CN114557971B - 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用 - Google Patents

一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用 Download PDF

Info

Publication number
CN114557971B
CN114557971B CN202210438888.1A CN202210438888A CN114557971B CN 114557971 B CN114557971 B CN 114557971B CN 202210438888 A CN202210438888 A CN 202210438888A CN 114557971 B CN114557971 B CN 114557971B
Authority
CN
China
Prior art keywords
freeze
lipid
nucleic acid
drying
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210438888.1A
Other languages
English (en)
Other versions
CN114557971A (zh
Inventor
王浩猛
李明媛
严志红
贾琳
刘健
马文林
邱东旭
谢焱博
宇学峰
郁彭
朱涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kangxinuo Shanghai Biological Research And Development Co ltd
CanSino Biologics Inc
Original Assignee
Kangxinuo Shanghai Biological Research And Development Co ltd
CanSino Biologics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kangxinuo Shanghai Biological Research And Development Co ltd, CanSino Biologics Inc filed Critical Kangxinuo Shanghai Biological Research And Development Co ltd
Priority to CN202210438888.1A priority Critical patent/CN114557971B/zh
Publication of CN114557971A publication Critical patent/CN114557971A/zh
Priority to PCT/CN2023/090473 priority patent/WO2023207936A1/zh
Application granted granted Critical
Publication of CN114557971B publication Critical patent/CN114557971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/02Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Optics & Photonics (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明基于冷冻干燥工艺的物理化学原理,对于核酸‑脂质纳米颗粒的冷冻干燥条件,即冷冻干燥程序和冻干保护剂进行了系统研究,优选并设计了适宜于核酸‑脂质纳米颗粒的高效冷冻干燥方法。本发明可将核酸‑脂质纳米颗粒冷冻干燥工艺总时长缩短至8‑18小时,显著降低能源消耗和产品放大生产的时间成本,冻干的核酸‑脂质纳米颗粒,复水迅速(10s以内),核酸总量、包封率及核酸完整性高,除此之外,冻干复水后制剂的细胞转染效率与和未冻干核酸‑脂质纳米颗粒体原液无显著性差异,且体内免疫应答高,甚至超过未冻干核酸‑脂质纳米颗粒体原液。

Description

一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和 应用
技术领域
本发明属于生物医药技术领域,涉及一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用。
背景技术
新型冠状病毒肺炎(COVID-19)疫情中,mRNA疫苗具有安全、免疫应答高和生产成本低的优势,同时获得美国和欧盟紧急获批上市。近年来,研究发现由mRNA诱导的瞬时蛋白表达在其他传染病疫苗、癌症疫苗、心血管疾病、蛋白质替代疗法和遗传病等多领域均具有巨大的应用价值,甚至能够通过体内注射实现自主产生CAR-T效应。然而,与绝大多数疫苗的储存条件(2-8℃)不同,已上市mRNA疫苗长期稳定性差,需超低温保存(-20℃,甚至-70℃),且有效期低于6个月。在面临数亿剂mRNA疫苗需要储存,运输和分发到世界各地的情况下,稳定性成为其应用的瓶颈问题。
首先,mRNA链长为1000至5000个碱基长度,早期研究中已发现裸mRNA会被核糖核酸酶(RNase)迅速水解,而RNase无处不在,体内外均有大量附着,需要特殊处理才能去除。除此之外,mRNA长链上仅一个变化(键断裂或碱基的氧化)即会终止翻译,故mRNA疫苗中mRNA分子的完整性至关重要。
在mRNA疫苗中为了提高mRNA体内作用效力,以LNP包载递送mRNA,不仅保护mRNA避免被体内RNase瞬时破坏,而且突破mRNA与细胞膜均带负电荷的静电排斥屏障,增强向抗原递呈细胞的递送。然而,mRNA-LNP注射液长期稳定性不佳,与其相反,siRNA-LNP注射液稳定性良好:Onpattro与mRNA-1273中的LNP十分相似,却具有2-8℃,3年有效期。除此之外,Suzuki等构建的siRNA-LNP注射液4 ℃放置1.5年,稳定性良好。siRNA分子量小且为双链结构,mRNA链长超过siRNA 100倍以上且为单链结构,后者分子结构更不稳定,更易发生水解,上述研究表明LNP在注射液中不能起到保护mRNA长期稳定的作用。
LNP由四种主要成分组成:中性磷脂、胆固醇、聚乙二醇(PEG)-脂质和可电离阳离子脂质。研究发现mRNA-LNP为核-壳结构,具有表面层和一个无定形、各向同性的核心。Viger Gra等利用NMR波谱发现两种类型的核心是可能的:无定形核包含被阳离子脂质包围的水孔;或核心中的脂质可以均匀分散,中间有小水袋。Arteta等和Sebastiani等发现中性磷脂和PEG脂质以及部分可电离阳离子脂质和胆固醇位于LNP表面,而可电离阳离子脂质、胆固醇、水和mRNA位于核心区域。研究表明LNP核心含水24%,mRNA位于被阳离子脂质包围的水柱内。
冷冻干燥,又称升华干燥,根据水的三相图将含水物料冷冻到冰点以下,使水转变为冰,然后在较高真空下将冰转变为蒸气而除去的干燥方法。近年来,冻干产品占FDA和EMA批准生物药品的一半以上。在纳米制剂领域,Ambisome®和Vyxeos®均为冻干脂质体制剂,二者保质期可达36个月。辉瑞病毒疫苗研究主管Dormitzer表示公司有意开发mRNA-LNP冻干制剂。然而,目前关于mRNA-LNP冻干条件的研究很少,虽然均为纳米制剂,但脂质体是磷脂双分子层形成的闭合囊泡,且用于冻干的脂质体包载的皆为小分子药物;mRNA-LNP为壳-核结构,外层仅为磷脂单分子层,核心包载的mRNA不仅分子量大,且对于mRNA分子的完整性要求极高,mRNA-LNP需要在真空冷冻干燥的高强度压力变化过程中,保持其磷脂层和纳米结构不被破坏,保证mRNA的包载状态不发生变化,并在复水重构后恢复原液粒径分布及mRNA包封率,这些都具有很高的挑战性。Zhao等制备了一种新型类脂质纳米颗粒用于mRNA递送的冻干制剂,虽然mRNA复水制剂与原液体外细胞活性无显著差异,但却不具备体内活性,尚不清楚原因。Ai LX等以LNP分别包载SARS-CoV-2 野生型、Delta株和Omicron株的S蛋白mRNA序列,可于4℃、25℃和40℃储存18天,Muramatsu等制备了mRNA-LNP冻干制剂,可于4℃储存24周,且体内外生物活性无显著差异。可见不同冻干条件制备的mRNA疫苗体内生物活性差异极大,提示不同的冻干程序曲线和保护剂对于制剂性能有很大影响,但对其中的作用机理和规律尚未见文献报道。
冷冻干燥工艺主要包括冻干程序曲线和保护剂两方面内容。冻干程序曲线是冻干过程中的温度、真空度及能量等随时间变化的曲线,一般包括三个阶段:预冻,升华干燥和解吸干燥。其中,冷却温度、升温速率及维持时长等均对于冻干粉的外观、水分、粒径等有重要影响。冻干保护剂,如蔗糖、海藻糖、乳糖和甘露醇等,可于干燥脱水过程中取代脂质分子与水分子间的氢键来稳定LNP结构,并起到赋形剂的作用。冻干保护剂种类、用量及添加顺序,均使其与mRNA-LNP的分子作用机制及微观空间作用不同,对冻干粉中的LNP膜结构,mRNA包封率,mRNA完整性等有很大影响。综上所述,冻干程序曲线和保护剂对mRNA-LNP冻干粉的微观结构、关键理化性质及生物活性的影响,亟需深入探究。
现有技术中的冻干工艺关键参数常为“经验式”应用,一般冷冻干燥工艺从预冻至解析干燥结束,需要30-100小时,耗费能源是一个方面,另一方面也大大增加了产品放大生产的时间成本,如发明专利CN 110714015 B中优选的冻干程序为“预冻温度为-50℃,温度保持5小时。一次冻干温度为-40℃ 24小时,二次冻干温度为10℃保持17小时,冻干过程真空度为40μbar。”共耗时46小时。Muramatsu等制备mRNA-LNP冻干制剂的冷冻干燥程序共耗时84小时。
发明内容
本发明的第一目的在于提高核酸-脂质纳米颗粒的储存稳定性,一方面将储存条件降低为冷藏即可(2-8℃),另一方面可延长有效期。
本发明的第二目的在于可显著缩短冻干程序总时长,提高效率,降低生产的能源和时间成本。
本发明的第三目的在于针对核酸-脂质纳米颗粒筛选出特定种类及用量的冻干保护剂,充分保持其冻干复水制剂的核酸总量、包封率和完整性,并具有无损的体内外生物活性。
本发明的第四目的在于本发明突破冷冻干燥工艺“经验式”的开发模式,建立了对关键理化性质评价方法。
本发明术语“脂质纳米颗粒”是指具有至少一个纳米量级尺寸的颗粒,其包含至少一种脂质。
本发明所述的核酸-脂质纳米颗粒(LNP),成分包括核酸、中性脂质、可质子化阳离子脂质、甾醇脂质、PEG-脂质。
本发明术语 “核酸”是指呈单链或双链形式的含有至少两种脱氧核糖核苷酸或核糖核苷酸的聚合物,并且包括DNA、RNA及其杂交物或衍生物。
本发明术语“脂质”是指一组有机化合物,其包括但不限于脂肪酸的酯,并且通常以难溶于水但可溶于许多有机溶剂为特征。
本发明术语“可质子化阳离子脂质”是指在某些环境中能够带正电的脂质分子,例如ALC-0315。
本发明术语“中性脂质”术语是指不带电荷的、非磷酸甘油酯的脂质分子。
本发明术语“PEG-脂质(聚乙二醇脂质)”是指包含脂质部分和聚乙二醇部分的分子。
本发明术语“疫苗”是指适合于应用于动物(包括人)的组合物,在施用后诱导免疫应答,其强度足以最低限度地帮助预防、改善或治愈起因于由微生物感染的临床疾病。
本发明术语“递送系统”是指调控生物活性成分在空间、时间及剂量在生物体内分布的制剂或组合物。
具体地,核酸-脂质纳米颗粒,LNP按照摩尔百分比计,包括25~75%可质子化阳离子脂质、5~20%中性脂质、0~50%甾醇脂质和1~5% PEG脂质。
为了实现本发明的上述目的,特采用以下技术方案:
根据本发明的一个方面,本发明提供了一种用于核酸-脂质纳米颗粒的冷冻干燥保护剂,包括以下组分:蔗糖、海藻糖,所述蔗糖与海藻糖的质量比为5-15:5-11。
本发明用于核酸-脂质纳米颗粒的冷冻干燥保护剂,包括:甘露醇、葡萄糖或乳糖中的一种或多种。
根据本发明的一个方面,本发明冷冻干燥保护剂的处方中蔗糖、海藻糖、甘露醇或葡萄糖或乳糖的质量比为5-15:5-11:1-5。
根据本发明的一个方面,本发明提供用于核酸-脂质纳米颗粒的冷冻干燥剂的制备方法,按照相应配比,将蔗糖、海藻糖溶解在无核酸酶水中。
根据本发明的一个方面,本发明提供用于核酸-脂质纳米颗粒的冷冻干燥剂的制备方法,按照相应配比,将蔗糖、海藻糖、甘露醇或葡萄糖或乳糖溶解在无核酸酶水中。
根据本发明的一个方面,本发明提供用于核酸-脂质纳米颗粒的冷冻干燥保护剂在制备药物中的应用。
优选地,将核酸-脂质纳米颗粒加入到所述冻干保护剂的溶液中进行冷冻干燥。
优选地,冷冻干燥包括以下步骤:预冻阶段、升华干燥、解吸干燥。
优选地,预冻阶段:温度为-80℃~-50℃,预冻时间为2~6小时。
优选地,升华干燥阶段:温度为-60℃~0℃,终点温度-5℃~0℃,真空压力控制≤10Pa;优选地,升华干燥阶段分2~8段呈梯度升温,每段升温5~30℃,每段维持时间0.5~10小时,真空压力控制≤10Pa。
优选地,解吸干燥阶段:温度为0℃~35℃,且终点温度30~35℃,运行时间2~8小时,真空压力控制≤10Pa。
优选地,核酸-脂质纳米颗粒中包括ssDNA,dsDNA,mRNA,lncRNA,siRNA,saRNA,shRNA,ASO(反义寡核苷酸),质粒,circRNA,circDNA,miRNA,CRISPR-Cas,ployI:C,SamRNA,5’-pppRNA。
优选地,药物为疫苗,更优选的,疫苗用于预防癌症、病毒感染、细菌感染、真菌感染的疫苗;更优选的,所述的病毒选自:诺如病毒、埃博拉病毒、冠状病毒、巨细胞病毒、登革热病毒、寨卡病毒、柯萨奇病毒、肠病毒、肝炎病毒、单纯疱疹病毒、人乳头瘤病毒、流感病毒、马尔堡病毒、麻疹病毒、脊髓灰质炎病毒、狂犬病病毒、轮状病毒、麻疹病毒。
优选地,冷冻干燥剂在所述疫苗中加入量为5-20 %(w/w %)。
优选地,药物为口服制剂、肌肉注射制剂、静脉注射制剂或吸入制剂。
优选地,吸入制剂为雾化吸入剂或干粉吸入剂。
与现有技术相比,本发明具有如下有益效果:
本发明可将核酸-脂质纳米颗粒冷冻干燥工艺总时长缩短至8~18小时,显著降低能源消耗和产品放大生产的时间成本。且本发明冷冻干燥工艺制备的冻干核酸-脂质纳米颗粒,复水迅速(10s以内),核酸总量、包封率及核酸完整性高,除此之外,冻干复水后制剂的细胞转染效率与和未冻干核酸-脂质纳米颗粒体原液无显著性差异,且体内免疫应答高,甚至超过未冻干核酸-脂质纳米颗粒体原液。除此之外,通过冷冻干燥降低甚至去除体系内的含水微环境,可以抑制核酸酶催化的核酸水解反应,显著提高核酸-脂质纳米颗粒的长期稳定性,延长有效期,提高保存温度为2~8℃,显著降低储存和运输的成本和效率。除此之外,将核酸-脂质纳米颗粒的制剂相态由液态转变为固态,为其新型固体制剂的开发提供可能,具有重要意义。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1 实施例1-1冻干复水制剂测定三次的粒径分布图。
图2 a为实施例1-1所得样品 SEM扫描成像。
图2 b为对比例1-1所得样品 SEM扫描成像。
图3a为模型样品的TEM微观形态图。
图3b为实施例1-1所得样品的TEM微观形态图。
图3c为实施例1-4所得样品的TEM微观形态图。
图3d为实施例1-8所得样品的TEM微观形态图。
图3e为实施例1-12所得样品的TEM微观形态图。
图3f为对比例1-10所得样品的TEM微观形态图。
图4a为 模型样品mRNA完整性分析测试图。
图4b为实施例2-1所得样品mRNA完整性分析测试图。
图4c为C实施例2-5所得样品mRNA完整性分析测试图。
图5 mRNA-LNP细胞转染蛋白表达量。
图6 初次免疫14天后免疫效应结果。
图7 初次免疫28天(二次免疫14天)后免疫效应结果。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合优选实施例进一步说明本发明的技术方案和有益效果。
模型样品:
以编码SARS-CoV-2棘突蛋白的mRNA(S-mRNA,约4000bp)为模型mRNA,以未加入保护剂、未冷冻干燥的mRNA脂质纳米颗粒(即mRNA-LNP)为模型样品。
制备过程如下:醋酸钠缓冲液稀释mRNA原液至浓度为135µg/ml,按照可质子化阳离子脂质ALC-0315:DSPC:胆固醇:DMG-PEG 2000 摩尔比为49:10:39.5:1.5配制脂质混合溶液;在纳米药物制造设备上完成包封后,超滤换液,收集样品。
脂质体样品:
以编码SARS-CoV-2棘突蛋白的mRNA(S-mRNA,约4000bp)为模型mRNA,以未加入保护剂、未冷冻干燥的mRNA脂质体(即mRNA-Lip)为脂质体样品。
制备过程如下:以DOTAP:DOPE摩尔比为1:1为脂质体膜材,利用薄膜分散法制备阳离子脂质体,再与mRNA混合包载,调整至与模型样品中mRNA浓度一致。
实施例1 冻干保护剂的制备
按照表1配方在溶剂中配制成冻干保护剂,其中溶剂为无核酸酶水,以0.22μm无菌滤膜过滤除菌。以冻干保护剂添加量为10%(w/w),实施例1-1~1-12及对比例1-1~1-28样品为保护剂与模型样品脂质纳米颗粒(即mRNA-LNP)混合均匀,分装至西林瓶中;对比例1-29为将实施例1-1的保护剂与脂质体样品(即核酸-Lip)混合均匀,即将模型样品替换为脂质体样品分装至西林瓶中。
表 1 冻干保护剂的处方
Figure 29278DEST_PATH_IMAGE001
Figure 398948DEST_PATH_IMAGE002
取实施例1-1~1-12及对比例1-1~1-29样品500μl至3ml西林瓶中,进行冷冻干燥。冷冻干燥程序:预冻阶段:-60℃ 4小时;升华干燥阶段:-45℃ 2小时, -25℃ 2小时,-5℃2小时,全程真空压力控制≤10Pa;解吸干燥阶段:30℃,2小时,全程真空压力控制≤10Pa。
粒径、电位及复水时间测定:分别取模型样品以及实施例1-1~1-12、对比例1-1~1-29样品(向实施例及对比例冻干样品加入0.5 mL的无核酸酶水复水,记录复水所需时间),再补充1mL无核酸酶水,于马尔文粒度仪在25±1℃进行粒径、多分散系数和Zeta电位的测量,平行测量三次,取平均值,见表2。
表2 粒径和电位
Figure 709844DEST_PATH_IMAGE003
Figure 511578DEST_PATH_IMAGE004
可见实施例1-1~12与模型样品相比,粒径增长<25nm,其中,实施例1-1的冷冻干燥工艺所得冻干粉复水后粒径分布见附图1。对比例1-1~1-28与模型样品相比,粒径增长约60-320nm,提示核酸-脂质纳米颗粒的纳米结构已经受损。可见以蔗糖和海藻糖复配作为冻干保护剂,具有超过两种保护剂单独使用的保护效果,以蔗糖、海藻糖和甘露醇组合效果最佳。由于冷冻干燥过程存在多种应力损伤,如低温应力、冻结应力和干燥应力.其中冻结应力又可分为枝状冰晶的形成、离子浓度的增加、pH值的改变和相分离四种情况。蔗糖、海藻糖和甘露醇以适宜比例混合,以适宜添加量加入mRNA-LNP进行冷冻干燥,三者之间因分子结构特征以范德华吸引力为主,形成更为致密的包裹层,将mRNA-LNP完全包裹,在整个体系里构成完整的“姜形”包裹支架:一方面,粉饼刚性较强,不易崩解,能够对抗多种应力损伤,稳定性好;另一方面,孔隙率高,有益于冻干过程中水分快速蒸发,在复水过程中又因与水分子润湿的比表面积大,能够达到快速复水的效果。虽然实施例1-1与对比例1-29保护剂相同,但对比例1-29与脂质体样品对比,粒径增长超过75nm,说明该保护剂体系具有核酸-LNP专属性,即适合核酸-LNP制剂,而不适于核酸-Lip。
实施例2 扫描电镜(SEM)形态观察
扫描电镜(SEM)操作步骤:利用针头取实施例1-1和对比例1-1少许冻干粉末样品置于导电胶上,然后采用SEM扫描成像,结果参见附图2a、附图2b。可见实施例1-1为“姜形”包裹支架微观结构,而对比例1-1中LNP与保护剂之间未能形成支架结构,保护剂仅能起到分散填充,降低应力损伤的作用。
实施例3 透射电镜(TEM)形态观察
将模型样品和实施例1-1,实施例1-4,实施例1-8,实施例1-12,对比例1-10,加入适量的无核酸酶水稀释后,在铜网上滴加稀释样品,以滤纸从铜网边缘吸去多余样品,再滴加2%磷钨酸染色5s,将多余的磷钨酸以滤纸从铜网边缘吸去,利用透射电子显微镜扫描成像,结果见附图3a、图3b、图3c、图3d、图3e、图3f,可见实施例1-1(参见图3b),实施例1-4(参见图3c),实施例1-8(参见图3d),实施例1-12(参见图3e),对比例1-10(参见图3f)与模型样品具有相近的粒径分布和微观形态。
实施例4 冻干曲线实验
取实施例1-8的样品500μl至3ml西林瓶中,进行冷冻干燥。冷冻干燥程序:预冻阶段:-60℃ 4小时;解吸干燥阶段:30℃,2小时,全程真空压力控制≤10Pa;升华干燥阶段:按照下述表3程序进行,得实施例2-1~6和对比例2-1~6。
表3 升华干燥程序
Figure 857109DEST_PATH_IMAGE005
mRNA含量、包封率、完整性测定及稳定性表征
稳定性放置条件:2-8℃,1个月。分别测定模型样品,实施例2-1~6,对比例2-1~6,在0点和1个月时,各组mRNA总量、游离mRNA浓度、包封率和mRNA完整性,结果见表4。
以RiboGreen RNA试剂与游离mRNA结合荧光显色,利用荧光分析仪测定游离mRNA量;同时,以Triton X-100破膜,测得mRNA总量,则:
包封率(EE%)=(mRNA总量-mRNA游离量)/ mRNA总量*100%
mRNA完整性测定:先将mRNA-LNP样品稀释后70℃变性,制备Dye-Gel胶,注入压胶器中,接着,分别加入mRNA marker,ladder和sample。利用Agilent 2100 生物分析系统以凝胶电泳原理高效测定样品mRNA完整性谱图。模型样品、实施例2-1和实施例2-5在0点的mRNA完整性测定图谱如附图4所示。由上述实验结果可知,冷冻干燥程序中温和多台阶的升温方式更有利于保护核酸-脂质纳米颗粒的纳米结构,提高mRNA包封率和完整性,并提高冻干制剂的稳定性。
表4 mRNA浓度、包封率及完整性
Figure 836828DEST_PATH_IMAGE006
Figure 838282DEST_PATH_IMAGE007
实施例5 细胞转染效果——Western blot 实验
以HEK293细胞作为体外蛋白表达模型细胞。以1×106 cells/mL细胞密度于6孔板中铺板,并培养24 h,接着,将实施例1-1,实施例1-4,实施例1-8和实施例1-12分别以无核酸酶水复溶,再取模型样品,依次加入孔中,加入量为20μL,混匀后转染4 h,换液(含血清)。于培养箱中培养24 h后采用PBS消化细胞,并将其转移到离心管后离心(2500 r/min, 5min),将细胞收集,加入1 mL PBS吹匀,转移到1.5 mL的EP管中,离心后取下层细胞。每个样品加入200 μL的蛋白裂解液(每100 μL CHAPS加入1 μL Protease inhibiter),于冰上裂解1 h。置于4℃的离心机中离心(13500 r/min, 20 min)后取上清,将样品进行westernblot实验测定蛋白表达量。
首先将电泳装置检漏(水检漏,加满,5min内液面不降,则代表装置可以用),检漏完成,清干净水分;将置好的12%分离胶(体积分数)加入到电泳装置中,再加入无水乙醇(用于压气泡),将其静置30 min后,分离胶凝固后,将无水乙醇倒掉,采用滤纸吸掉多余的液体;加入浓缩胶并迅速插入梳子,放置30 min后,浓缩胶凝固;将此装置放到电泳槽中,加入电泳液(1×SDS-PAGE缓冲液)没过铂丝,拔出梳子,分别依次加入实施例1-1, 实施例1-4,实施例1-8和实施例1-12,模型样品的蛋白表达样品;电泳(100 V,300 mA),在电泳的过程中观察溴酚蓝以及marker的位置,待其到达凝胶底部后停止;取出电泳后的凝胶,按照浓缩胶和分离胶的分界线处分开,去掉浓缩胶,保留分离胶,将分离胶和滤纸在1×blotingbuffer中浸泡,PVDF膜在无水甲醇中浸泡使其活化;按照3层滤纸、1层PVDF膜、分离胶、3层滤纸的顺序放在转膜仪上并将气泡赶出,打开电源,15 V(5 V到15 V梯度升压),300 mA,转印1 h 40 min;将PVDF膜(转有蛋白)浸于含有5%脱脂奶粉的1×PBST中,在室温下封闭2 h,2 h后使采用1×PBST洗去过量的脱脂奶粉;将膜放入含有一抗(按照说明书采用5%脱脂奶粉稀释)的15 mL离心管中,于4℃孵育过夜,1×PBST洗去过量的一抗;将已经封闭完一抗的PVDF膜放入含有二抗(按照说明书采用5%脱脂奶粉稀释)的15 mL离心管中,在室温条件下孵育1 h(注意避光),洗去过量的二抗后,采用Odyssey红外激光成像系统检测并分析。
实验结果见附图5,可见实施例1-1,实施例1-4,实施例1-8和实施例1-12复水制剂与模型样品的S蛋白表达量无显著差异,说明各组的细胞转染效率无显著差异,冷冻干燥工艺并未降低mRNA-LNP的细胞水平生物活性。
实施例6 体内免疫效应
取BALB/c小鼠,以实施例1-1,实施例1-4,实施例1-8和实施例1-12复水制剂与模型样品作对比研究,将小鼠随机分为5组,分别肌肉注射50μl 实施例1-1,实施例1-4,实施例1-8和实施例1-12复水制剂,型样品进行接种免疫:初次免疫后14天,进行等剂量的第二次免疫;在初次免疫后第14天和28天收集血清,检测SARS-CoV-2特异性IgG和中和抗体应答水平。
初次免疫后第14天免疫效应见附图6,初次免疫后第28天免疫效应见附图7,由实验结果可见实施例1-1,实施例1-4,实施例1-8和实施例1-12均能够引起足够的体内免疫应答,在初次免疫后第28天实施例1-8的免疫应答水平甚至超过了模型样品,说明本发明中设计的冷冻干燥工艺能够维持甚至提高mRNA-LNP的体内免疫效应。

Claims (17)

1.一种核酸-脂质纳米颗粒制剂,其特征在于,其含有包括以下组分的冷冻干燥保护剂:蔗糖、海藻糖和甘露醇,所述蔗糖:海藻糖:甘露醇的质量比为5-15:5-11:1-5,其中,核酸-脂质纳米颗粒,LNP按照摩尔百分比计,包括25~75%可质子化阳离子脂质、5~20%中性脂质、0~50%甾醇脂质和1~5%PEG脂质。
2.一种权利要求1所述的核酸-脂质纳米颗粒制剂的制备方法,其特征在于,按照相应配比,将蔗糖、海藻糖、甘露醇溶解在无核酸酶水中,其中,核酸-脂质纳米颗粒,LNP按照摩尔百分比计,包括25~75%可质子化阳离子脂质、5~20%中性脂质、0~50%甾醇脂质和1~5%PEG脂质。
3.一种冷冻干燥保护剂在制备药物中的应用,其特征在于,所述的冷冻干燥保护剂由以下组分组成:蔗糖、海藻糖,所述蔗糖与海藻糖的质量比为5-15:5-11,所述的冷冻干燥保护剂用于核酸-脂质纳米颗粒,所述核酸-脂质纳米颗粒中包括ssDNA,dsDNA,mRNA,lncRNA,siRNA,saRNA,shRNA,ASO,质粒,circRNA,circDNA,miRNA,CRISPR-Cas,ployI:C,SamRNA或5’-pppRNA,其中,核酸-脂质纳米颗粒,LNP按照摩尔百分比计,包括25~75%可质子化阳离子脂质、5~20%中性脂质、0~50%甾醇脂质和1~5%PEG脂质。
4.冷冻干燥保护剂在制备药物中的应用,其特征在于,所述的冷冻干燥保护剂包括以下组分:蔗糖、海藻糖和甘露醇,所述蔗糖:海藻糖:甘露醇的质量比为5-15:5-11:1-5,所述的冷冻干燥保护剂用于核酸-脂质纳米颗粒,所述核酸-脂质纳米颗粒中包括ssDNA,dsDNA,mRNA,lncRNA,siRNA,saRNA,shRNA,ASO,质粒,circRNA,circDNA,miRNA,CRISPR-Cas,ployI:C,SamRNA或5’-pppRNA,其中,核酸-脂质纳米颗粒,LNP按照摩尔百分比计,包括25~75%可质子化阳离子脂质、5~20%中性脂质、0~50%甾醇脂质和1~5%PEG脂质。
5.根据权利要求3或4所述的应用,其特征在于,将核酸-脂质纳米颗粒加入到所述冻干保护剂的溶液中进行冷冻干燥。
6.根据权利要求5所述的应用,其特征在于,冷冻干燥包括以下步骤:预冻阶段、升华干燥、解吸干燥。
7.根据权利要求6所述的应用,其特征在于,所述预冻阶段:温度为-80℃~-50℃,预冻时间为2~6小时。
8.根据权利要求6所述的应用,其特征在于,所述升华干燥阶段:温度为-60℃~0℃,终点温度-5℃~0℃,真空压力控制≤10Pa。
9.根据权利要求6所述的应用,其特征在于,所述解吸干燥阶段:温度为0℃~35℃,且终点温度为30~35℃,运行时间2~8小时,真空压力控制≤10Pa。
10.根据权利要求9所述的应用,其特征在于,升华干燥阶段分2~8段呈梯度升温,每段升温5~30℃,每段维持时间0.5~10小时。
11.根据权利要求6所述的应用,其特征在于,所述药物为疫苗。
12.根据权利要求11所述的应用,其特征在于,所述的疫苗为用于预防癌症、病毒感染、细菌感染、真菌感染的疫苗。
13.根据权利要求12所述的应用,其特征在于,所述的病毒选自:诺如病毒、埃博拉病毒、冠状病毒、巨细胞病毒、登革热病毒、寨卡病毒、肠病毒、肝炎病毒、单纯疱疹病毒、人乳头瘤病毒、流感病毒、马尔堡病毒、麻疹病毒、脊髓灰质炎病毒、狂犬病病毒、轮状病毒。
14.根据权利要求12所述的应用,其特征在于,所述的病毒为柯萨奇病毒。
15. 根据权利要求11所述的应用,其特征在于,所述冷冻干燥剂在所述疫苗中加入量为5-20 w/w %。
16.根据权利要求3或4所述的应用,其特征在于,所述的药物为口服制剂、肌肉注射制剂、静脉注射制剂或吸入制剂。
17.根据权利要求16所述的应用,其特征在于,所述的吸入制剂为雾化吸入剂或干粉吸入剂。
CN202210438888.1A 2022-04-25 2022-04-25 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用 Active CN114557971B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210438888.1A CN114557971B (zh) 2022-04-25 2022-04-25 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用
PCT/CN2023/090473 WO2023207936A1 (zh) 2022-04-25 2023-04-25 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210438888.1A CN114557971B (zh) 2022-04-25 2022-04-25 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114557971A CN114557971A (zh) 2022-05-31
CN114557971B true CN114557971B (zh) 2023-05-23

Family

ID=81721275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210438888.1A Active CN114557971B (zh) 2022-04-25 2022-04-25 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114557971B (zh)
WO (1) WO2023207936A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557971B (zh) * 2022-04-25 2023-05-23 康希诺生物股份公司 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用
CN117597110A (zh) * 2022-07-19 2024-02-23 浙江健新原力制药有限公司 一种制备mRNA脂质体的系统及其应用
WO2024035932A1 (en) * 2022-08-11 2024-02-15 RNAimmune, Inc. Lyophilized nanoparticle compositions and methods of use thereof
CN115154439B (zh) * 2022-09-08 2022-12-09 南京澄实生物科技有限公司 一种mRNA脂质纳米颗粒递送系统及其制备方法和应用
CN115944610A (zh) * 2022-10-10 2023-04-11 哈尔滨医科大学 一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用
CN115624630A (zh) * 2022-12-19 2023-01-20 北京荷牧生物科技有限公司 冻干保护组合物及其应用和基于该组合物的核酸脂质纳米颗粒冻存方法
CN116672316B (zh) * 2023-07-18 2023-10-31 北京悦康科创医药科技股份有限公司 一种核酸-脂质纳米颗粒冻干制剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111658617A (zh) * 2019-10-14 2020-09-15 四川大学 一种含铝佐剂疫苗的冻干制剂及其制备方法和用途
CN112494424A (zh) * 2020-12-04 2021-03-16 合肥澄实生物科技有限公司 一种脂质纳米颗粒制剂及其应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2632472T3 (en) * 2010-10-29 2018-03-19 Sirna Therapeutics Inc RNA INTERFERENCE-MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERRING NUCLEIC ACIDS (SINA)
CN105412025A (zh) * 2015-12-31 2016-03-23 中国药科大学 一种奥沙利铂脂质体冻干粉针剂的制备方法
WO2018213476A1 (en) * 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
KR102175069B1 (ko) * 2017-11-10 2020-11-05 주식회사 삼양바이오팜 음이온성 약물 전달용 지질 나노입자의 동결건조 조성물 및 방법
CN110882383A (zh) * 2019-11-26 2020-03-17 宁夏医科大学 一种阳离子脂质体-鱼精蛋白-mRNA肿瘤疫苗及其制备方法和应用方法
US11744887B2 (en) * 2020-03-09 2023-09-05 Arcturus Therapeutics, Inc. Coronavirus vaccine compositions and methods
CA3175301A1 (en) * 2020-04-20 2021-10-28 Hugh D.C. Smyth Biologically active dry powder compositions and method of their manufacture and use
WO2021216577A1 (en) * 2020-04-20 2021-10-28 Board Of Regents, The University Of Texas System Lipid nanoparticle (lnp) delivery systems and uses thereof
AU2021337493A1 (en) * 2020-09-04 2023-05-18 Access To Advanced Health Institute Co-lyophilized rna and nanostructured lipid carrier
JP2023544197A (ja) * 2020-10-06 2023-10-20 トランスレイト バイオ, インコーポレイテッド 脂質ナノ粒子の改善された方法および製剤
CN113509546A (zh) * 2021-04-15 2021-10-19 苏州大学 一种抑制SARS-CoV-2的纳米捕集剂
CN114557971B (zh) * 2022-04-25 2023-05-23 康希诺生物股份公司 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111658617A (zh) * 2019-10-14 2020-09-15 四川大学 一种含铝佐剂疫苗的冻干制剂及其制备方法和用途
CN112494424A (zh) * 2020-12-04 2021-03-16 合肥澄实生物科技有限公司 一种脂质纳米颗粒制剂及其应用

Also Published As

Publication number Publication date
WO2023207936A1 (zh) 2023-11-02
CN114557971A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN114557971B (zh) 一种核酸-脂质纳米颗粒的冷冻干燥保护剂及其制备方法和应用
Li et al. Lyophilization of cationic lipid–protamine–DNA (LPD) complexes
EP2020988B1 (en) Compositions comprising fusogenic proteins or polypeptides derived from prosaposin for application in transmembrane drug delivery systems
JP6126072B2 (ja) 遺伝子発現を抑制する治療におけるリポソームによる効率的な送達のプロセスおよび組成物
Shilpa et al. Niosomes as vesicular carriers for delivery of proteins and biologicals
Pupo et al. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique
US20120020878A1 (en) Fusogenic properties of saposin c and related proteins and peptides for application to transmembrane drug delivery systems
KR101870316B1 (ko) 음이온성 약물을 함유하는 고분자 미셀의 제조방법
KR20140101748A (ko) 지질-핵산입자를 멸균생성을 위한 단일 용도 시스템
EP2460516B1 (en) Lipid nanoparticles for gene therapy
CN113058042B (zh) 一种可鼻喷的稳定递载rna分子的脂质纳米颗粒制备方法
CN115784920B (zh) 一种转染效率高的可电离脂质化合物及其应用
JP7481694B2 (ja) 核酸送達複合体
CN114306244B (zh) 一种微米级脂质复合物及其制备和应用
KR20180079158A (ko) 플라스미드 디엔에이 전달용 고분자 나노입자 조성물 및 그의 제조방법
Li et al. Thin-film freeze-drying of an influenza virus hemagglutinin mRNA vaccine in unilamellar lipid nanoparticles with blebs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant