CN114622168A - 具有低磁滞损耗的磁性复合薄膜及其制备方法 - Google Patents

具有低磁滞损耗的磁性复合薄膜及其制备方法 Download PDF

Info

Publication number
CN114622168A
CN114622168A CN202011532023.9A CN202011532023A CN114622168A CN 114622168 A CN114622168 A CN 114622168A CN 202011532023 A CN202011532023 A CN 202011532023A CN 114622168 A CN114622168 A CN 114622168A
Authority
CN
China
Prior art keywords
magnetic
multilayer film
film
hysteresis loss
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011532023.9A
Other languages
English (en)
Inventor
冯武威
朱坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN202011532023.9A priority Critical patent/CN114622168A/zh
Publication of CN114622168A publication Critical patent/CN114622168A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明通过电子束逐层交替蒸发得到CoZrFeSi复合多层膜,具有以往FeCo材料不具备的效果,一方面Zr和Si元素的插入,将削弱Fe/Co之间的铁磁耦合,可以调控磁性多层膜的层间耦合作用,从而实现对多层膜材料磁化强度的调控。另一方面退火能有效提高CoZrFeSi复合多层膜材料磁阻效应表现,可以极大地降低储存器件工作时产生的发热损耗。其次Zr和Si元素的插入可以实现比商业化的FeCo薄膜还要低1‑2个数量级的净磁矩和矫顽力,在提高薄膜软磁性能的前提下材料的磁阻效应并没有明显的减退,在磁性存储材料和自旋电子器件的底层材料有很大应用价值。

Description

具有低磁滞损耗的磁性复合薄膜及其制备方法
(一)技术领域
本发明涉及一种磁性薄膜技术领域,具体涉及一种金属和非金属复合多层膜及其制备方法。
(二)背景技术
电子器件工作中都伴随着损耗,如何能在不降低器件性能的前提下减小工作过程中的损耗是很重要的。目前的铁钴薄膜材料在商用磁性存储器件使用中的磁滞损耗较高,基于上述考虑我们制备并研究一种金属和非金属复合的薄膜,并发现在该种材料中具有低磁滞损耗的性能,可应用于相关领域。
(三)发明内容
本发明的目的在于设计一种低损耗的磁性复合多层膜材料-磁性复合多层膜,并提供制备该薄膜的方法。
本发明的技术方案:一种磁性复合多层膜,是由磁性金属材料和非金属材料通过电子束逐层交替蒸发的方法制备获得,记为CoZrxFeSi(x=0.02/0.03)。
本发明的复合多层膜具有如下特性:
(1)通过微观结构分析和磁性能测试,分析其为磁性复合多层膜结构;
(2)随着温度的升高,磁电阻效应减小;
(3)材料的磁滞损耗随生长温度提高而降低;
本发明的有益效果是,可以实现的CoZrFeSi复合多层膜的矫顽力达200e以下,材料的软磁性能较商用的FeCo薄膜有极大提升,损耗更低。可以作为一种优秀的磁性存储材料或者自旋电子器件的底层材料。
(四)附图说明
图1:CoZrFeSi多层膜的MH曲线。
图2:CoZrFeSi多层膜的电阻与温度关系图。
图3:CoZrFeSi多层膜的SEM图。
(五)具体实施方式
下面通过实施例来进一步说明本发明的制备技术方案,以便更好地理解本发明内容。
实施例1
CoZrFeSi磁性复合多层膜的制备:
a、用于沉积的基片,采用硅片,经过清洗之后晾干,置于真空腔体中。
b、用机械泵和分子泵将真空腔抽至较高真空,约5×10-4Pa。
c、通过离子束电流和生长温度的控制,以及膜厚仪的实时监控,控制成膜过程。电流强度稳定在35mA左右时,原料的蒸发速率控制在
Figure BSA0000228431470000011
的范围内。并通过其相对速率来控制薄膜组分。
d、利用磁学特性测试系统(VSM)对该样品进行测试,在生长温度升高时,样品的饱和磁化强度明显下降。
e、随着温度的升高磁电阻效应逐渐减小。
该薄膜可以用于磁性存储材料或者自旋电子器件的底层材料。

Claims (3)

1.一种具有低磁滞损耗的磁性复合薄膜材料,其特征在于是通过电子束交替蒸发的方法制得,使Zr层和Si层充分插入到FeCo结构中,表示为CoZrxFeSi(x=0.02/0.03)。
2.根据权利要求1所述的具有低磁滞损耗的磁性存储材料,其特征在于所述磁性金属材料选自Fe、Co、Zr,或者选自FeCo合金;非金属材料选自Si。
3.一种如权利要求1所述的具有低磁滞损耗的磁性复合薄膜材料的制备方法,其特征在于:采用电子束交替蒸发的工艺,真空度为1×10-3pa--1×10-4pa;将金属材料和非金属材料蒸发在清洗干净的绝缘衬底上,形成50nm--60nm厚度的磁性复合薄膜;其中,控制薄膜的生长温度在100℃--300℃。
CN202011532023.9A 2020-12-14 2020-12-14 具有低磁滞损耗的磁性复合薄膜及其制备方法 Pending CN114622168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011532023.9A CN114622168A (zh) 2020-12-14 2020-12-14 具有低磁滞损耗的磁性复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011532023.9A CN114622168A (zh) 2020-12-14 2020-12-14 具有低磁滞损耗的磁性复合薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN114622168A true CN114622168A (zh) 2022-06-14

Family

ID=81896705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011532023.9A Pending CN114622168A (zh) 2020-12-14 2020-12-14 具有低磁滞损耗的磁性复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114622168A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1218966A (zh) * 1997-12-02 1999-06-09 中国科学院上海冶金研究所 一种高灵敏度巨磁电阻材料的制备方法
CN101354945A (zh) * 2008-05-21 2009-01-28 复旦大学 具有磁电阻效应的磁性复合有机纳米颗粒膜及其制备方法
CN109273254A (zh) * 2018-09-25 2019-01-25 电子科技大学 一种改善各向异性磁电阻坡莫合金薄膜磁性能的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1218966A (zh) * 1997-12-02 1999-06-09 中国科学院上海冶金研究所 一种高灵敏度巨磁电阻材料的制备方法
CN101354945A (zh) * 2008-05-21 2009-01-28 复旦大学 具有磁电阻效应的磁性复合有机纳米颗粒膜及其制备方法
CN109273254A (zh) * 2018-09-25 2019-01-25 电子科技大学 一种改善各向异性磁电阻坡莫合金薄膜磁性能的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱坤: ""CoX(X=Zr,Cr)FeSi赫斯勒合金薄膜材料的制备及性能研究"" *

Similar Documents

Publication Publication Date Title
Liu et al. High energy products in rapidly annealed nanoscale Fe/Pt multilayers
US8133332B2 (en) Method for preparing FePt media at low ordering temperature and fabrication of exchange coupled composite media and gradient anisotropy media for magnetic recording
CN105609630A (zh) 一种铁磁-反铁磁薄膜异质结构、制备方法及磁存储设备
JP6873506B2 (ja) 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子
Vas’ kovskiy et al. Fe 20 Ni 80/Fe 50 Mn 50 film magnetoresistive medium
Liu et al. Crystal structure and magnetic properties of Fe x Pd 1− x thin films annealed at 550° C
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
JP5765721B2 (ja) 高い垂直磁気異方性を示す極薄垂直磁化膜、その製造方法及び用途
JP6583814B2 (ja) 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス
CN114622168A (zh) 具有低磁滞损耗的磁性复合薄膜及其制备方法
Savin et al. Effect of phase separation in an Fe 20 Ni 80/Fe 50 Mn 50 structure with exchange coupling
Chen et al. Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media
CN111293217B (zh) 一种基于应力增强铁磁/重金属薄膜体系中电荷流-自旋流有效转换效率的方法
JP5389370B2 (ja) 強磁性薄膜材料とその製造方法
Ma et al. Microstructure and magnetic properties of self-assembled FePd–SiN films
JP4991981B2 (ja) ナノグラニュラー軟磁性膜の製造方法
Xia et al. Influence of electric field on the microstructures and magnetic softness of FeNi nanoparticle films
JP5776119B2 (ja) 磁気記録媒体及びその製造方法
CN110735119B (zh) 一种磁控溅射制备巨大矫顽力Mn3Ga薄膜的方法
Liu et al. Promotion of L1 0 ordered phase transformation by the Si 3 N 4 TOP LAYER on FePd thin films
JP2019038715A (ja) 積層体、および薄膜の製造方法
Peng et al. High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films
JP2871990B2 (ja) 磁気抵抗効果素子薄膜
Yuan et al. Effect of microstructure refinement on magnetic properties of Fe-Pt thin films
KR101396607B1 (ko) 나노입자를 포함하는 복합 박막 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220614