-17 2016-03-09 苏州科技学院 一种磁性氧化石墨烯复合材料的制备方法和应用
WO2019136423A1 (en) * 2018-01-08 2019-07-11 Virginia Commonwealth University Graphene-based materials for the efficient removal of pollutants from water
CN108745329A (zh) * 2018-05-28 2018-11-06 娈疯 一种以水分子为二次激发对象的等离子体活性炭再生方法
CN112427009A (zh) * 2020-11-18 2021-03-02 昆明理工大学 一种纳米马达吸附材料的制备方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117226806A (zh) * 2023-09-26 2023-12-15 广东工业大学 一种集群磁控微纳机器人及其制备方法

Also Published As

Publication number Publication date
US11745160B2 (en) 2023-09-05
US20230048134A1 (en) 2023-02-16
CN114643043B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
Gopinath et al. Strategies to design modified activated carbon fibers for the decontamination of water and air
CN100429155C (zh) 一种三维电极反应器的粒子电极催化剂填料及其制备方法
JP2021194637A (ja) 黒鉛化基窒素錯体化のFe(III)−Fe▲0▼触媒の調製方法
TW201119949A (en) Composition as absorbent and catalyzer, processing method thereof, and method for treating waste water thereof
KR101755377B1 (ko) 중금속 흡착성능이 우수한 산화그래핀 및 그의 제조방법
CN1544360A (zh) 多相富集、微波协同、催化氧化降解水中有机污染物的方法
CN114643043B (zh) 一种磁控石墨烯基微纳马达及其制备方法
Jiang et al. Ultra-fast detoxification of Sb (III) using a flow-through TiO2-nanotubes-array-mesh based photoelectrochemical system
CN113231059B (zh) 用于电子束污水处理的复合催化剂及其制备方法和应用
CN112933997B (zh) 一种基于原位还原的无机改性膜的制备方法及其应用
Wang et al. Degradation of diuron by heterogeneous electro-Fenton using modified magnetic activated carbon as the catalyst
CN113181934B (zh) 基于photo-Fenton反应降解四环素的自驱动催化剂及其制备与应用
CN113198515B (zh) 一种三元光催化剂及其制备方法与应用
KR20160114883A (ko) 폐수내 중금속 제거를 위해 산화철로 표면개질된 탄소재료
Liu et al. Emerging investigator series: 3D graphene anchored zerovalent Fe/Cu aerogel activating persulfate for efficiently 2, 4 dichlorophenol degradation over a broad pH range
CN102060367B (zh) 一种去除水中二甲基亚硝胺的方法
Pan et al. (1 1 1) Facet-dominant peracetic acid activation by octahedral CoO anchored hollow carbon microspheres for tetracycline degradation
CN114984980B (zh) 一种双功能FeCo2O4-CdS管状微马达及其制备方法和应用
CN115715980B (zh) Mn3O4/CNTs类芬顿催化剂及其制备方法和应用
CN114505087B (zh) 一种铜单原子催化剂的制备及在有机污染物降解应用
Poorsajadi et al. Photocatalytic degradation of methyl orange dye using bismuth oxide nanoparticles under visible radiation
JP3118558B2 (ja) 水処理用触媒及び水処理方法
Zheng et al. Graphene-Based Nanomaterials for Water Remediation Applications
CN114561794A (zh) 一种基于除醛、抗菌的纳米级Cu2O-MnO2双金属氧化物的制备方法
CN109772146B (zh) 空气净化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant