CN115944610A - 一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用 - Google Patents

一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用 Download PDF

Info

Publication number
CN115944610A
CN115944610A CN202211232001.XA CN202211232001A CN115944610A CN 115944610 A CN115944610 A CN 115944610A CN 202211232001 A CN202211232001 A CN 202211232001A CN 115944610 A CN115944610 A CN 115944610A
Authority
CN
China
Prior art keywords
nano
transfection reagent
fluorocarbon
sirna
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211232001.XA
Other languages
English (en)
Inventor
吴丽娜
柏雪松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Medical University
Original Assignee
Harbin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Medical University filed Critical Harbin Medical University
Priority to CN202211232001.XA priority Critical patent/CN115944610A/zh
Publication of CN115944610A publication Critical patent/CN115944610A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用,属于基因转染生物技术领域。本发明要解决核酸系统递送容易被血浆和组织中RNase酶降解,需提高转染效率的问题。本发明纳米转染试剂包括阳离子脂质、中性磷脂、胆固醇、辅助脂质、稳定剂、氟碳化合物;采用薄膜分散法、乙醇注入法、逆向蒸发法、冷冻干燥法、冻融法、有机溶剂挥发法、超声分散法制备。为核酸的包载和递送的应用。本发明粒径均匀、纳米级尺寸,高含氧,可雾化吸入给药,同时该雾化的纳米转染试剂具有毒副作用小、患者依从性好、转染效率高,包封率较高等优势。

Description

一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用
技术领域
本发明是开发一种高效递送核酸药物的基于氟碳化合物的纳米载药平台,用于经雾化吸入递送核酸类药物。本发明包含阳离子脂质、中性磷脂、胆固醇、辅助脂质、氟碳化合物(PFCs),基于此的核酸类药物递送系统,所述氟碳化合物纳米转染核酸类药物递送系统的制备应用于因基因表达异常而引起的疾病。
背景技术
RNA干扰(RNAi)技术是在转录水平上进行基因阻断技术,是基因治疗的一种。可以特异性的干扰某一特定基因的表达。研究表明有相当一部分疾病是蛋白的问题,而核酸药物就是通过各种机理阻止mRNA翻译成蛋白,可以很好的在基因水平起到治疗的作用。
核酸药物的优势在于特异性强;靶点丰富,具有针对“不可靶向”、“不可成药”的疾病;既可作用于细胞核也可作用于细胞质;设计较为简单,只需知道靶基因的碱基序列。所以核酸药物有望成为继小分子类药物和蛋白类药物后的第三大类型药物。目前FDA批准了两种基于RNA干扰机制的两种新药,即Patisiran(ONPATTROTM)和Givlaari(Givosiran),用于治疗家族性淀粉样多发性神经病变和急性肝卟啉症。
RNA干扰现象(RNAi)是天然存在的现象,是指由体外人工合成或体内与靶基因序列同源的双链RNA(dsRNA)导入细胞后,使mRNA降解,从而导致具有序列同源性的mRNA产生基因沉默的现象。小干扰RNA(Small interfering RNA;siRNA),是一个长度在21-25个碱基对的双链RNA,胞质中的核酸内切酶Dicer将dsRNA加工成21-25个核苷酸长度的siRNA,siRNA与多种蛋白结合形成RNA诱导的沉默复合物(RISC),靶向性的切割特定的mRNA,mRNA随即降解,从而阻断相应基因的表达。主要作用于细胞质。
虽然核酸药物有很多优势,但是它进入人体也要闯过三大难关。第一,核酸的分子量大和负电荷使其不能自由通过生物膜。第二,RNA不稳定,容易被血浆和组织中RNase酶降解,被肝脏和肾脏快速清除和被免疫系统识别。第三,进入细胞后“卡”在内吞小体中无法发挥功能(溶酶体逃逸)。雾化吸入性的递送核酸药物可以高效并且有针对性的递送到肺内或肺内特定细胞,对肺部疾病具有先天优势。与口服药、静脉注射相比可以大大降低治疗所需药物剂量,减少肝肾毒性、避免首过效应且依从性较好,适用于慢性疾病的长期治疗。而常规药物无法达到雾化颗粒要求,无法通过呼吸道清除,进而沉积在肺部,增加肺部感染的发生风险。
氟碳(PFCs)纳米乳剂是一种具有独特功能的纳米材料,适用于药物递送和生物成像等多种生物医学领域。PFCs纳米乳剂具有低毒、化学性质稳定等特点。PFCs纳米乳剂还具有高的氧溶解度,被开发为血液替代品。而由于氟碳化合物较强的化学惰性很难负载核酸类药物,进而造成不能对核酸分子起到保护作用、核酸分子不能进入生物膜、难以实现溶酶体逃逸等技术难题。
发明内容
本发明的目的是为了制备一种雾化吸入性氟碳化合物纳米转染试剂,与核酸(siRNA)结合后可包载核酸并递送至胞内,避免转染前被核酸酶降解,对肺纤维化起到缓解作用。
本发明的吸入性氟碳化合物纳米转染试剂,包括阳离子脂质、中性磷脂、胆固醇、辅助脂质、稳定剂、氟碳化合物(PFCs)。
进一步地限定,所述阳离子脂质、中性磷脂、胆固醇、辅助脂质摩尔比为有60%~20%:40%~10%:40%~10%:30%~0%。
进一步地限定,所述稳定剂体积占比1%-10%。
进一步地限定,所述氟碳化合物(PFCs)体积占比1%~30%。
进一步地限定,所述阳离子脂为双十烷基二甲基溴化铵(DDAB)、DLin-MC3-DMA、:二油酰丙基氯化三甲铵(DOTMA)、(2,3-二油酰基-丙基)-三甲胺(DOTAP)、二甲氨基乙基甲酰基-胆固醇(DC-胆固醇)中的至少一种。
进一步地限定,所述中性磷脂为二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰磷脂酰胆碱(DSPC)、二油酰磷脂酰胆碱(DOPC)、二肉豆蔻酰磷脂酰乙醇胺(DMPE)、二棕榈酰基磷脂酰乙醇胺(DPPE)、二硬脂酰基磷脂酰乙醇胺DSPE中的至少一种。
进一步地限定,所述辅助脂质为PEG化脂质、二油酰磷脂酰乙醇胺(DOPE)中的至少一种。
进一步地限定,所述稳定剂为甘油、蔗糖、海藻糖中的至少一种。
进一步地限定,所述氟碳化合物(PFCs)为全氟-15-冠-5-醚、全氟溴辛烷、全氟丁酸、二十七氟三丁胺、碘代氟碳化合物中的至少一种。
上述纳米转染试剂的应用,为核酸的包载和递送的应用,所述的siRNA序列:CCGTGAACTTAACTTTCAA。
进一步地限定,所述的递送siRNA/PFCs粒径为100nm-160nm;优选的,所述的递送siRNA/PFCs粒径为110nm-130nm。
进一步地限定,所述的递送siRNA/PFCs的Zeta电位为40mV-80mV。
本发明雾化吸入性氟碳化合物纳米转染试剂采用本技术领域所熟知的制备方法,如薄膜分散法、乙醇注入法、逆向蒸发法、冷冻干燥法、冻融法、有机溶剂挥发法、超声分散法中的至少一种制备氟碳化合物纳米转染试剂。
进一步地限定,本发明所述的PFCs采用超声分散法制备,具体是按下述方法进行的:
步骤1:精密称取所述阳离子脂质、中性磷脂、胆固醇、辅助脂质,溶于混合有机溶剂中,40℃-45℃减压旋转蒸发2h~4h去除有机溶剂,在37℃-45℃恒温真空孵箱干燥过夜。
步骤2:然后加入纯水水化,加稳定剂和氟碳化合物(PFCs),冰浴条件下超声处理10-20min。
步骤3:然后采用脂质体挤出器挤出200nm膜,挤出5次-20次,用稳定的氮气、氩气或其他惰性气体流封装,4℃保存
进一步地限定,步骤1中所述的有机溶剂为氯仿和甲醇按体积比3:1混合制成。
进一步地限定,步骤1中水化时间为50min。
进一步地限定,步骤1中超声条件为110W,工作3min,4次。
本发明中siRNA氟碳化合物纳米转染试剂(siRNA/PFCs)复合物的制备方法是按下述步骤进行的:
上述氟碳化合物纳米转染试剂具体是按下述步骤进行操作的:取0.01μL-16μL氟碳化合物纳米转染试剂与0.01μL-1μL的siRNA溶液混合,轻微涡旋振荡,室温静置孵育15min-30min,得到siRNA氟碳化合物纳米转染试剂复合物(siRNA/PFCs)。
本发明的氟碳化合物纳米转染试剂基因转染的原理在于:
氟碳化合物纳米转染试剂表面带有正电荷,而siRNA药物携带负电荷,二者通过静电作用相互结合形成siRNA氟碳化合物纳米转染试剂复合物;该复合物表面带有正电荷,也容易与带负电荷的细胞表面相结合,有利于核酸药物利用细胞内吞作用递送入细胞内。
阳离子脂质,可高效包载siRNA药物,提供正电荷,帮助体内转染。
中性磷脂,是膜骨架材料,组成脂质膜的主要成分。
胆固醇,可增加脂质体的稳定纳米粒子结构,调节膜流动性,提高粒子稳定性,从而减小渗透率。
辅助磷脂,能够稳定双层膜和降低阳性成分毒性。亦可使内涵体膜不稳定,在细胞内能促进核酸的释放,同时辅助细胞渗透。维持脂质体微观形态,使溶酶体膜不稳定。
稳定剂,提高纳米转染试剂低温稳定性,siRNA药物的稳定性。
氟碳化合物(PFCs),适用于药物递送,具有低毒、化学性质稳定、高的氧溶解度,被开发为血液替代品等优势。
本发明制备的递送雾化吸入性siRNA/PFCs有以下优势:粒径均匀、较小,适用于雾化给药,同时该雾化的纳米转染试剂具有毒副作用小、患者依从性好、转染效率高等优势。
为了能够更进一步了解本发明的特征及技术内容,请参阅以下有关本发明详细说明与附图,然而所附的附图仅提供参考和说明之用,并非用来对本发明加以限制。
附图说明
图1是琼脂糖凝胶电泳实验考察siRNA/PFCs复合物的结合能力;
图2是PFCs纳米转染试剂的粒径分布图;
图3是PFCs纳米转染试剂的Zeta电位图;
图4是PFCs纳米转染试剂的透射电子显微镜形貌照片;
图5是NIH-3T3细胞系与转染探针共孵育MTT毒性实验结果图;
图6是siRNA/PFCs转染效率结果对比图;
图7是基因沉默后对肺纤维化标志物的影响对比图;
图8是PFCs纳米转染试剂纳米转染试剂放置稳定性及对核酸的保护作用;
图9是肺纤维化治疗药物siDnm3os/PFCs雾化纳米转染试剂治疗后肺纤维化小鼠肺部的Micro-CT图像。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1:本实施例中氟碳化合物纳米转染试剂的制备方法是按下述步骤进行的:
步骤1:精密称取12mg阳离子脂质、5mg中性磷脂、3mg胆固醇、2mg辅助脂质,溶于1mL由氯仿和甲醇按3:1的体积比配置的混合有机溶剂中,45℃减压旋转蒸发2.5h去除有机溶剂,在45℃恒温真空孵箱干燥过夜。
步骤2:然后加入纯水水化50min,加0.04mL稳定剂和0.2mL氟碳化合物(PFCs),冰浴条件下110W超声处理工作3min,4次间隔时间为5min。
步骤3:然后采用脂质体挤出器挤出200nm膜,挤出20次,用氮气气体流封装,4℃保存。
其中,所述阳离子脂为(2,3-二油酰基-丙基)-三甲胺(DOTAP)。
所述中性磷脂为二棕榈酰磷脂酰胆碱(DPPC)。
所述二油酰磷脂酰乙醇胺(DOPE)。
所述稳定剂为甘油。
所述氟碳化合物(PFCs)为全氟溴辛烷(PFOB)。
实施例2:本实施例中siRNA氟碳化合物纳米乳剂(siRNA/PFCs)复合物的制备方法是按下述步骤进行的:
取12μl氟碳化合物纳米乳剂与1μl的siRNA溶液混合,轻微涡旋振荡,室温静置孵育15min-30min,得到siRNA氟碳化合物纳米转染复合物(siRNA/PFCs)。
采用下述试验验证siRNA氟碳化合物纳米转染试剂发明效果
试验一:采用琼脂糖凝胶电泳实验来考察本发明所述的siRNA氟碳化合物纳米转染试剂的结合能力。
称取1.6g琼脂糖溶于40mL 1xTBE溶液中,在微波炉中加热使琼脂糖颗粒完全溶解,冷却后加入4uL GelRed于琼脂糖凝胶中,50℃的琼脂糖凝胶倒入凝胶槽至完全冷却。氟碳化合物纳米转染试剂和siRNA按0:1、4:1、8:1、12:1、16:1等质量比混合,与2uL 5xDNAloading Buffer混合加入到上样孔内,设置电泳电压100v,电泳10min。实验结果由紫外凝胶成像系统分析而得。结果显示不同质量比形成的siRNA氟碳化合物纳米转染试剂的凝胶阻滞条带不一样。从图1可知,泳道1为质量比为0:1的核酸,条带呈现最亮,说明含有核酸的量最多,未被包被,随着纳米转染试剂质量的增加,条带逐渐变暗。纳米转染试剂与核酸二者的质量比为12:1及以上时凝胶电泳阻滞实验呈现凝胶阻滞现象,说明当质量比为12:1及以上时纳米转染试剂与核酸完全融合。我们选择用质量比为12:1用于接下来的实验。
试验二:氟碳化合物纳米转染试剂的粒径及表面电位Zeta的测定
将实施例1纳米转染试剂用3mL超纯水稀释后,采用马尔文粒度仪测定其粒径分布及其表面电位,结果如图2、3所示。
试验三:siRNA/PFCs透射电镜(TEM)检测
利用透射电镜负染技术对制备好的PFCs纳米转染试剂进行透射电镜检测,目的是观察实施例1所制备的PFCs纳米转染试剂的形态是否稳定。
实施例1所制备的PFCs纳米转染试剂的TEM如图4所示,所制备的PFCs外观呈规则圆球形,分散均匀。
试验四:siRNA氟碳化合物纳米转染试剂(siRNA/PFCs)的细胞毒性
采用MTT法对氟碳化合物纳米转染试剂进行细胞毒性试验。本发明采用NIH-3T3为细胞模型,检测siRNA氟碳化合物纳米转染试剂不同质量比条件下siRNA氟碳化合物纳米转染试剂的细胞毒性。将NIH-3T3细胞以4x104的密度接种于96孔板中,培养24h,设空白对照。按质量比为4:1、8:1、12:1、16:1的阳离子脂质体/核酸复合物溶液,加入完全培养液,培养24h,平行操作三份。每孔加10μl的MTT于培养基中,37℃条件下孵育4h。移除培养基,加入150ul的DMSO,37℃条件下孵育10min,溶解MTT结晶,振荡10min。采用酶标仪在490nm波长检测,MTT发检测细胞毒性,结果如图5所示。
细胞存活率=药物组吸光度值-调零组吸光度/对照组吸光度值(空白)-调零组吸光度x100%
试验五:转染效率实验
为验证本发明的氟碳化合物纳米转染试剂的转染效果,我们选取lnc Dnm3os作为靶基因,利用本实施例1中所述方法制备的氟碳化合物纳米转染试剂,向肺成纤维细胞NIH-3T3细胞中转染一条针对lnc DNM3OS的siRNA和对照siRNA,结果如图6所示。
与对照siRNA组相比,未得到保护的裸siDnm3os组无明显统计学差异。与未负载PFCs的siDnm3os相比,siDnm3os/PFCs组具有最高的沉默效率,所述结果表明,氟碳化合物纳米转染试剂可以提高基因转染效率。
在siRNA转染NIH-3T3细胞24h后,利用实时定量PCR的方法,检测NIH-3T3细胞中lnc Dnm3os的相对表达量。具体方法:
1.RNA的提取和cDNA的逆转录
吸去培养液,用PBS缓冲液清洗后,加入1ml Trizol,用枪充分吹打,室温放置5min,按1ml Trizol加入200μl的氯仿,盖紧EP管并剧烈摇荡15秒后,12000rpm 4℃离心10min,取上层水相于一新的RNase-free的EP管中,加入同等体积的异丙醇,温和颠倒混匀。室温放置10min以沉淀RNA,12000rpm离心10min。小心弃去上清,沉淀的RNA用1ml的75%乙醇,混匀,4℃下12000rpm离心5min,清洗异丙醇。清洗2-3遍。弃去上清,室温晾干RNA。加入10μlDEPC水溶解。取1μl的RNA利用Nanodrop测定260nm处的吸光度,以确定RNA的浓度和纯度。取500ng总RNA,利用RNA逆转录试剂盒将RNA逆转录成cDNA。
2.RT-qPCR检测
反应体系为10μl、5μl SYBR、1μl cDNA、1μl引物、3μl DEPC水,反应条件为95℃,2min,94℃,30s,60℃,1min,40个循环。
3.数据分析:采用ΔΔCT法分析目标基因的表达情况。
试验六:沉默Dnm3os对肺纤维化标志物的影响
Dnm3os的沉默对肺成纤维细胞TGF-β信号传导的功能影响。用对照组siRNA、裸siDnm3os、未负载PFCs siDnm3os和siDnm3os/PFCs转染NIH-3T3细胞,检测肺纤维化标志物Col1a1、Col3a1的mRNA表达。转染24h后,从细胞中分离总的RNA,通过定量RT-PCR,针对Col1a1、Col3a1 mRNA进行检测,并且标准化至β-肌动蛋白mRNA的对应水平。结果如图7所示。
与对照组siRNA、裸siDnm3os、未负载PFCs的siDnm3os相比,siDnm3os/PFCs组中Col1a1、Col3a1 mRNA的表达最低,所述结果表明,通过氟碳化合物纳米转染试剂转染,沉默Dnm3os可一定程度缓解肺纤维化。
试验七:氟碳化合物纳米转染试剂放置稳定性及对核酸(siRNA)的保护作用
取实施例1的氟碳化合物纳米转染试剂保存在4℃冰箱,两周内间隔一定时间取出,用超纯水稀释后测定其粒径和Zeta电位,结果如表1所示,说明实施例1纳米转染试剂在2周内粒径和Zeta电位没有明显变化,在4℃的储存条件下具有良好的稳定性。
表1:实施例1氟碳化合物纳米转染试剂稳定性
检测时间(天) 平均粒径(nm) PDI 电位(mV)
1 120.6 0.131 57.3
3 119.8 0.115 58.2
5 127.0 0.297 34.7
7 136.3 0.296 42.2
14 133.8 0.254 56.1
取实施例1的氟碳化合物纳米转染试剂,按siRNA与氟碳化合物纳米转染试剂质量比为12:1于4℃放置24小时以琼脂糖凝胶电泳考察氟碳化合物纳米转染试剂对siRNA的保护作用。
琼脂糖凝胶电泳结果图8所示,表明:与标准核酸溶液相比,本发明的siRNA/PFCs剂放置24h后仍无游离核酸,用Triton X-100破乳后电泳条带亮度与标准核酸溶液条带亮度相当,表明本发明的氟碳化合物纳米转染试剂可保护核酸,稳定性高。
试验八:雾化吸入药物siDnm3os/PFCs治疗后肺纤维化小鼠肺部的Micro-CT图像
本实施例通过建立小鼠肺纤维化模型考察了实施例1制备的肺纤维化治疗药物siDnm3os/PFCs对肺纤维化的疗效。
分组及药物递送:
将小鼠随机分组:健康组、BLM组、siNC/PFCs组和肺纤维化治疗组siDnm3os/PFCs组。
小鼠经博莱霉素诱导7天后,按照上述分组随机分组,并于第8天开始治疗给药,共给药3次。
各组给药:
Control组:将小鼠在清醒状态下于雾化吸入装置内自由呼吸雾化吸入生理盐水;
BLM组:将博莱霉素诱导的小鼠(同上)自由呼吸雾化吸入生理盐水;
siNC/PFCs组:将博莱霉素诱导的小鼠自由呼吸雾化与生理盐水等量体积的siNC/PFCs;
siDnm3os/PFCs组:将博莱霉素诱导的小鼠自由呼吸雾化与生理盐水等量体积的siDnm3os/PFCs。
治疗后Micro-CT成像:
在治疗7,14,21天后对健康组、BLM组、siNC/PFCs组、siDnm3os/PFCs组小鼠分别进行Micro-CT成像。
Micro-CT成像结果如图9显示,与健康组小鼠肺部比较,BLM组小鼠、siNC/PFCs组肺纤维化程度明显加重,siDnm3os/PFCs组小鼠肺纤维化程度较轻于BLM组和siNC/PFCs组,说明siDnm3os/PFCs组经雾化吸入至小鼠肺部,具有减缓小鼠肺纤维化的作用。
序列表,独立文本
具体实施例中采用的siRNA的序列:CCGTGAACTTAACTTTCAA。

Claims (10)

1.一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂,其特征在于,所述纳米转染试剂包括阳离子脂质、中性磷脂、胆固醇、辅助脂质,其中,按摩尔比计,阳离子脂质:20%~60%、中性磷脂:10%~40%、胆固醇:10%~40%、辅助脂质:0%~30%;稳定剂占所述纳米转染试剂体积的1%~10%,氟碳化合物占所述纳米转染试剂体积的1%~30%。
2.根据权利要求1所述的纳米转染试剂,其特征在于,所述阳离子脂质为双十烷基二甲基溴化铵、DLin-MC3-DMA、二油酰丙基氯化三甲铵、(2,3-二油酰基-丙基)-三甲胺或二甲氨基乙基甲酰基-胆固醇。
3.根据权利要求1所述的纳米转染试剂,其特征在于,所述中性磷脂为二棕榈酰磷脂酰胆碱、二硬脂酰磷脂酰胆碱、二油酰磷脂酰胆碱、二肉豆蔻酰磷脂酰乙醇胺、二棕榈酰基磷脂酰乙醇胺或二硬脂酰基磷脂酰乙醇胺。
4.根据权利要求1所述的纳米转染试剂,其特征在于,辅助脂质为PEG化脂质或二油酰磷脂酰乙醇胺。
5.根据权利要求1所述的纳米转染试剂,其特征在于,所述稳定剂为甘油、吐温80、蔗糖或海藻糖。
6.根据权利要求1所述的纳米转染试剂,其特征在于,所述氟碳化合物为全氟-15-冠-5-醚、全氟溴辛烷、全氟丁酸、二十七氟三丁胺、或碘代全氟化碳。
7.如权利要求1-6任一项所述纳米转染试剂的制备方法,其特在于采用薄膜分散法、乙醇注入法、逆向蒸发法、冷冻干燥法、冻融法、有机溶剂挥发法、超声分散法中的一种制备。
8.如权利要求1-6任一项所述纳米转染试剂的应用,其特征在于,为核酸的包载和递送的应用,所述的siRNA序列:CCGTGAACTTAACTTTCAA。
9.siRNA氟碳化合物纳米转染试剂复合物的制备方法,其特征在于,所述制备方法是按下述步骤进行的:
取0.01μL-16μL权利要求1-6任一项所述纳米转染试剂与0.01μL-1μL的siRNA溶液混合,轻微涡旋振荡,室温静置孵育15min-30min,得到siRNA氟碳化合物纳米转染试剂复合物。
10.根据权利要求9所述的制备方法,其特征在于,所述的siRNA氟碳化合物纳米转染试剂复合物的粒径为100nm-160nm,Zeta电位为40mV-80mV。
CN202211232001.XA 2022-10-10 2022-10-10 一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用 Pending CN115944610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211232001.XA CN115944610A (zh) 2022-10-10 2022-10-10 一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211232001.XA CN115944610A (zh) 2022-10-10 2022-10-10 一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115944610A true CN115944610A (zh) 2023-04-11

Family

ID=87281257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211232001.XA Pending CN115944610A (zh) 2022-10-10 2022-10-10 一种用于递送核酸药物的可雾化吸入性氟碳化合物纳米转染试剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115944610A (zh)

Similar Documents

Publication Publication Date Title
Zoulikha et al. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome
Okuda et al. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity
Popowski et al. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung
Ding et al. Pulmonary siRNA delivery for lung disease: review of recent progress and challenges
CN114099533A (zh) 核酸药物递送系统、制备方法、药物组合物和应用
EP2020988B1 (en) Compositions comprising fusogenic proteins or polypeptides derived from prosaposin for application in transmembrane drug delivery systems
Dong et al. Comparative study of mucoadhesive and mucus-penetrative nanoparticles based on phospholipid complex to overcome the mucus barrier for inhaled delivery of baicalein
Okuda et al. Gene silencing in a mouse lung metastasis model by an inhalable dry small interfering RNA powder prepared using the supercritical carbon dioxide technique
Lehofer et al. Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics
AU699162B2 (en) Cationic lipid:DNA complexes for gene targeting
Kubczak et al. Nanoparticles for local delivery of siRNA in lung therapy
Piao et al. Human serum albumin-coated lipid nanoparticles for delivery of siRNA to breast cancer
JP2008520600A (ja) 局所投与のための医薬組成物におけるまたはそれに関する改善
EP2892505B1 (en) Lipid assemblies comprising anionic lysolipids and use thereof
CN113058042B (zh) 一种可鼻喷的稳定递载rna分子的脂质纳米颗粒制备方法
Wu et al. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes
Bardoliwala et al. Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges
WO2009027337A1 (en) Liposomal dispersion and dry powder formulations comprising oligonucleotides having improved downstream prossessing properties
Ho et al. Characterization of long-circulating cationic nanoparticle formulations consisting of a two-stage PEGylation step for the delivery of siRNA in a breast cancer tumor model
US20180235995A1 (en) Rna interference therapeutics against ebola virus
Tao et al. Characterization, cytotoxicity and genotoxicity of graphene oxide and folate coupled chitosan nanocomposites loading polyprenol and fullerene based nanoemulsion against MHCC97H cells
Ihara et al. Histological quantification of gene silencing by intratracheal administration of dry powdered small-interfering RNA/chitosan complexes in the murine lung
Hillman The use of plant-derived exosome-like nanoparticles as a delivery system of CRISPR/Cas9-based therapeutics for editing long non-coding RNAs in cancer colon cells
Trapani et al. Nanocarriers for respiratory diseases treatment: recent advances and current challenges
JP7090941B2 (ja) 吸入粉末剤、その評価方法及びその用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination