CN114613676A - 场效应晶体管及其制备方法 - Google Patents

场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN114613676A
CN114613676A CN202011447903.6A CN202011447903A CN114613676A CN 114613676 A CN114613676 A CN 114613676A CN 202011447903 A CN202011447903 A CN 202011447903A CN 114613676 A CN114613676 A CN 114613676A
Authority
CN
China
Prior art keywords
substrate
graphene
composite structure
graphene film
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011447903.6A
Other languages
English (en)
Inventor
张天夫
张立辉
金元浩
李群庆
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN202011447903.6A priority Critical patent/CN114613676A/zh
Priority to TW110100894A priority patent/TWI823045B/zh
Priority to US17/206,786 priority patent/US11658232B2/en
Publication of CN114613676A publication Critical patent/CN114613676A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7606Transistor-like structures, e.g. hot electron transistor [HET]; metal base transistor [MBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/042Changing their shape, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/0425Making electrodes
    • H01L21/043Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/0425Making electrodes
    • H01L21/044Conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)

Abstract

一种场效应晶体管的制备方法,其包括以下步骤:提供一石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括一衬底和多个石墨烯纳米带,该多个石墨烯纳米带间隔设置在所述衬底上并且沿同一方向延伸,所述衬底具有多个间隔设置的凸起;在每个石墨烯纳米带的两端间隔形成一源极及一漏极,并使该源极及漏极与该石墨烯纳米带电连接;形成一绝缘层于所述多个石墨烯纳米带远离衬底的表面;以及形成一栅极于所述绝缘层远离衬底的表面。

Description

场效应晶体管及其制备方法
技术领域
本发明涉及一种场效应晶体管及其制备方法。
背景技术
场效应晶体管(Field Effect Transistor,缩写FET)简称场效应管,主要有两种类型:结型场效应管(junction FET-JFET)和金属-氧化物半导体场效应管(metal-oxidesemiconductor FET,简称MOS-FET)。场效应晶体管由多数载流子参与导电,也称为单极型晶体管,属于电压控制型半导体器件。场效应晶体管具有输入电阻高、噪声小、功率低等优点,已成为双极型晶体管和功率晶体管的强大竞争者。
现有技术中,场效应晶体管中形成半导体层的材料为非晶硅或多晶硅等。以非晶硅作为半导体层的非晶硅场效应晶体管的制备技术较为成熟,但在非晶硅场效应晶体管中,由于半导体层中通常含有大量的悬挂键,使得载流子的迁移率很低,从而导致场效应晶体管的响应速度较慢。以多晶硅作为半导体层的场效应晶体管相对于以非晶硅作为半导体层的场效应晶体管,具有较高的载流子迁移率,因此响应速度也较快。但多晶硅场效应晶体管低温制备成本较高,方法较复杂,大面积制备困难。
发明内容
有鉴于此,确有必要提供一种场效应晶体管及其制备方法,其中,半导体层为排列整齐的多个石墨烯纳米带,可以大面积制备,成本和能耗较低
一种场效应晶体管的制备方法,其包括以下步骤:
提供一石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括一衬底和多个石墨烯纳米带,该多个石墨烯纳米带间隔设置在所述衬底上并且沿同一方向延伸,所述衬底具有多个间隔设置的凸起;
在每个石墨烯纳米带的两端间隔形成一源极及一漏极,并使该源极及漏极与该石墨烯纳米带电连接;
形成一绝缘层于所述多个石墨烯纳米带远离衬底的表面;以及
形成一栅极于所述绝缘层远离衬底的表面。
一种场效应晶体管,其包括一半导体层、一源极、一漏极、一绝缘层和一栅极,所述半导体层为一石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括一衬底和多个石墨烯纳米带,所述衬底包括一衬底本体和多个凸起,该多个凸起间隔设置在所述衬底本体的表面,所述多个石墨烯纳米带间隔设置在所述衬底本体上并且沿同一方向延伸。
一种场效应晶体管,其包括一半导体层、一源极和一漏极,所述半导体层为一石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括一衬底和多个石墨烯纳米带,所述衬底包括一衬底本体和多个凸起,该多个凸起间隔设置在所述衬底本体的表面,所述多个石墨烯纳米带间隔设置在所述衬底本体上并且沿同一方向延伸;所述衬底为具有氧化硅的硅片,并且所述多个石墨烯纳米带设置在氧化硅上。
与现有技术相比,本发明所提供的场效应晶体管中,半导体层为排列整齐的多个石墨烯纳米带,该多个石墨烯纳米带是将石墨烯膜与具有多个凸起的衬底结合,结合之前,在衬底上设置水或者有机溶剂,从而在凸起附近形成褶皱,并进一步刻蚀石墨烯膜而得。可以大面积制备,成本和能耗较低。
附图说明
图1为本发明第一实施例提供的石墨烯纳米带复合结构的制备方法的工艺流程图。
图2为本发明第一实施例提供的第二复合结构的原子力显微镜(AFM)照片。
图3为图1中石墨烯纳米带复合结构的扫描电镜照片。
图4为图1中石墨烯纳米带复合结构的AFM照片。
图5为图1中石墨烯纳米带复合结构的俯视结构示意图。
图6为本发明第二实施例提供的石墨烯纳米带复合结构的制备方法的工艺流程图。
图7为本发明第三实施例提供的石墨烯纳米带复合结构的制备方法的工艺流程图。
图8为本发明第四实施例提供的石墨烯纳米带复合结构的制备方法的工艺流程图。
图9为本发明第五实施例提供的场效应晶体管的制备方法的工艺流程图。
图10为本发明第五实施例提供的源极、漏极与石墨烯纳米带电连接的结构示意图。
图11为本发明第五实施例提供的场效应晶体管的结构示意图。
图12为本发明第六实施例提供的场效应晶体管的制备方法的工艺流程图。
图13为本发明第六实施例提供的场效应晶体管的结构示意图。
图14为本发明第七实施例提供的场效应晶体管的制备方法的工艺流程图。
图15为本发明第七实施例提供的叉指电极的结构示意图。
图16为本发明第七实施例提供的场效应晶体管的俯视结构示意图。
主要元件符号说明
石墨烯纳米带复合结构 20
基底 10
掩膜层 12
第一表面 122
第二表面 124
通孔 126
金属层 14
衬底 16
衬底本体 162
凸起 164
生长基底 11
石墨烯膜 13
粘胶层 15
第一复合结构 17
第二复合结构 19
褶皱 18
石墨烯纳米带 22
场效应晶体管 100,200,300
源极 102
漏极 104
绝缘层 106
栅极 108
叉指电极 210
第一电极 212
第一子电极 2120
连接部 2122
第二电极 214
第二子电极 2140
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的场效应晶体管及其制备方法作进一步的详细说明。
请参见图1、图2和图5,本发明第一实施例提供一种石墨烯纳米带复合结构20的制备方法,包括以下步骤:
S11,在一基底10上设置一掩膜层12,该掩膜层12具有相对的第一表面122和第二表面124,第一表面122与所述基底10直接接触,该掩膜层12具有多个间隔设置的通孔126,该通孔126从所述第一表面122延伸至所述第二表面124,在所述基底10的表面上设定一X方向和一Y方向,X方向与Y方向相互垂直;
S12,在所述第二表面124设置一金属层14,并且该金属层14填充所述通孔126;
S13,剥离所述掩膜层12,掩膜层12第二表面124上的金属层14也同时被去除,通孔126内的金属层14依然保留在所述基底10上;
S14,将保留在所述基底10上的金属层14作为掩膜,对所述基底10进行刻蚀;
S15,去除保留在所述基底10上的金属层14,得到一衬底16,该衬底16包括一衬底本体162和多个间隔设置的凸起164,该凸起164设置在所述衬底本体162的表面;
S16,在一生长基底11上生长石墨烯膜13;
S17,将一粘胶层15设置在所述石墨烯膜13远离生长基底11的表面,去除所述生长基底11,并利用水或有机溶剂清洗;
S18,利用所述衬底16将所述石墨烯膜13、所述粘胶层15从所述水或有机溶液中取出,并干燥,得到一第一复合结构17,该第一复合结构17包括衬底16、石墨烯膜13和粘胶层15,所述石墨烯膜13位于所述粘胶层15与所述衬底16之间,并且该石墨烯膜13与所述凸起164直接接触;
S19,去除所述粘胶层15,得到一第二复合结构19,该第二复合结构19包括衬底16和石墨烯膜13,石墨烯膜13位于所述凸起164的表面和相邻凸起164之间的衬底本体162的表面,并且石墨烯膜13在凸起164附近形成褶皱18,褶皱18位于相邻凸起164之间衬底本体162表面上且沿Y方向延伸,并且褶皱18处的石墨烯膜13的厚度大于相邻凸起164之间衬底本体162表面的石墨烯膜13的厚度;
S20,从石墨烯膜13远离衬底16的表面进行刻蚀,去除位于凸起164上的石墨烯膜13以及相邻凸起164之间衬底本体162表面上除褶皱18以外的石墨烯膜13,从而得到石墨烯纳米带复合结构20,该石墨烯纳米带复合结构20包括所述衬底本体162、所述多个凸起164和多个相互平行的石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底本体162上。
步骤S11中,所述基底10的材料可以为导体、半导体或绝缘材料。具体地,所述基底10的材料可以为氮化镓、砷化镓、蓝宝石、氧化铝、氧化镁、硅、二氧化硅、氮化硅、石英或玻璃等。所述基底10的材料也可以为聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)等柔性材料。进一步,所述基底10的材料也可以为掺杂的半导体材料,如P型氮化镓、N型氮化镓等。所述基底10的大小、厚度和形状不限,可以根据实际需要选择。优选的,所述基底10的材料为氧化硅。本实施例中,所述基底10为具有厚度为300nm(纳米)氧化硅的硅片。
所述掩膜层12的材料不限,可以为ZEP520A、HSQ(hydrogen silsesquioxane)、PMMA(Polymethylmethacrylate)、PS(Polystyrene)、SOG(Silicon on glass)、MMA(Methylmethacrylate)或其他有机硅类低聚物等材料。所述掩膜层12可通过在基底10表面沉积然后烘干的方式形成,也可以采用丝网印刷的方法形成。本实施例中,所述掩膜层12的材料为PMMA。
在所述掩膜层12上设置多个通孔126的方式不限。本实施例中,利用电子束曝光,曝光出直径为40nm、每列内通孔126间距为500nm以下、列和列间距为500nm以上的通孔126阵列。也即,所述X方向上,相邻通孔126之间的间距大于500nm;所述Y方向上,相邻通孔126之间的间距小于500nm。所述通孔126的形状不限,可以为圆形、方形、三角形等。
步骤S12中,所述金属层14可通过电子束蒸发、离子束溅射等方法沉积在所述掩膜层12的第二表面124上,并且填充所述通孔126。所述金属层14的材料为可以利用腐蚀液去除的金属,比如,铁、金、铬、铜或铝等。所述金属层14的厚度不限。本实施例中,所述金属层14为厚度为15nm的铜层;
步骤S13中,剥离所述掩膜层12的方法不限,比如采用镊子等工具将掩膜层12剥离,或者利用有机溶剂将掩膜层12溶解去除。
步骤S14中,利用步骤S13中保留在基底10上的金属层14作为掩膜,采用反应离子刻蚀(RIE)对所述基底10进行干法刻蚀,在所述基底10上形成多个间隔设置的凸起164,保留在基底10上的金属层14覆盖该多个凸起164。本实施例中,刻蚀深度为15nm(纳米),也即所述凸起164的高度为15nm。
步骤S15中,利用腐蚀液去除保留在所述基底10上的金属层14。也即,采用湿法刻蚀的方法去除保留在所述基底10上的金属层14。腐蚀液的种类根据金属层14不同的材料而进行选择。本实施例中,所述金属层14为铜层,所述腐蚀液为硫酸、硝酸、盐酸,或者由双氧水、盐酸和去离子水组成的混合液(双氧水、盐酸和去离子水的体积比为1:1:50)。本实施例中,所述多个凸起164排列整齐,每一行的凸起164的方向定义为所述X方向,每一列的凸起164的方向定义为所述Y方向。也即,每一行的凸起164沿所述X方向排列,每一列的凸起164沿所述Y方向排列。所述凸起164的形状不限,可以为圆形、方形、三角形等。本实施例中,所述凸起164为圆柱,直径为40nm,高度为15nm。
步骤S16中,在生长基底11上生长石墨烯膜13的方法不限。本实施例中,在生长基底11上生长石墨烯膜13的过程为:在生长基底11上沉积一催化剂层,然后将沉积有催化剂层的生长基底11放入一反应室内,通入碳源气体,并将所述反应室加热到800℃~1000℃,从而在所述生长基底11上生长石墨烯膜13。
所述生长基底11的材料可以为铜,该生长基底11尺寸不限,可以根据实际进行选择。本实施例中,所述生长基底11为一铜片。
在所述生长基底11表面沉积一层金属或金属化合物材料,形成所述催化剂层。所述金属可为金、银、铜、铁、钴和镍中的一种或其任意组合。所述金属化合物可为硫化锌、氧化锌、硝酸铁、氯化铁、氯化铜中的一种或其任意组合。在所述生长基底11上沉积催化剂层的方法不限,比如化学气相沉积、物理气相沉积、真空热蒸镀、磁控溅射、等离子体增强化学气相沉积或印刷等。
所述反应室为一密闭空腔,该密闭空腔具有一个进气口和一个出气口。所述进气口用于通入反应气体,如碳源气体等,所述出气口与一抽真空装置相连通。所述抽真空装置通过该出气口控制反应室的真空度以及气压。进一步地,所述反应室还可以包括一个水冷装置和加热装置,用于控制反应室内的温度。本实施例中,所述反应室为一石英管。
所述碳源气体可以为甲烷、乙烷、乙烯或乙炔等化合物。所述反应室内可以通入氢气等非氧化性气体。在非氧化性气体的持续通入下,当反应室内温度为800℃~1000℃时,所述碳源气体裂解,在所述催化剂层表面沉积碳原子,形成石墨烯膜13。碳源气体的气体流量为20sccm(标况毫升每分)~90sccm,所述非氧化性气体与碳源气体的气体流量比的范围为45:2~15:2。该反应室内也可为真空环境,气压为10-1~102帕。生长石墨烯膜13的恒温时间为10min到60min。本实施例中,反应室内的气压为500mTorr,反应温度为1000摄氏度,碳源气体为甲烷,气体流量为25sccm,恒温时间为30min。
步骤S17中,所述粘胶层15的材料不限,本实施例中,所述粘胶层15的材料为PMMA(甲基丙烯酸甲酯)。去除所述生长基底11的方法不限,例如,采用化学腐蚀的方式去除所述生长基底11。所述生长基底11的材料为铜,去除生长基底11的腐蚀液为硫酸、硝酸、盐酸,或者由双氧水、盐酸和去离子水组成的混合液(双氧水、盐酸和去离子水的体积比为1:1:50)。本实施例中,所述生长基底11的材料为铜,去除生长基底11的腐蚀液为由双氧水、盐酸和去离子水组成的混合液(双氧水、盐酸和去离子水的体积比为1:1:50)。
去除生长基底11之后,用水或者有机溶剂冲洗,以除去残余的杂质。所述水优选为去离子水,所述有机溶剂的种类不限,比如异丙醇等。
步骤S18中,利用所述衬底16将所述石墨烯膜13、所述粘胶层15从所述水或有机溶液中取出的过程中,所述衬底16与石墨烯膜13直接接触,而粘胶层15位于石墨烯膜13远离衬底16的表面。在干燥之前,水或者有机溶剂将石墨烯膜13与衬底16分隔开,也即石墨烯膜13与衬底16之间具有水或有机溶剂。随着水分或有机溶剂的蒸发,石墨烯膜13与衬底16之间逐渐形成真空状态,石墨烯膜13从而紧密贴合在衬底16上。由于衬底本体162上有多个凸起164,石墨烯膜13无法与衬底本体162平整地贴合,因此会在凸起164附近形成褶皱18。褶皱18位于相邻凸起164之间衬底本体162表面上且沿Y方向延伸,并且褶皱18处的石墨烯膜13的厚度大于相邻凸起164之间衬底本体162表面的石墨烯膜13的厚度。本实施例中,褶皱18处为两层石墨烯膜13,相邻凸起164之间衬底本体162的表面上为一层石墨烯膜13。本实施例中,利用衬底16将石墨烯膜13、粘胶层15从水或有机溶液中取出后,自然干燥3个小时至6个小时后,在150度的温度下烘烤2分钟。Y方向上相邻凸起164之间的距离小于X方向上相邻凸起164之间的距离,所以在Y方向上形成多个褶皱18。X方向上相邻凸起164之间的距离为200纳米至1微米,Y方向上相邻凸起164之间的距离为100纳米至800纳米。本实施例中,X方向上相邻凸起164之间的距离为1微米,Y方向上相邻凸起164之间的距离为500纳米。
步骤S19中,去除粘胶层15的方法不限,比如,采用有机溶剂将粘胶层15溶解去除。所述第一复合结构17比所述第二复合结构19多一个粘胶层15。本实施例中,粘胶层15的材料为PMMA,采用丙酮去除PMMA。优选的,利用有机溶剂去除粘胶层15,并且从该有机溶液中取出后,进行退火处理,退火的作用是去除石墨烯膜13转移过程中,石墨烯膜13表面粘胶层15(比如PMMA)的残留。本实施例中,退火条件为:真空下通入氢气和氩气,压强为2Pa,400℃下退火2小时。
步骤S20中,从石墨烯膜13远离衬底16的表面进行刻蚀,以便将位于凸起164上的石墨烯膜13,以及相邻凸起164之间衬底本体162表面上除褶皱18以外的石墨烯膜13去除。相邻凸起164之间衬底本体162表面上除褶皱18以外的石墨烯膜13被刻蚀的时候,褶皱18处的石墨烯膜13同时也被刻蚀,由于褶皱18处的石墨烯膜13的厚度大于相邻凸起164之间衬底本体162表面的石墨烯膜13的厚度,因此,当相邻凸起164之间衬底本体162表面上除褶皱18以外的石墨烯膜13被完全刻蚀去除的时候,褶皱18处仍有石墨烯存在,从而在每个褶皱18处得到石墨烯纳米带22。本实施例中,步骤S21中采用RIE进行刻蚀,刻蚀条件为:氢气的体积流量为50sccm,压强为5Pa(帕),功率为5W(瓦特),刻蚀时间为50s(秒)。
进一步,所述多个凸起164也可以被刻蚀去除。也即,所述石墨烯纳米带复合结构20的制备方法进一步包括一刻蚀去除所述多个凸起164的步骤。
实施例一
实验使用表面具有300nm厚SiO2的硅片作为基底10,在该硅片具有SiO2的表面上旋涂PMMA电子束胶(也即,SiO2与PMMA直接接触),厚度为80nm,并进行电子束曝光,随后进行显影。曝光图形为直径为40nm、每列内通孔间距为500nm、列和列间距为500nm的通孔阵列。之后使用电子束蒸发,蒸镀15nm铜,再使用PG Remover溶液剥离掉铜,形成直径为40nm、每列内铜柱间距为500nm、列和列间距为500nm的铜柱阵列。然后,以该铜柱阵列为掩膜,对基底10进行刻蚀,最后再去除铜柱阵列上的铜,得到具有阵列结构的衬底16,该衬底16上的凸起164为圆柱,直径为40nm,高度为15nm。转移石墨烯时,先将PMMA旋涂在生长有单层石墨烯的铜箔上,转速为3000转/分钟,之后在180℃的热板上烘烤2分钟将溶剂挥发。由于在生长石墨烯的过程中,铜箔的两个表面均会生长石墨烯,并且铜箔背面的石墨烯结构不完整,需要去除。因此,利用反应离子刻蚀(RIE)去除铜箔背面的石墨烯,刻蚀条件为:使用氧气刻蚀,压强为2Pa,流速为40sccm,功率为50W,刻蚀时间30秒。接下来将该铜箔放在腐蚀液内,腐蚀液为盐酸、双氧水和水的混合液,比例为1:1:50。待铜箔被完全刻蚀干净后,使用去离子水对石墨烯、PMMA膜进行多次清洗。然后,使用具有阵列结构的衬底16将石墨烯、PMMA膜捞起,并放置6个小时,使水份蒸发,之后使用150℃的热板对衬底16进行烘烤2分钟,得到样品。随后将所述样品放入丙酮溶液,浸泡10分钟后取出,使用去离子水冲洗样品,并使用氮气吹去表面的水分。最后将带有石墨烯的衬底16放入退火炉进行退火,退火条件为:100sccm的H2,100sccm的Ar,400℃下退火2小时,得到所述石墨烯纳米带复合结构20。
图2为利用衬底16将石墨烯膜13、粘胶层15从水或有机溶液中取出、干燥,并去除所述粘胶层15后的原子力显微镜(AFM)照片,也即所述第二复合结构19的AFM照片。由图2可以看出,在凸起164附近形成褶皱18,并且褶皱18位于相邻凸起164之间的衬底本体162表面上且由一个凸起164向相邻的凸起164延伸,并且多个褶皱18的延伸方向相互平行。
图3为步骤S20中石墨烯纳米带复合结构20的扫描电镜(SEM)照片。图4为步骤S20中石墨烯纳米带复合结构20的AFM照片。图4中,纵向方向上,相邻圆点之间的带状结构为石墨烯纳米带22。可见,多个石墨烯纳米带22间隔设置,并且沿同一方向延伸,相互平行。
请参见图4和图5,本发明进一步提供一种所述石墨烯纳米带复合结构20,其包括所述衬底16和多个石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底16上并且沿同一方向延伸。所述衬底16包括所述衬底本体162和所述多个凸起164,该多个凸起164间隔设置在所述衬底本体162的表面,并且石墨烯纳米带22与所述衬底本体162直接接触。每一个石墨烯纳米带22位于相邻两个凸起164之间,并且在两个凸起164之间延伸,也即石墨烯纳米带22由一个凸起164向另外一个凸起164延伸。所述多个石墨烯纳米带22相互平行,每一个石墨烯纳米带22为带状结构或者一维线状结构。进一步,当所述多个凸起164被刻蚀去除时,所述石墨烯纳米带复合结构不包括多个凸起164,由所述衬底本体162和所述多个石墨烯纳米带22组成。所述衬底16的材料与所述基底10的材料相同。
请参见图2、图5和图6,本发明第二实施例提供一种石墨烯纳米带复合结构20的制备方法,包括以下步骤:
S21,提供一衬底16,该衬底16包括一衬底本体162和多个间隔设置的凸起164,该凸起164设置在所述衬底本体162的表面;
S22,在一生长基底11上生长石墨烯膜13;
S23,将一粘胶层15设置在所述石墨烯膜13远离生长基底11的表面;
S24,去除所述生长基底11,并利用水或有机溶剂清洗;
S25,利用所述衬底16将所述石墨烯膜13、所述粘胶层15从所述水或有机溶液中取出,并干燥,得到一第一复合结构17,该第一复合结构17包括衬底16、石墨烯膜13和粘胶层15,所述石墨烯膜13位于所述粘胶层15与所述衬底16之间,并且该石墨烯膜13与所述凸起164直接接触;
S26,去除所述粘胶层15,得到一第二复合结构19,该第二复合结构19包括衬底16和石墨烯膜13,石墨烯膜13位于所述凸起164的表面和相邻凸起164之间的衬底本体162的表面,并且石墨烯膜13在凸起164附近形成褶皱18,褶皱18位于相邻凸起164之间衬底本体162表面上且沿Y方向延伸,并且褶皱18处的石墨烯膜13的厚度大于相邻凸起164之间衬底本体162表面的石墨烯膜13的厚度;
S27,从石墨烯膜13远离衬底16的表面进行刻蚀,去除位于凸起164上的石墨烯膜13以及相邻凸起164之间衬底本体162表面上除褶皱18以外的石墨烯膜13,从而得到石墨烯纳米带复合结构20,该石墨烯纳米带复合结构20包括所述衬底本体162、所述多个凸起164和多个相互平行的石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底本体162上。
本发明第二实施例与第一实施例相似,不同之处是:第二实施例中,所述衬底16的制备方法不限,只要该衬底16包括衬底本体162和多个间隔设置的凸起164,并且多个凸起164设置在所述衬底本体162的表面即可。
请参见图2、图5和图7,本发明第三实施例提供一种石墨烯纳米带复合结构20的制备方法,包括以下步骤:
S31,提供一衬底16,该衬底16包括一衬底本体162和多个间隔设置的凸起164,该凸起164设置在所述衬底本体162的表面;
S32,在所述凸起164的表面以及相邻凸起164之间衬底本体162的表面上滴加水或者有机溶剂;
S33,将一石墨烯膜13设置在所述衬底16的表面,并且所述凸起164位于石墨烯膜13与衬底本体162之间,干燥,使得石墨烯膜13在凸起164附近形成褶皱18,该褶皱18位于相邻凸起164之间衬底本体162表面上且沿Y方向延伸,并且褶皱18处的石墨烯膜13的厚度大于相邻凸起164之间衬底本体162表面的石墨烯膜13的厚度;
S34,从石墨烯膜13远离衬底16的表面进行刻蚀,去除位于凸起164上的石墨烯膜13以及相邻凸起164之间衬底本体162表面上除褶皱18以外的石墨烯膜13,从而得到石墨烯纳米带复合结构20,该石墨烯纳米带复合结构20包括所述衬底本体162、所述多个凸起164和多个相互平行的石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底本体162上。
步骤S32中,在所述凸起164的表面以及相邻凸起164之间衬底本体162的表面上滴加水或者有机溶剂的方法不限,比如,采用滴管将水或者有机溶剂滴在所述凸起164的表面以及相邻凸起164之间衬底本体162的表面。如此,在干燥的过程中,随着水分或有机溶剂的蒸发,石墨烯膜13与衬底16之间逐渐形成真空状态,石墨烯膜13从而紧密贴合在衬底16上。由于衬底本体162上有多个凸起164,石墨烯膜13无法与衬底本体162平整地贴合,因此会在凸起164附近形成褶皱18。
进一步,在步骤S33中,利用所述胶粘层15将石墨烯膜13设置在所述衬底16的表面,具体方法如本发明第二实施例所述,这里不再赘述。
本发明第三实施例与第一实施例相似,不同之处是:1、第三实施例中,所述衬底16的制备方法不限,只要该衬底16包括衬底本体162和多个间隔设置的凸起164,并且多个凸起164设置在所述衬底本体162的表面即可;2、石墨烯膜13设置在所述衬底16的表面之前,需要在所述凸起164的表面设置水或者有机溶剂。
请参见图2、图5和图8,本发明第四实施例提供一种石墨烯纳米带复合结构20的制备方法,包括以下步骤:
S41,提供一衬底16,该衬底16包括一衬底本体162和多个间隔设置的凸起164,该凸起164设置在所述衬底本体162的表面;
S42,在水或者有机溶剂的环境中将一石墨烯膜13设置在所述衬底16的表面,并且所述凸起164位于石墨烯膜13与衬底本体162之间,以至于衬底16与石墨烯膜13之间有水或者有机溶剂的存在,然后干燥,使得石墨烯膜13在凸起164附近形成褶皱18,该褶皱18位于相邻凸起164之间的衬底本体162表面上且沿Y方向延伸,并且褶皱18处的石墨烯膜13的厚度大于相邻凸起164之间衬底本体162表面的石墨烯膜13的厚度;
S43,从石墨烯膜13远离衬底16的表面进行刻蚀,去除位于凸起164上的石墨烯膜13以及相邻凸起164之间衬底本体162表面上除褶皱18以外的石墨烯膜13,从而得到石墨烯纳米带复合结构20,该石墨烯纳米带复合结构20包括所述衬底本体162、所述多个凸起164和多个相互平行的石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底本体162上。
进一步,在步骤S42中,利用所述胶粘层15将石墨烯膜13设置在所述衬底16的表面,具体方法如本发明第二实施例所述,这里不再赘述。
本发明第四实施例与第三实施例相似,不同之处是:在水或者有机溶剂的环境中将一石墨烯膜13设置在所述衬底16的表面,并且所述凸起164位于石墨烯膜13与衬底本体162之间,以至于在干燥之前,衬底16与石墨烯膜13之间有水或者有机溶剂的存在。然后干燥的时候,随着水分或有机溶剂的蒸发,石墨烯膜13会在凸起164附近形成褶皱18。
请参见图9和图11,本发明第五实施例提供一种顶栅型场效应晶体管100的制备方法,包括以下步骤:
S51,提供所述石墨烯纳米带复合结构20,该石墨烯纳米带复合结构20包括所述衬底16和多个石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底16上并且沿同一方向延伸;
S52,在每个石墨烯纳米带22的两端间隔形成一源极102及一漏极104,并使该源极102及漏极104与该石墨烯纳米带22电连接;
S53,形成一绝缘层106于所述多个石墨烯纳米带22远离衬底16的表面;以及
S54,形成一栅极108于所述绝缘层106远离衬底16的表面,得到一场效应晶体管100。
步骤S51中,所述石墨烯纳米带复合结构20的制备方法已经在第一实施例至第四实施例进行了详细论述,这里不再赘述。所述多个石墨烯纳米带22为所述场效应晶体管100的半导体层。所述衬底16的材料为绝缘材料,比如,具有一定厚度氧化层的P型或N型硅、透明石英、或形成有氧化层的透明石英等。另外,所述绝缘材料还可以是树脂材料,如PET等。
步骤S52中,优选的,所述源极102、所述漏极104分别覆盖所述凸起164,并且与石墨烯纳米带22直接接触。所述石墨烯纳米带22具有相对的第一端和第二端,第一端与源极102直接接触,第二端与漏极104直接接触,如图10所示。
所述源极102及漏极104的材料应具有较好的导电性。具体地,该源极102及漏极104的材料可以为金属、合金、铟锡氧化物(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物以及金属性碳纳米管薄膜等导电材料。根据形成源极102及漏极104的材料种类的不同,可以采用不同方法形成该源极102及漏极104。具体地,当该源极102及漏极104的材料为金属、合金、ITO或ATO时,可以通过蒸镀、溅射、沉积、掩模及刻蚀等方法形成源极102及漏极104。当该源极102及漏极104的材料为导电银胶、导电聚合物或碳纳米管薄膜时,可以通过印刷涂附或直接黏附的方法,将该导电银胶或碳纳米管薄膜涂附或黏附于凸起164的表面,形成源极102及漏极104。一般地,该源极102及漏极104的厚度为0.5纳米~100微米,源极102至漏极104之间间隔的距离为10纳米至800纳米。本实施例中,所述源极102及漏极104的材料为金属,所述源极102及漏极104的厚度为50纳米,源极102至漏极104之间的距离为150纳米。
步骤S53中,所述绝缘层106的材料可以为氮化硅、氧化硅等硬性材料或苯并环丁烯(BCB)、聚酯或丙烯酸树脂等柔性材料。根据绝缘层106的材料种类的不同,可以采用不同方法形成该绝缘层106。具体地,当该绝缘层106的材料为氮化硅或氧化硅时,可以通过沉积的方法形成绝缘层106。当该绝缘层106的材料为苯并环丁烯(BCB)、聚酯或丙烯酸树脂时,可以通过印刷涂附的方法形成绝缘层106。一般地,该绝缘层106的厚度为0.5纳米~100微米。
本实施例中,采用沉积方法形成一氮化硅绝缘层106,该氮化硅绝缘层106覆盖所述多个石墨烯纳米带22、源极102和漏极104。所述绝缘层106的厚度为50纳米。
步骤S54中,所述栅极108的材料应具有较好的导电性。具体地,该栅极108的材料可以为金属、合金、ITO、ATO、导电银胶、导电聚合物以及碳纳米管薄膜等导电材料。该金属或合金材料可以为铝、铜、钨、钼、金或它们的合金。具体地,当该栅极108的材料为金属、合金、ITO或ATO时,可以通过蒸镀、溅射、沉积、掩模及刻蚀等方法形成栅极108。当该栅极108的材料为导电银胶、导电聚合物或碳纳米管薄膜时,可以通过直接黏附或印刷涂附的方法形成栅极108。一般地,所述栅极108的厚度为0.5纳米~100微米。
所述栅极108通过绝缘层106与多个石墨烯纳米带22电绝缘。本实施例中,所述栅极108的材料为铝,栅极108的厚度为50纳米。
请参见图11,本发明第五实施例进一步提供一种场效应晶体管100,包括所述石墨烯纳米带复合结构20、源极102、漏极104、绝缘层106和栅极108。所述源极102和漏极104间隔设置在每个石墨烯纳米带复合结构20的两端,并且与石墨烯纳米带22电连接。本实施例中,所述源极102、漏极104与石墨烯纳米带22直接接触。绝缘层106设置在石墨烯纳米带22与栅极108之间,并且使石墨烯纳米带22与栅极108电绝缘。绝缘层106也使源极102、漏极104与栅极108电绝缘。
请参见图12和图13,本发明第六实施例提供一种底栅型场效应晶体管200的制备方法,包括以下步骤:
S61,提供所述石墨烯纳米带复合结构20,该石墨烯纳米带复合结构20包括所述衬底16和多个石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底16上并且沿同一方向延伸;
S62,在每个石墨烯纳米带22的两端间隔形成一源极102及一漏极104,并使该源极102及漏极104与所述多个石墨烯纳米带22电连接;以及
S63,形成一栅极108于所述衬底16远离石墨烯纳米带22的表面,得到一场效应晶体管200。
步骤S61中,所述衬底16的材料为绝缘材料。步骤S63中,所述石墨烯纳米带22和所述栅极108分别位于衬底16相对的两个表面,所述衬底16相当于场效应晶体管200的绝缘层。
可以理解,当所述衬底16为具有一定厚度的氧化硅的硅片,并且石墨烯纳米带22与氧化硅直接接触时,所述步骤S63可以省略,此时,硅片相当于场效应晶体管200的栅极108(硅导电),氧化硅相当于场效应晶体管200的绝缘层(氧化硅不导电)。在制备所述石墨烯纳米带复合结构20的过程中,基底10选用具有一定厚度的氧化硅的硅片,并且掩膜层12设置在氧化硅上,可以得到具有一定厚度的氧化硅的硅片衬底16,其中,石墨烯纳米带22与氧化硅直接接触。
请参见图13,本发明第六实施例进一步提供一种场效应晶体管200,包括所述石墨烯纳米带复合结构20、源极102、漏极104和栅极108。所述源极102和漏极104间隔设置在每个石墨烯纳米带22的两端,并且与石墨烯纳米带22电连接。所述衬底16的材料为绝缘材料。本实施例中,所述源极102、漏极104与石墨烯纳米带22直接接触。栅极108设置在衬底16远离所述石墨烯纳米带复合结构20的表面。
可以理解,当所述石墨烯纳米带复合结构20中的衬底16为具有氧化硅的硅片,并且石墨烯纳米带22设置在氧化硅上时,所述栅极108可以省略,所述硅片可以作为场效应晶体管200的栅极108,氧化硅可以作为场效应晶体管的绝缘层。
本发明第六实施例与第五实施例相似,不同之处是:第五实施例为顶栅型场效应晶体管,第六实施例为底栅型场效应晶体管。
请参见图14和图15,本发明第七实施例提供一种场效应晶体管300的制备方法,包括以下步骤:
S71,提供所述石墨烯纳米带复合结构20,该石墨烯纳米带复合结构20包括所述衬底16和多个石墨烯纳米带22,该多个石墨烯纳米带22间隔设置在所述衬底16上并且沿同一方向延伸;
S72,将一叉指电极210设置在所述石墨烯纳米带复合结构20的表面,所述叉指电极覆盖所述多个凸起164,并与石墨烯纳米带22电连接。
步骤S71中,所述石墨烯纳米带复合结构20中的衬底16为具有氧化硅的硅片,并且石墨烯纳米带22设置在氧化硅上与氧化硅直接接触。
步骤S72中,所述叉指电极210包括一第一电极212和一第二电极214。第一电极212包括多个第一子电极2120,第二电极214包括多个第二子电极2140。多个第一子电极2120和多个第二子电极2140间隔并且交替设置在石墨烯纳米带复合结构20的表面,并且多个第一子电极2120和多个第二子电极2140覆盖多个凸起164,并且与多个石墨烯纳米带22电连接。优选的,多个第一子电极2120与多个石墨烯纳米带22直接接触,多个第二子电极2140与多个石墨烯纳米带22直接接触。多个第一子电极2120的延伸方向与多个石墨烯纳米带22的延伸方向相互垂直,多个第二子电极2140的延伸方向与多个石墨烯纳米带22的延伸方向相互垂直。多个第一子电极2120相互电连接,多个第二子电极2140相互电连接。具体的,多个第一子电极2120通过连接部2122电连接,多个第二子电极2140通过连接部2122电连接,如图15所示。所述连接部2122起到电连接的作用,由导电材料制成,比如金属等。可以理解,所述连接部2122可以与多个第一子电极2120一体成型制作在一起,所述连接部502也可以与多个第二子电极2140一体成型制作在一起,从而形成所述叉指电极210。所述第一电极212、第二电极214与所述源极102、漏极104的材料相同。
请参见图16,本发明第七实施例进一步提供一种场效应晶体管300,包括所述石墨烯纳米带复合结构20和所述叉指电极210,所述叉指电极210设置在所述石墨烯纳米带复合结构20的表面,并与石墨烯纳米带22电连接。具体的,多个第一子电极2120和多个第二子电极2140间隔并且交替设置在石墨烯纳米带复合结构20的表面,并且多个第一子电极2120和多个第二子电极2140覆盖多个凸起164,并且与多个石墨烯纳米带22直接接触。所述石墨烯纳米带复合结构20中的衬底16为具有氧化硅的硅片,并且石墨烯纳米带22设置在氧化硅上与氧化硅直接接触。所述硅片作为场效应晶体管300的栅极,氧化硅作为场效应晶体管300的绝缘层。
所述场效应晶体管100、200、300及其制备方法具有以下优点:第一、本发明所提供的场效应晶体管100、200、300中,半导体层为排列整齐的多个石墨烯纳米带22,该多个石墨烯纳米带22是将石墨烯膜13与具有多个凸起164的衬底16结合,结合之前,在所述衬底16上设置水或者有机溶剂,从而在凸起164附近形成褶皱18,并进一步刻蚀石墨烯膜13而得;第二、可以大面积制备,成本和能耗较低。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

1.一种场效应晶体管的制备方法,其包括以下步骤:
提供一石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括一衬底和多个石墨烯纳米带,该多个石墨烯纳米带间隔设置在所述衬底上并且沿同一方向延伸,所述衬底具有多个间隔设置的凸起;
在每个石墨烯纳米带的两端间隔形成一源极及一漏极,并使该源极及漏极与该石墨烯纳米带电连接;
形成一绝缘层于所述多个石墨烯纳米带远离衬底的表面;以及
形成一栅极于所述绝缘层远离衬底的表面。
2.如权利要求1所述的场效应晶体管的制备方法,其特征在于,所述石墨烯纳米带复合结构的制备方法包括以下步骤:
提供一衬底,该衬底包括多个间隔设置的凸起;
在一生长基底上生长石墨烯膜;
将一粘胶层设置在所述石墨烯膜远离生长基底的表面;
去除所述生长基底,并利用水或有机溶剂清洗;
将所述衬底与所述石墨烯膜、所述粘胶层复合,并干燥,得到一第一复合结构,该第一复合结构包括所述衬底、所述石墨烯膜和所述粘胶层,所述石墨烯膜位于所述粘胶层与所述衬底之间;
去除所述粘胶层,得到一第二复合结构,该第二复合结构包括所述衬底和所述石墨烯膜,所述石墨烯膜位于所述衬底上,并且所述石墨烯膜在每一凸起附近形成一褶皱;以及
从所述石墨烯膜远离衬底的表面进行刻蚀,将除褶皱以外的石墨烯膜去除,得到石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括多个间隔设置的石墨烯纳米带。
3.如权利要求1所述的场效应晶体管的制备方法,其特征在于,所述衬底的制备方法包括以下步骤:
在一基底上设置一掩膜层,该掩膜层具有相对的第一表面和第二表面,第一表面与所述基底接触,所述掩膜层具有多个间隔设置的通孔;
在所述第二表面设置一金属层,并且该金属层填充所述通孔;
剥离所述掩膜层,掩膜层第二表面上的金属层也同时被去除,通孔内的金属层依然保留在所述基底上;
将保留在所述基底上的金属层作为掩膜,对所述基底进行刻蚀;以及
去除保留在所述基底上的金属层,得到所述衬底。
4.如权利要求3所述的场效应晶体管的制备方法,其特征在于,在所述基底的表面上设定一X方向和一Y方向,X方向与Y方向相互垂直,所述褶皱位于相邻凸起之间的衬底本体表面上且沿Y方向延伸。
5.如权利要求2所述的场效应晶体管的制备方法,其特征在于,将所述衬底与所述石墨烯膜、所述粘胶层复合之后,干燥之前,所述石墨烯膜与所述衬底之间具有水或有机溶剂,随着水或有机溶剂的蒸发,所述石墨烯膜与所述衬底之间形成真空状态,由于所述衬底具有多个凸起,所述石墨烯膜无法与所述衬底平整地贴合,从而在每一凸起附近形成褶皱。
6.如权利要求1所述的场效应晶体管的制备方法,其特征在于,所述源极、所述漏极分别覆盖所述多个凸起,并且与所述多个石墨烯纳米带直接接触。
7.如权利要求1所述的场效应晶体管的制备方法,其特征在于,所述石墨烯纳米带复合结构的制备方法包括以下步骤:
提供一衬底,该衬底包括一衬底本体和多个间隔设置的凸起,该凸起设置在所述衬底本体的表面;
在水或者有机溶剂的环境中将一石墨烯膜设置在所述衬底的表面,并且所述凸起位于石墨烯膜与衬底本体之间,以至于衬底与石墨烯膜之间有水或者有机溶剂的存在,然后干燥,使石墨烯膜在每一凸起附近形成褶皱;以及
从所述石墨烯膜远离衬底的表面进行刻蚀,将除褶皱以外的石墨烯膜去除,得到石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括多个间隔设置的石墨烯纳米带。
8.如权利要求7所述的场效应晶体管的制备方法,其特征在于,在水或者有机溶剂的环境中将一石墨烯膜设置在所述衬底的表面包括一在所述衬底的表面滴加水或者有机溶剂后,再将一石墨烯膜设置在所述衬底表面的步骤。
9.一种场效应晶体管,其包括一半导体层、一源极、一漏极、一绝缘层和一栅极,其特征在于,所述半导体层为一石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括一衬底和多个石墨烯纳米带,所述衬底包括一衬底本体和多个凸起,该多个凸起间隔设置在所述衬底本体的表面,所述多个石墨烯纳米带间隔设置在所述衬底本体上并且沿同一方向延伸。
10.一种场效应晶体管,其包括一半导体层、一源极和一漏极,其特征在于,所述半导体层为一石墨烯纳米带复合结构,该石墨烯纳米带复合结构包括一衬底和多个石墨烯纳米带,所述衬底包括一衬底本体和多个凸起,该多个凸起间隔设置在所述衬底本体的表面,所述多个石墨烯纳米带间隔设置在所述衬底本体上并且沿同一方向延伸;所述衬底为具有氧化硅的硅片,并且所述多个石墨烯纳米带设置在氧化硅上。
CN202011447903.6A 2020-12-09 2020-12-09 场效应晶体管及其制备方法 Pending CN114613676A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011447903.6A CN114613676A (zh) 2020-12-09 2020-12-09 场效应晶体管及其制备方法
TW110100894A TWI823045B (zh) 2020-12-09 2021-01-08 場效應電晶體及其製備方法
US17/206,786 US11658232B2 (en) 2020-12-09 2021-03-19 Field effect transistor based on graphene nanoribbon and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011447903.6A CN114613676A (zh) 2020-12-09 2020-12-09 场效应晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN114613676A true CN114613676A (zh) 2022-06-10

Family

ID=81849501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011447903.6A Pending CN114613676A (zh) 2020-12-09 2020-12-09 场效应晶体管及其制备方法

Country Status (3)

Country Link
US (1) US11658232B2 (zh)
CN (1) CN114613676A (zh)
TW (1) TWI823045B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114613677A (zh) * 2020-12-09 2022-06-10 清华大学 场效应晶体管及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269209B2 (en) * 2009-12-18 2012-09-18 Intel Corporation Isolation for nanowire devices
CN103359719B (zh) 2012-04-05 2015-01-21 清华大学 石墨烯纳米窄带的制备方法
US20160035903A1 (en) 2013-03-06 2016-02-04 Osaka University Thin-film transistor
KR102402547B1 (ko) * 2015-08-18 2022-05-26 삼성전자주식회사 그래핀 아일랜드들을 포함하는 채널층을 구비한 그래핀 전자소자 및 그 제조방법
JP6985596B2 (ja) * 2017-11-30 2021-12-22 富士通株式会社 電子デバイス、電子デバイスの製造方法及び電子機器
US11876141B2 (en) * 2018-06-28 2024-01-16 Mitsubishi Electric Corporation Electronic device using graphene, manufacturing method for the device, and electromagnetic wave detector including the device
US11742425B2 (en) * 2019-10-28 2023-08-29 International Business Machines Corporation FinFET device with partial interface dipole formation for reduction of gate induced drain leakage
US11676821B2 (en) * 2019-10-29 2023-06-13 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned double patterning
US11948983B2 (en) * 2020-07-31 2024-04-02 Xidian University Method for preparating SiC ohmic contact with low specific contact resistivity

Also Published As

Publication number Publication date
US20220181475A1 (en) 2022-06-09
TWI823045B (zh) 2023-11-21
TW202224025A (zh) 2022-06-16
US11658232B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
US9748421B2 (en) Multiple carbon nanotube transfer and its applications for making high-performance carbon nanotube field-effect transistor (CNFET), transparent electrodes, and three-dimensional integration of CNFETs
JP5139368B2 (ja) 薄膜トランジスタの製造方法
JP5139367B2 (ja) 薄膜トランジスタの製造方法
TWI290371B (en) Method for manufacturing thin film transistors
TWI544645B (zh) 薄膜電晶體及其製備方法
JP5173938B2 (ja) 薄膜トランジスタの製造方法
US20110070146A1 (en) Method of manufacturing graphene, graphene manufactured by the method, conductive film comprising the graphene, transparent electrode comprising the graphene, and radiating or heating device comprising the graphene
CN103646855A (zh) 石墨烯器件的制作方法
TWI526559B (zh) 藉由物理氣相沉積法在基板上成長碳薄膜或無機材料薄膜的方法
JP2009283945A (ja) 薄膜トランジスタの製造方法
CN107946189A (zh) 一种薄膜晶体管及其制备方法
WO2013127220A1 (zh) 阵列基板、阵列基板的制备方法及显示装置
CN103903987B (zh) 基于自对准的悬浮石墨烯晶体管制造方法
CN114613676A (zh) 场效应晶体管及其制备方法
KR101299597B1 (ko) 유기 전계효과 트랜지스터 및 그의 제조 방법
TWI762150B (zh) 石墨烯奈米帶複合結構及其製備方法
JP2012175087A (ja) 電子装置およびその製造方法
CN114613677A (zh) 场效应晶体管及其制备方法
KR20140110431A (ko) 그래핀 산화물의 국소환원을 이용한 탄소기반 전자소자 및 이의 제조방법
CN104992891A (zh) 一种场效应管沟道型场致发射阴极及其制备方法
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
KR20190063045A (ko) 그래핀과 나노와이어를 이용한 투명전극 및 그의 제조방법
CN103151246B (zh) 基于Cu膜退火和氯气反应的侧栅石墨烯晶体管制备方法
CN110379859A (zh) 一种薄膜晶体管、其制备方法及电子器件
CN104817073A (zh) 一种将石墨烯薄膜转移到tem铜网上的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination