CN114593173A - 一种基于磁流变液体的容积自调节多惯性通道液压悬置 - Google Patents

一种基于磁流变液体的容积自调节多惯性通道液压悬置 Download PDF

Info

Publication number
CN114593173A
CN114593173A CN202210207435.8A CN202210207435A CN114593173A CN 114593173 A CN114593173 A CN 114593173A CN 202210207435 A CN202210207435 A CN 202210207435A CN 114593173 A CN114593173 A CN 114593173A
Authority
CN
China
Prior art keywords
inertia
channel
adjusting
suspension
magnetorheological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210207435.8A
Other languages
English (en)
Inventor
陈志勇
王建喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202210207435.8A priority Critical patent/CN114593173A/zh
Publication of CN114593173A publication Critical patent/CN114593173A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/504Inertia, i.e. acceleration,-sensitive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers

Abstract

本发明涉及一种基于磁流变液体的容积自调节多惯性通道液压悬置,包括惯性磁流变通道装置和容积自调节机构,惯性磁流变通道装置使磁流变液体可在磁流变上液室与磁流变下液室间通过惯性通道流动,然后电磁线圈供电后磁流空腔中的磁流变液体由类液体变为类固体,从而提供发动机等零部件所需的阻尼力。惯性通道采用对称式设计,数量增加,提高了可调阻尼的范围。容积自调节机构利用调节活塞和通道板调节弹簧自动调整惯性通道中磁流变液体的容积来调节液压悬置所能提供的阻尼力,使阻尼力与液压悬置变化的工作状态相匹配,实现液压悬置的自调节功能。惯性磁流变通道装置和容积自调节机构相互配合,提高了液压悬置的工作效率,增加了液压悬置的寿命。

Description

一种基于磁流变液体的容积自调节多惯性通道液压悬置
技术领域
本发明属于汽车车用液压悬置技术领域,具体涉及一种应用于乘用车的基于磁流变液体的容积自调节多惯性通道液压悬置。
背景技术
随着消费者生活水平的日益提高,对驾驶汽车过程中的的振动与噪声水平要求越来越高,良好的NVH性能已经成为车辆不可或缺的研究内容。悬置是提高车辆NVH性能的零部件之一,发动机悬置是连接发动机与车体之间的支承隔振元件,它能隔离发动机的振动和噪音向车厢内的传递,明显提高整车车内的舒适性。常见的悬置类型按发展历程来分有橡胶悬置、液压悬置、半主动悬置和主动悬置。其中,液压悬置具有低频阻尼大,高频动刚度小,减振降噪更为理想等特点,可有效地衰减汽车动力总成振动。因此,液压悬置因其具有良好的隔振性能而被广泛应用于现在的汽车中。
磁流变液是由微米级可磁化颗粒均匀分散在特定载体母液和添加剂中所形成的特殊悬浮体系。在外部无磁场时呈现低粘度的牛顿流体特性;在外加磁场作用下,表现出非牛顿流体的特性,在毫秒级时间内从自由流动的液体转变为半固体甚至固体,呈现出强烈的可控流变特性。而且去除磁场后这种材料又迅速恢复其流动性。另外,磁流变液体的流变学特性可以由外加磁场进行控制,磁场强度不同,磁流变材料所呈现出的性能也不一样。同时,由于磁流变液体的剪切屈服应力不足,制约着磁流变液体的应用。
中国专利CN 103148158 A公开了一种基于挤压模式的发动机磁流变液压悬置,其通过挤压形成阻尼通道,但是挤压模式形成的阻尼力较小,可调节阻尼范围较低。中国专利CN104074919A还公开了一种基于周径向流动模式的发动机磁流变液压悬置,基于周径向流动的模式在有限空间内增加了阻尼通道的长度,但其结构复杂,不利于安装。中国专利CN109915533A还公开了一种基于磁流变液体的多惯性通道半主动控制液压悬置,提出了对液压悬置的半主动控制,但是不能调节磁流变液体的容积,不具备自调节功能,且惯性通道数量较少,结构复杂,不利于加工。
发明内容
本发明的目的在于提供一种基于磁流变液体的容积自调节多惯性通道液压悬置,以解决现有技术中悬置系统中阻尼特性调节频率范围较窄,以及液压悬置自动调节能力不足的问题。
本发明的目的是通过以下技术方案实现的,现结合附图说明如下:
一种基于磁流变液体的容积自调节多惯性通道液压悬置,主要由惯性磁流变通道装置和容积自调节机构构成;其中,所述惯性磁流变通道装置包括橡胶主簧2、上环形密封圈Ⅱ6、橡胶底膜13、惯性通道板21和安装在惯性通道板21中的电磁线圈18;所述容积自调节机构包括多个橡胶主簧调节弹簧4、环形密封圈Ⅰ5、多个调节活塞22和多个通道板调节弹簧23;
所述橡胶主簧2内表面、环型密封圈Ⅰ5、环型密封圈Ⅱ6以及惯性通道板21上表面形成的空间构成磁流变上液室24;所述橡胶底膜13和惯性通道板21下表面形成的空间构成磁流变下液室14;所述惯性通道板21中包含多条沿圆周均匀分布的惯性入口通道7和惯性中间通道8,每条惯性中间通道8的一端与对应一条惯性入口通道7相连,另一端共同与汇聚为一条惯性出口通道9相连;所述磁流变上液室24、惯性入口通道7、惯性中间通道8、惯性出口通道9以及磁流变下液室14之间相连通且其中充斥着磁流变液体;
所述各橡胶主簧调节弹簧4以及环形密封圈Ⅰ5的上、下两端均分别与橡胶主簧2和惯性通道板21相连;所述多个调节活塞22和多个通道板调节弹簧23均安装在惯性中间通道8上方;
还包括悬置上壳体3和与其固定的悬置下壳体11,所述惯性通道板21侧面以及悬置上壳体3设有导线槽19用于通过导线。
进一步地,所述惯性通道板21中设有电磁线圈槽25用于安装电磁线圈18,电磁线圈18通过环形密封圈Ⅱ6密封。
进一步地,所述惯性磁流变通道装置还包括连接杆1,连接杆1与橡胶主簧2上部相连,且橡胶主簧2上端通过悬置上壳体3进行限位,并于结合面处进行硫化处理。
进一步地,所述惯性入口通道7和惯性中间通道8均为十二条,惯性入口通道7截面为圆形,惯性中间通道8截面为正方形,惯性出口通道9的截面为圆形。
进一步地,所述橡胶主簧2和惯性通道板21上均开有凹槽,用于固定环形密封圈Ⅰ5,并确保橡胶主簧2可沿环形密封圈Ⅰ5上下微量移动。
更进一步地,所述多个橡胶主簧调节弹簧4沿惯性通道板21圆周均匀分布。
进一步地,所述惯性通道板21中每一条惯性中间通道8的正上方设有惯性通道调节槽26,各惯性通道调节槽26内均安装有一个调节活塞22和两个通道板调节弹簧23。
进一步地,所述悬置上壳体3与惯性通道板21通过螺钉20相连,悬置上壳体3与悬置下壳体11通过螺母15、弹簧垫圈16和螺栓17相连。
进一步地,所述悬置下壳体11、橡胶底膜13和惯性通道板21通过定位销10连接。
进一步地,所述悬置下壳体11上开有通气孔12。
本发明提供的一种基于磁流变液体的容积自调节多惯性通道液压悬置,设有多惯性通道,可增加阻尼调节的频率范围;同时可以根据磁流变液体从磁流变上液室24经惯性通道板21流向磁流变下液室14,或磁流变下液室14经惯性通道板21流向磁流变上液室24的变化情况,自动调整橡胶主簧调节弹簧4和通道板调节弹簧23的压紧力,从而改变橡胶主簧2和调节活塞22的位置,实现对经过惯性通道板21中惯性通道内的磁流变液体的容积的调整。当电磁线圈18通电后,根据惯性通道中磁流变液体容积的不同,产生不同且合理的阻尼,实现液压悬置的自调节功能。
与现有技术相比,本发明的有益效果在于:
本发明通过对惯性通道板进行巧妙地尺寸设计,增加了惯性通道的数量,提高了惯性通道所能提供的最大阻尼力,增大了液压悬置所能提供调节的频率范围;惯性通道采用对称式设计,从而一定程度上减轻由于磁流变液体在悬置内部处于紊流态时给悬置带来的晃动;橡胶主簧调节弹簧4和通道板调节弹簧23可以分别调节橡胶主簧2和调节活塞22的位置,从而改变流经惯性通道的磁流变液体容积,实现对液压悬置所能提供的阻尼力大小进行自动调整,使液压悬置始终处于最佳工作位置;另外基于磁流变液体的容积自调节多惯性通道液压悬置具有结构简单可靠,安装简单,性能可靠等优点。
附图说明
图1为本发明一种基于磁流变液体的容积自调节多惯性通道液压悬置的剖视图;
图2为本发明一种基于磁流变液体的容积自调节多惯性通道液压悬置的惯性通道板三维剖视图;
图3A-图3B为本发明一种基于磁流变液体的容积自调节多惯性通道液压悬置的容积自调节机构工作状态一局部放大示意图;
图4A-图4B为本发明一种基于磁流变液体的容积自调节多惯性通道液压悬置的容积自调节机构工作状态二局部放大示意图。
图中,1.连接杆 2.橡胶主簧 3.悬置上壳体 4.橡胶主簧调节弹簧 5.环形密封圈Ⅰ 6.环形密封圈Ⅱ 7.惯性入口通道 8.惯性中间通道 9.惯性出口通道 10.定位销 11.悬置下壳体 12.通气孔 13.橡胶底膜 14.磁流变下液室 15.螺母 16.弹簧垫圈 17.螺栓18.电磁线圈 19.导线槽 20.螺钉 21.惯性通道板 22.调节活塞 23.通道板调节弹簧 24.磁流变上液室 25.电磁线圈槽 26.惯性通道调节槽。
具体实施方式
本发明设计思路是:磁流变上液室24、惯性入口通道7、惯性中间通道8、惯性出口通道9和磁流变下液室14形成的空腔中充斥着磁流变液体,这些空腔中的液体配合橡胶主簧2、惯性通道板21和橡胶底膜13组成的动力减振器产生阻尼力来吸收发动机的振动。惯性通道板21采用对称式设计,在有限的体积内大大增加了惯性通道的数量,提高了液压悬置可吸收振动的频率范围。同时设计的容积自调节机构可根据液压悬置工作状态对惯性通道中液体容积作出自动调节,从而能够产生与发动机振动匹配的阻尼力,使液压悬置始终处于最佳的工作状态。
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明一种基于磁流变液体的容积自调节多惯性通道液压悬置,由惯性磁流变通道装置、容积自调节机构、悬置上壳体3和悬置下壳体11构成;
所述惯性磁流变通道装置主要由橡胶主簧2、环形密封圈Ⅱ6、惯性入口通道7、惯性中间通道8、惯性出口通道9、橡胶底膜13、磁流变下液室14、电磁线圈18、惯性通道板21以及磁流变上液室24组成;所述容积自调节机构由多个橡胶主簧调节弹簧4、环形密封圈Ⅰ5、多个调节活塞22以及多个通道板调节弹簧23组成。
其中,所述惯性通道板21、橡胶主簧2、环型密封圈Ⅰ5和环型密封圈Ⅱ6形成的磁流变上液室24,多条惯性入口通道7,多条惯性中间通道8,汇聚的单条惯性出口通道9,以及橡胶底膜13和惯性通道板21形成的磁流变下液室14中都充斥着磁流变液体。所述橡胶主簧2的上部与连接杆1相连,同时外圈通过悬置上壳体3进行限位,连接杆1、悬置上壳体3与橡胶主簧2的结合面进行硫化处理。所述悬置上壳体3与惯性通道板21通过螺钉20连接固定。所述悬置上壳体3和悬置下壳体11通过螺母15、弹簧垫圈16和螺栓17进行连接。所述悬置下壳体11,橡胶底膜13和惯性通道板21通过定位销10确保其安装配合准确。所述悬置下壳体11上开有通气孔12。
所述惯性通道板21侧面以及悬置上壳体3设有导线槽19用于通过导线。
所述橡胶主簧2和惯性通道板21上均开有凹槽,用于固定环形密封圈Ⅰ5,并确保橡胶主簧2可沿环形密封圈Ⅰ5上下微量移动。
所述多个橡胶主簧调节弹簧4沿惯性通道板21圆周均匀分布。
如图2所示,为惯性通道板21的三维剖视图。所述惯性通道板21内设有十二条惯性入口通道7、十二条惯性中间通道8和汇聚成一条的惯性出口通道9。所述惯性入口通道7截面为圆形,惯性中间通道8截面为正方形,惯性出口通道9截面为圆形。所述惯性入口通道7、惯性中间通道8和惯性出口通道9共同构成液压悬置的惯性通道。所述惯性通道板21中每一条惯性中间通道8的正上方设有惯性通道调节槽26,用于安装调节活塞22和通道板调节弹簧23,各惯性通道调节槽26内均安装有一个调节活塞22和两个通道板调节弹簧23。所述惯性通道板21上还开有电磁线圈槽25用于安装电磁线圈18。
如图3和图4所示,为基于磁流变液体的容积自调节多惯性通道液压悬置的容积自调节机构,图3和图4是不同的工作状态。当橡胶主簧2受到来自发动机的变化的力时,工作状态由图3向图4转变,橡胶主簧调节弹簧4和通道板调节弹簧23的压缩量逐渐增大,调节活塞22的位置也随之变化。
具体工作流程:电磁线圈18通电后,在惯性通道板21中产生磁场,磁流变上液室24、惯性通道(包括惯性入口通道7、惯性中间通道8、惯性出口通道9)以及磁流变下液室14中充斥的磁流变液体在磁场的作用下由类液体状态转化为类固体状态,从而产生液压悬置所需要的阻尼力,达到降低来自发动机的振动能量的目的。当发动机振动增大时,橡胶主簧2受连接杆1的力向下运动,此时容积自调节机构中的橡胶主簧调节弹簧4从图3位置向图4位置变化,此时发动机传过来的振动能量越来越大,所需的阻尼力也越来越大,此过程中磁流变上液室24容积变小,磁流变液体从磁流变上液室24经惯性入口通道7、惯性中间通道8和惯性出口通道9进入磁流变下液室14,由于磁流变上液室24容积变小,惯性中间通道8中液体的压力增大,致使对调节活塞22施加的力增大,调节活塞22向上运动(如图4所示)。此时惯性通道容积增大,惯性通道中充斥的磁流变液体增多,当电磁线圈18通电后,产生的阻尼力随之增大,与此变化中所需大阻尼力相对应。同样,当发动机振动减小时,橡胶主簧2向上运动,此时容积自调节机构中的橡胶主簧调节弹簧4从图4位置向图3位置变化,此时发动机传过来的振动能量变小,所需的阻尼力也越来越小,此过程中磁流变上液室24容积增大,致使磁流变上液室24、惯性通道(包括惯性入口通道7、惯性中间通道8、惯性出口通道9)以及磁流变下液室14中的磁流变液体的压力减小,磁流变液体从磁流变下液室14缓慢流向磁流变上液室24,调节活塞22收到的压力减小使其自动向下运动(如图3所示),此时惯性通道容积减小,惯性通道中充斥的磁流变液体减小,当电磁线圈18通电后,产生的阻尼力随之减小,与此变化中所需小阻尼力相对应。如此设计的容积自调节机构可根据发动机所需的阻尼力大小对惯性通道的容积进行自动调节,从而产生与发动机匹配的阻尼力,实现自调节功能,使液压悬置始终在最佳的工作状态中。
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例和附图所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (10)

1.一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:主要由惯性磁流变通道装置和容积自调节机构构成;其中,所述惯性磁流变通道装置包括橡胶主簧(2)、上环形密封圈Ⅱ(6)、橡胶底膜(13)、惯性通道板(21)和安装在惯性通道板(21)中的电磁线圈(18);所述容积自调节机构包括多个橡胶主簧调节弹簧(4)、环形密封圈Ⅰ(5)、多个调节活塞(22)和多个通道板调节弹簧(23);
所述橡胶主簧(2)内表面、环型密封圈Ⅰ(5)、环型密封圈Ⅱ(6)以及惯性通道板(21)上表面形成的空间构成磁流变上液室(24);所述橡胶底膜(13)和惯性通道板(21)下表面形成的空间构成磁流变下液室(14);所述惯性通道板(21)中包含多条沿圆周均匀分布的惯性入口通道(7)和惯性中间通道(8),每条惯性中间通道(8)的一端与对应一条惯性入口通道(7)相连,另一端共同与汇聚为一条惯性出口通道(9)相连;所述磁流变上液室(24)、惯性入口通道(7)、惯性中间通道(8)、惯性出口通道(9)以及磁流变下液室(14)之间相连通且其中充斥着磁流变液体;
所述各橡胶主簧调节弹簧(4)以及环形密封圈Ⅰ(5)的上、下两端均分别与橡胶主簧(2)和惯性通道板(21)相连;所述多个调节活塞(22)和多个通道板调节弹簧(23)均安装在惯性中间通道(8)上方;
还包括悬置上壳体(3)和与其固定的悬置下壳体(11),所述惯性通道板(21)侧面以及悬置上壳体(3)设有导线槽(19)用于通过导线。
2.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述惯性通道板(21)中设有电磁线圈槽(25)用于安装电磁线圈(18),电磁线圈(18)通过环形密封圈Ⅱ(6)密封。
3.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述惯性磁流变通道装置还包括连接杆(1),连接杆(1)与橡胶主簧(2)上部相连,且橡胶主簧(2)上端通过悬置上壳体(3)进行限位,并于结合面处进行硫化处理。
4.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述惯性入口通道(7)和惯性中间通道(8)均为十二条,惯性入口通道(7)截面为圆形,惯性中间通道(8)截面为正方形,惯性出口通道(9)的截面为圆形。
5.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述橡胶主簧(2)和惯性通道板(21)上均开有凹槽,用于固定环形密封圈Ⅰ(5),并确保橡胶主簧(2)可沿环形密封圈Ⅰ(5)上下微量移动。
6.根据权利要求5所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述多个橡胶主簧调节弹簧(4)沿惯性通道板(21)圆周均匀分布。
7.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述惯性通道板(21)中每一条惯性中间通道(8)的正上方设有惯性通道调节槽26,各惯性通道调节槽(26)内均安装有一个调节活塞(22)和两个通道板调节弹簧(23)。
8.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述悬置上壳体(3)与惯性通道板(21)通过螺钉(20)相连,悬置上壳体(3)与悬置下壳体(11)通过螺母(15)、弹簧垫圈(16)和螺栓(17)相连。
9.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:悬置下壳体(11)、橡胶底膜(13)和惯性通道板(21)通过定位销(10)连接。
10.根据权利要求1所述的一种基于磁流变液体的容积自调节多惯性通道液压悬置,其特征在于:所述悬置下壳体(11)上开有通气孔(12)。
CN202210207435.8A 2022-03-04 2022-03-04 一种基于磁流变液体的容积自调节多惯性通道液压悬置 Pending CN114593173A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210207435.8A CN114593173A (zh) 2022-03-04 2022-03-04 一种基于磁流变液体的容积自调节多惯性通道液压悬置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210207435.8A CN114593173A (zh) 2022-03-04 2022-03-04 一种基于磁流变液体的容积自调节多惯性通道液压悬置

Publications (1)

Publication Number Publication Date
CN114593173A true CN114593173A (zh) 2022-06-07

Family

ID=81815415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210207435.8A Pending CN114593173A (zh) 2022-03-04 2022-03-04 一种基于磁流变液体的容积自调节多惯性通道液压悬置

Country Status (1)

Country Link
CN (1) CN114593173A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040379A1 (zh) * 2022-08-22 2024-02-29 华为技术有限公司 碰撞吸能装置及其控制方法、保险杠和车辆

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248934A (ja) * 1985-04-25 1986-11-06 Honda Motor Co Ltd 流体封入型マウントラバ−
JPH05223139A (ja) * 1991-12-20 1993-08-31 Bridgestone Corp 防振装置
JPH06337034A (ja) * 1993-05-26 1994-12-06 Honda Motor Co Ltd 液封式防振装置
DE4402543A1 (de) * 1994-01-28 1995-08-03 Wolf Woco & Co Franz J Fluidgedämpfte Elastomerfeder
KR20130020499A (ko) * 2011-08-19 2013-02-27 현대자동차주식회사 멀티유로 하이드로 마운트
KR20130021824A (ko) * 2011-08-24 2013-03-06 현대자동차주식회사 가변 오리피스형 엔진 마운트
KR20130053708A (ko) * 2011-11-16 2013-05-24 현대자동차주식회사 차량용 엔진 마운트
CN105485239A (zh) * 2015-12-14 2016-04-13 陈鸽 一种阻尼减振装置及断路器
CN106255840A (zh) * 2014-04-30 2016-12-21 株式会社普利司通 隔振装置
CN106704470A (zh) * 2017-01-09 2017-05-24 重庆市锋盈汽车配件有限公司 自调式汽车液压悬置
CN109915533A (zh) * 2019-03-28 2019-06-21 吉林大学 基于磁流变液体的多惯性通道半主动控制液压悬置
CN110608261A (zh) * 2019-09-23 2019-12-24 安徽誉林汽车部件有限公司 一种液压悬置
CN110630678A (zh) * 2019-09-23 2019-12-31 安徽誉林汽车部件有限公司 一种可延长惯性通道的发动机液压悬置结构
CN113983114A (zh) * 2021-11-27 2022-01-28 安徽江淮汽车集团股份有限公司 一种状态可切换的多惯性通道式动力总成液压悬置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248934A (ja) * 1985-04-25 1986-11-06 Honda Motor Co Ltd 流体封入型マウントラバ−
JPH05223139A (ja) * 1991-12-20 1993-08-31 Bridgestone Corp 防振装置
JPH06337034A (ja) * 1993-05-26 1994-12-06 Honda Motor Co Ltd 液封式防振装置
DE4402543A1 (de) * 1994-01-28 1995-08-03 Wolf Woco & Co Franz J Fluidgedämpfte Elastomerfeder
KR20130020499A (ko) * 2011-08-19 2013-02-27 현대자동차주식회사 멀티유로 하이드로 마운트
KR20130021824A (ko) * 2011-08-24 2013-03-06 현대자동차주식회사 가변 오리피스형 엔진 마운트
KR20130053708A (ko) * 2011-11-16 2013-05-24 현대자동차주식회사 차량용 엔진 마운트
CN106255840A (zh) * 2014-04-30 2016-12-21 株式会社普利司通 隔振装置
CN105485239A (zh) * 2015-12-14 2016-04-13 陈鸽 一种阻尼减振装置及断路器
CN106704470A (zh) * 2017-01-09 2017-05-24 重庆市锋盈汽车配件有限公司 自调式汽车液压悬置
CN109915533A (zh) * 2019-03-28 2019-06-21 吉林大学 基于磁流变液体的多惯性通道半主动控制液压悬置
CN110608261A (zh) * 2019-09-23 2019-12-24 安徽誉林汽车部件有限公司 一种液压悬置
CN110630678A (zh) * 2019-09-23 2019-12-31 安徽誉林汽车部件有限公司 一种可延长惯性通道的发动机液压悬置结构
CN113983114A (zh) * 2021-11-27 2022-01-28 安徽江淮汽车集团股份有限公司 一种状态可切换的多惯性通道式动力总成液压悬置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040379A1 (zh) * 2022-08-22 2024-02-29 华为技术有限公司 碰撞吸能装置及其控制方法、保险杠和车辆

Similar Documents

Publication Publication Date Title
US9086111B2 (en) Valve assembly of shock absorber
US4630803A (en) Suspension-strut mounting for installation between a shock-absorber strut or spring strut and a vehicle body spring-supported with respect to the axles, in particular of a motor vehicle
CN109915533B (zh) 基于磁流变液体的多惯性通道半主动控制液压悬置
US6463736B1 (en) Adjustment and damping device
CN201651156U (zh) 半主动控制式发动机液压悬置
CN101936360A (zh) 汽车动力总成半主动控制磁流变液压悬置
CN112283281B (zh) 一种减振器用阻尼调节阀及方法
CN109307041B (zh) 基于空气弹簧的半主动控制液压悬置
CN102748422B (zh) 行程敏感阻尼可调减振器
CN201922881U (zh) 汽车动力总成半主动控制磁流变液压悬置
CN114593173A (zh) 一种基于磁流变液体的容积自调节多惯性通道液压悬置
CN101285514B (zh) 阻尼可调式发动机悬置减振装置
CN110966339A (zh) 一种用于汽车悬架系统的花键结构磁流变减振器
CN112503113B (zh) 一种基于磁流变液体的自调节矩形限位式离合器
CN212131160U (zh) 前减震器悬架总成
CN211371129U (zh) 一种惯性通道解耦膜式电磁主动液压悬置
CN203067644U (zh) 汽车减震器活塞
CN210889882U (zh) 一种具有选频作用的fcd减振器
CN107989947B (zh) 一种多活塞阻尼可调式减震器机构
CN102072274A (zh) 一种减震器活塞阀结构
CN113339453A (zh) 一种可调刚度和阻尼的发动机曲轴扭振减振器装置
CN218347843U (zh) 一种磁流变液阻尼器
KR100212798B1 (ko) 자동차용 쇽 업소우버 구조
CN1381361A (zh) 用于车辆的直线型磁流变液阻尼器
CN220396351U (zh) 小流阻式减振器电磁阀

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination