CN114622168A - 具有低磁滞损耗的磁性复合薄膜及其制备方法 - Google Patents
具有低磁滞损耗的磁性复合薄膜及其制备方法 Download PDFInfo
- Publication number
- CN114622168A CN114622168A CN202011532023.9A CN202011532023A CN114622168A CN 114622168 A CN114622168 A CN 114622168A CN 202011532023 A CN202011532023 A CN 202011532023A CN 114622168 A CN114622168 A CN 114622168A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- multilayer film
- film
- hysteresis loss
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 23
- 239000002131 composite material Substances 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title description 5
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000001704 evaporation Methods 0.000 claims abstract description 6
- 229910002546 FeCo Inorganic materials 0.000 claims abstract description 5
- 238000010894 electron beam technology Methods 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 22
- 239000007769 metal material Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 229910052755 nonmetal Inorganic materials 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- 229910005347 FeSi Inorganic materials 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 230000005415 magnetization Effects 0.000 abstract description 2
- 239000011232 storage material Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 abstract 3
- 230000037431 insertion Effects 0.000 abstract 2
- 238000003780 insertion Methods 0.000 abstract 2
- 238000000137 annealing Methods 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 230000001808 coupling effect Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 230000005294 ferromagnetic effect Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000009812 interlayer coupling reaction Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/20—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Thin Magnetic Films (AREA)
Abstract
本发明通过电子束逐层交替蒸发得到CoZrFeSi复合多层膜,具有以往FeCo材料不具备的效果,一方面Zr和Si元素的插入,将削弱Fe/Co之间的铁磁耦合,可以调控磁性多层膜的层间耦合作用,从而实现对多层膜材料磁化强度的调控。另一方面退火能有效提高CoZrFeSi复合多层膜材料磁阻效应表现,可以极大地降低储存器件工作时产生的发热损耗。其次Zr和Si元素的插入可以实现比商业化的FeCo薄膜还要低1‑2个数量级的净磁矩和矫顽力,在提高薄膜软磁性能的前提下材料的磁阻效应并没有明显的减退,在磁性存储材料和自旋电子器件的底层材料有很大应用价值。
Description
(一)技术领域
本发明涉及一种磁性薄膜技术领域,具体涉及一种金属和非金属复合多层膜及其制备方法。
(二)背景技术
电子器件工作中都伴随着损耗,如何能在不降低器件性能的前提下减小工作过程中的损耗是很重要的。目前的铁钴薄膜材料在商用磁性存储器件使用中的磁滞损耗较高,基于上述考虑我们制备并研究一种金属和非金属复合的薄膜,并发现在该种材料中具有低磁滞损耗的性能,可应用于相关领域。
(三)发明内容
本发明的目的在于设计一种低损耗的磁性复合多层膜材料-磁性复合多层膜,并提供制备该薄膜的方法。
本发明的技术方案:一种磁性复合多层膜,是由磁性金属材料和非金属材料通过电子束逐层交替蒸发的方法制备获得,记为CoZrxFeSi(x=0.02/0.03)。
本发明的复合多层膜具有如下特性:
(1)通过微观结构分析和磁性能测试,分析其为磁性复合多层膜结构;
(2)随着温度的升高,磁电阻效应减小;
(3)材料的磁滞损耗随生长温度提高而降低;
本发明的有益效果是,可以实现的CoZrFeSi复合多层膜的矫顽力达200e以下,材料的软磁性能较商用的FeCo薄膜有极大提升,损耗更低。可以作为一种优秀的磁性存储材料或者自旋电子器件的底层材料。
(四)附图说明
图1:CoZrFeSi多层膜的MH曲线。
图2:CoZrFeSi多层膜的电阻与温度关系图。
图3:CoZrFeSi多层膜的SEM图。
(五)具体实施方式
下面通过实施例来进一步说明本发明的制备技术方案,以便更好地理解本发明内容。
实施例1
CoZrFeSi磁性复合多层膜的制备:
a、用于沉积的基片,采用硅片,经过清洗之后晾干,置于真空腔体中。
b、用机械泵和分子泵将真空腔抽至较高真空,约5×10-4Pa。
d、利用磁学特性测试系统(VSM)对该样品进行测试,在生长温度升高时,样品的饱和磁化强度明显下降。
e、随着温度的升高磁电阻效应逐渐减小。
该薄膜可以用于磁性存储材料或者自旋电子器件的底层材料。
Claims (3)
1.一种具有低磁滞损耗的磁性复合薄膜材料,其特征在于是通过电子束交替蒸发的方法制得,使Zr层和Si层充分插入到FeCo结构中,表示为CoZrxFeSi(x=0.02/0.03)。
2.根据权利要求1所述的具有低磁滞损耗的磁性存储材料,其特征在于所述磁性金属材料选自Fe、Co、Zr,或者选自FeCo合金;非金属材料选自Si。
3.一种如权利要求1所述的具有低磁滞损耗的磁性复合薄膜材料的制备方法,其特征在于:采用电子束交替蒸发的工艺,真空度为1×10-3pa--1×10-4pa;将金属材料和非金属材料蒸发在清洗干净的绝缘衬底上,形成50nm--60nm厚度的磁性复合薄膜;其中,控制薄膜的生长温度在100℃--300℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011532023.9A CN114622168A (zh) | 2020-12-14 | 2020-12-14 | 具有低磁滞损耗的磁性复合薄膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011532023.9A CN114622168A (zh) | 2020-12-14 | 2020-12-14 | 具有低磁滞损耗的磁性复合薄膜及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114622168A true CN114622168A (zh) | 2022-06-14 |
Family
ID=81896705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011532023.9A Pending CN114622168A (zh) | 2020-12-14 | 2020-12-14 | 具有低磁滞损耗的磁性复合薄膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114622168A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1218966A (zh) * | 1997-12-02 | 1999-06-09 | 中国科学院上海冶金研究所 | 一种高灵敏度巨磁电阻材料的制备方法 |
CN101354945A (zh) * | 2008-05-21 | 2009-01-28 | 复旦大学 | 具有磁电阻效应的磁性复合有机纳米颗粒膜及其制备方法 |
CN109273254A (zh) * | 2018-09-25 | 2019-01-25 | 电子科技大学 | 一种改善各向异性磁电阻坡莫合金薄膜磁性能的方法 |
-
2020
- 2020-12-14 CN CN202011532023.9A patent/CN114622168A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1218966A (zh) * | 1997-12-02 | 1999-06-09 | 中国科学院上海冶金研究所 | 一种高灵敏度巨磁电阻材料的制备方法 |
CN101354945A (zh) * | 2008-05-21 | 2009-01-28 | 复旦大学 | 具有磁电阻效应的磁性复合有机纳米颗粒膜及其制备方法 |
CN109273254A (zh) * | 2018-09-25 | 2019-01-25 | 电子科技大学 | 一种改善各向异性磁电阻坡莫合金薄膜磁性能的方法 |
Non-Patent Citations (1)
Title |
---|
朱坤: ""CoX(X=Zr,Cr)FeSi赫斯勒合金薄膜材料的制备及性能研究"" * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | High energy products in rapidly annealed nanoscale Fe/Pt multilayers | |
US8133332B2 (en) | Method for preparing FePt media at low ordering temperature and fabrication of exchange coupled composite media and gradient anisotropy media for magnetic recording | |
CN105609630A (zh) | 一种铁磁-反铁磁薄膜异质结构、制备方法及磁存储设备 | |
JP6873506B2 (ja) | 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子 | |
Vas’ kovskiy et al. | Fe 20 Ni 80/Fe 50 Mn 50 film magnetoresistive medium | |
Liu et al. | Crystal structure and magnetic properties of Fe x Pd 1− x thin films annealed at 550° C | |
TW200407450A (en) | Fabrication of nanocomposite thin films for high density magnetic recording media | |
JP5765721B2 (ja) | 高い垂直磁気異方性を示す極薄垂直磁化膜、その製造方法及び用途 | |
JP6583814B2 (ja) | 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス | |
CN114622168A (zh) | 具有低磁滞损耗的磁性复合薄膜及其制备方法 | |
Savin et al. | Effect of phase separation in an Fe 20 Ni 80/Fe 50 Mn 50 structure with exchange coupling | |
Chen et al. | Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media | |
CN111293217B (zh) | 一种基于应力增强铁磁/重金属薄膜体系中电荷流-自旋流有效转换效率的方法 | |
JP5389370B2 (ja) | 強磁性薄膜材料とその製造方法 | |
Ma et al. | Microstructure and magnetic properties of self-assembled FePd–SiN films | |
JP4991981B2 (ja) | ナノグラニュラー軟磁性膜の製造方法 | |
Xia et al. | Influence of electric field on the microstructures and magnetic softness of FeNi nanoparticle films | |
JP5776119B2 (ja) | 磁気記録媒体及びその製造方法 | |
CN110735119B (zh) | 一种磁控溅射制备巨大矫顽力Mn3Ga薄膜的方法 | |
Liu et al. | Promotion of L1 0 ordered phase transformation by the Si 3 N 4 TOP LAYER on FePd thin films | |
JP2019038715A (ja) | 積層体、および薄膜の製造方法 | |
Peng et al. | High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films | |
JP2871990B2 (ja) | 磁気抵抗効果素子薄膜 | |
Yuan et al. | Effect of microstructure refinement on magnetic properties of Fe-Pt thin films | |
KR101396607B1 (ko) | 나노입자를 포함하는 복합 박막 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220614 |