CN114540423A - 一种mRNA转染材料、mRNA转染系统及应用 - Google Patents

一种mRNA转染材料、mRNA转染系统及应用 Download PDF

Info

Publication number
CN114540423A
CN114540423A CN202210176702.XA CN202210176702A CN114540423A CN 114540423 A CN114540423 A CN 114540423A CN 202210176702 A CN202210176702 A CN 202210176702A CN 114540423 A CN114540423 A CN 114540423A
Authority
CN
China
Prior art keywords
mrna
mrna transfection
reaction
pullulan
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210176702.XA
Other languages
English (en)
Inventor
林佳奇
陈麒先
鞠英辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jinlin Biotechnology Co ltd
Original Assignee
Shenzhen Jinlin Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jinlin Biotechnology Co ltd filed Critical Shenzhen Jinlin Biotechnology Co ltd
Priority to CN202210176702.XA priority Critical patent/CN114540423A/zh
Publication of CN114540423A publication Critical patent/CN114540423A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及生物医药技术领域,尤其涉及一种mRNA转染材料、mRNA转染系统及应用。该mRNA转染材料由普鲁兰多糖骨架接枝阳离子聚合物制得,所述普鲁兰多糖骨架包含亲水性和生物相容性良好的普鲁兰多糖、保持胶体稳定性的疏水性胆碱和响应胞内糖响应胞内谷胱甘肽响应性断裂的二硫键,阳离子聚合物片段能够实现胞内选择性释放mRNA的功能。实验表明,本发明提供的mRNA转染材料稳定性明显提高,能够抵抗聚阴离子的竞争,抑制mRNA在细胞外的降解,在还原环境中,胶体稳定性又明显降低,有利于mRNA在还原性的细胞内迅速释放。

Description

一种mRNA转染材料、mRNA转染系统及应用
技术领域
本发明涉及生物技术领域,尤其涉及一种mRNA转染材料、mRNA转染系统及应用。
背景技术
转染指真核细胞由于外源DNA/RNA掺入而获得新的遗传标志的过程。DNA转染技术的发展对现代分子生物学产生了巨大的影响。基因转染技术不仅是研究转基因和基因表达的重要工具,而且是目前基因治疗的关键步骤。理想的基因转染试剂应该具有如下特点:高效转染;安全;低细胞毒性;方法简单;省时、经济。
电击法是在细胞上短时间暂时性的穿孔让外源质粒进入;磷酸钙法和脂质体法是利用不同的载体物质携带质粒通过直接穿膜或者膜融合的方法使得外源基因进入细胞;病毒法是利用包装了外源基因的病毒感染细胞的方法使得其进入细胞。但是由于电击法和磷酸钙法的实验条件控制较严、难度较大;病毒法的前期准备较复杂、而且可能对于细胞有较大影响;所以现在对于很多普通细胞系,一般的瞬时转染方法多采用脂质体法。利用脂质体转染法最重要的就是防止其毒性,因此脂质体与质粒的比例,细胞密度以及转染的时间长。
脂质体本身会参与细胞生理活动,引起基因表达的上调或下调。细胞毒性的大小往往意味着对细胞生理活动影响的大小,脂质体这些作用是造成细胞毒性的根本原因。这会对相关研究数据产生严重的干扰,甚至影响研究的结论。人们一直在寻找更有效、毒性小同时对研究影响也小的转染试剂。由于脂质类转染试剂对细胞的毒性是由其脂质特性决定的,目前众多的研究者和生物公司将新一代转染试剂的开发聚焦在非脂质体的聚合物上。以高分子聚合物为载体的基因传递技术正成为研究的方向。目前实验室研发的阳离子聚合物转染试剂,本发明是能够响应细胞内还原性微环境主动释放负载核酸的转染分子。原理是:高分子内含有许多氨基,在生理pH下会发生质子化,这些质子化的氨基可以中和DNA/RNA质粒表面的负电荷,使DNA/RNA分子由伸展结构压缩为体积数十纳米的DNA/RNA粒子,并包裹在其中,使DNA/RNA免受核酸酶的降解,同时促进转染复合物通过细胞内吞作用将DNA/RNA转移进入细胞,形成内含体(endosome)。此时高分子的OEI结构处于高破膜状态,从而促进DNA/RNA从内含体释放,进入细胞质中。此时高分子感知细胞质内的还原微环境,脱去疏水性胆酸,从而促进DNA/RNA在细胞内解离,方便DNA/RNA执行其生物功能。
现有技术存在的问题是,为了保证核酸在细胞外的稳定性,需要核酸递送系统的胶体稳定性很高;然而为了保证核酸在细胞内能够释放,核酸递送系统不能过于稳定,因此,急需提供一种胞外强稳定性、胞内去稳定化的核酸递送系统,以利于提升内含核酸的转染效率。
发明内容
有鉴于此,本发明提供了一种mRNA转染材料、mRNA转染系统及应用。该mRNA转染材料能够在细胞外胶体稳定性高,胞内响应性二硫键断裂,释放mRNA。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供一种mRNA转染材料,由普鲁兰多糖骨架接枝阳离子聚合物制得,所述普鲁兰多糖骨架具有式I结构:
Figure BDA0003519263600000021
n为聚合度,n大于零;
所述阳离子聚合物为聚乙烯亚胺、聚赖氨酸、聚酰胺-胺型树枝状高分子、或壳聚糖。
一些实施方案中,所述阳离子聚合物为聚乙烯亚胺,所述mRNA转染材料具有式II所示的结构:
Figure BDA0003519263600000031
n、x和y为聚合度,n、x和y均大于零。
本发明还提供了所述的mRNA转染材料的制备方法,将具有式I所示结构的普鲁兰多糖骨架与所述阳离子聚合物接枝反应,获得具有式II所示结构的化合物。
一些实施方案中,所述接枝反应的温度为35℃,时间为48h,催化剂为CDI。
本发明中,所述普鲁兰多糖骨架的制备方法包括:
a)将普鲁兰多糖和琥珀酰酐反应,获得琥珀酰化的普鲁兰多糖;
b)将琥珀酰化的普鲁兰多糖与胱胺二盐酸盐反应,获得具有式III所示结构的化合物;
c)将式III所示结构的化合物与脱氧胆酸反应,获得具有式I所示结构的普鲁兰多糖骨架。
Figure BDA0003519263600000032
一些实施方案中,步骤a)中,所述反应在震荡条件下进行,催化剂为DMAP,溶剂为DMSO,反应的温度为45℃,时间为24h;所述反应结束之后还包括醇沉、离心、去离子水溶解沉淀、透析纯化、冷冻干燥的步骤。
一些实施方案中,步骤b)中,所述反应在震荡条件下进行,催化剂为NHS和EDC,反应的温度为30℃,时间为24h;所述反应结束之后还包括将反应液依次进行氯化钠溶液透析24h、去离子水透析48h、冷冻干燥的步骤。
一些实施方案中,步骤c)中,所述反应在剧烈搅拌条件下进行,所述反应的温度为25℃,时间为72h;所述反应结束之后还包括将反应液依次进行醇沉、离心、去离子水溶解沉淀、透析纯化、冷冻干燥的步骤。
本发明还提供一种mRNA转染系统,由本发明所述的mRNA转染材料包裹核酸制得。
其中,所述核酸包括DNA和RNA中的至少一种。一些实施方案中,所述DNA为单链DNA、双链DNA或环状DNA,所述RNA为siRNA、miRNA或mRNA。
一些实施方案中,所述mRNA转染材料以氨基基团提供的正电荷计,所述核酸以核酸分子中的磷酸基团提供的负电荷计,所述mRNA转染材料和核酸的摩尔比为5~30:1。
本发明还提供一种mRNA转染系统的制备方法,包括:将所述的mRNA转染材料溶于10mM pH 7.4的Tris-HCl缓冲液中,加入到mRNA溶液中,涡旋混匀,经自组装形成核酸高分子复合物,即得所述的mRNA转染系统。
本发明还提供了所述mRNA转染材料、所述的mRNA转染系统在制备核酸药物中的应用。
本发明还提供一种核酸药物,包括本发明所述的mRNA转染系统和药学上可接受的辅料。所述药学上可接受的辅料包括助溶剂、着色剂、矫味剂、粘合剂、缓控释剂、吸收剂、表面活性剂等等,包括但不限于此;所述药物的剂型包括溶液剂、喷雾剂、气雾剂、膏剂、滴眼剂、滴鼻剂,本领域技术人员可根据剂型所需要的具体辅料种类进行选择。
本发明mRNA转染材料由普鲁兰多糖骨架接枝阳离子聚合物制得,所述普鲁兰多糖骨架包含亲水性和生物相容性良好的普鲁兰多糖、保持胶体稳定性的疏水性胆碱和响应胞内糖响应胞内谷胱甘肽响应性断裂的二硫键,阳离子聚合物片段能够实现胞内选择性释放mRNA的功能。实验表明,本发明提供的mRNA转染材料稳定性明显提高,能够抵抗肝钠的竞争,在还原环境中,胶体稳定性又明显降低,在含有肝素钠环境中能够迅速释放mRNA。
附图说明
图1示本发明mRNA转染材料的化学结构及功能说明;
图2示本发明mRNA转染材料的化学合成路线图;
图3示普鲁兰多糖及其衍生物的1H NMR图;
图4示实施例4中核酸递送系统的透射电子显微镜观察图;
图5示实施例5中利用凝胶阻滞实验检测聚合物高分子P-ss-DP与mRNA的结合能力;
图6示实施例6中利用DLS检测胶束粒径的变化图;
图7示实施例7中P-ss-DP转染绿色荧光蛋白mRNA至HUVEC细胞后,绿色荧光蛋白的表达情况;
图8示实施例8中利用琼脂糖凝胶检测N/P为10的P-ss-DP/mRNA复合物的胶束稳定性的结果;
图9示实施例9中利用流式细胞仪评估P-ss-DP、P-P纳米粒子的细胞摄取效率;
图10示实施例10中利用流式细胞仪定量P-P/mRNA复合物和P-cc-DP/mRNA复合物转染红色荧光蛋白mRNA效率。
具体实施方式
本发明提供了一种mRNA转染材料、mRNA转染系统及应用。本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
本发明采用的试材皆为普通市售品,皆可于市场购得。
下面结合实施例,进一步阐述本发明:
实施例1本发明mRNA转染材料P-ss-DP的合成
(1)合成P-COOH:利用琥珀酸酐与普鲁兰多糖(P)进行酯化反应,合成琥珀酰化的普鲁兰(P-COOH)。具体合成步骤为:
将1.62g普鲁兰多糖溶于DMSO,加入0.2g的DMAP和0.8g的琥珀酸酐,于磁力搅拌器上45℃条件下持续搅拌24h。反应结束后,将反应液加入500mL的无水乙醇中剧烈搅拌,出现白色沉淀后离心以去除无水乙醇。收集反应产物后分散溶于10mL的去离子水中,使用透析袋(MWCO,10kDa)在去离子水中透析3天后,将透析后的溶液冷冻干燥,得到白色絮状固体P-COOH。
(2)合成PS:取1.42g的P-COOH溶于100mL的PBS中(0.2M,pH 7.8),依次加入381.3mg的NHS和631.9mg的EDC,在4℃条件下搅拌活化P-COOH的羧基4h后,向反应液中加入3.73g的胱胺二盐酸盐,反应转为30℃条件下继续持续搅拌24h。反应结束后,将反应液置于透析袋中(MWCO,10kDa)在氯化钠溶液(0.1M)中透析24h后,再转入离子水中继续透析48h,最终将透析后的溶液进行冷冻干燥,得到白色固体PS备用。
(3)合成P-ss-D:将0.39g的脱氧胆酸(DA)、0.61g的DMAP和1.92g的EDC·HCl溶于5mL DMSO(二甲基亚砜)中,在室温下搅拌1.5h,以活化DA的羧基。然后将羧基活化后的DA溶液滴入含有0.72g PS的DMSO溶液中,在25℃下剧烈搅拌72g。待反应结束后将反应液进行醇沉,在大量无水乙醇中持续搅拌使P-ss-D沉淀出来,离心除去无水乙醇,随后将白色沉淀溶于10mL去离子水中,再转入透析袋透析纯化(MWCO,10kDa)72h,将透析后的溶液进行冷冻干燥,得到白色固体P-ss-D。
(4)合成P-ss-DP:利用CDI催化将聚乙烯亚胺(PEI)氨基与普鲁兰多糖骨架上的羟基反应。取1.83mg的CDI与1.2mg的PEI加入到溶有P-ss-D(0.91g)的20mL DMSO溶液,在35℃条件下持续搅拌48h。反应液使用透析袋(MWCO,10kDa)在去离子水中透析72h,以去除未反应的小分子,获得P-ss-DP,P-ss-DP结构如图1所示,反应过程如图2所示。
实施例2本发明mRNA转染材料的结构分析
利用1HNMR对普鲁兰多糖及其衍生物的结构进行分析。如图3所示,相对于普鲁兰多糖(Pullulan)氢谱图,羧基化普鲁兰多糖P-COOH,在2.4-2.7ppm之间出现对应琥珀酸酐上的亚甲基(C-CH2-CH2-C)的新质子吸收峰。通过酸碱滴定法检测普鲁兰多糖糖链上琥珀酸酐的取代度(平均每100个糖单元上取代基的个数)约为29。在PS氢谱图中出现了胱胺亚甲基(NH-CH2-CH2-S)质子峰对应的2.8-2.9ppm之间的化学位移,利用质子峰积分面积估算胱胺取代度约为18.5,采用元素分析估算胱胺的取代度约为17.6。P-ss-D氢谱图中在0.5-1.4ppm出现新的质子峰,分别对应脱氧胆酸上甲基(CH3)、亚甲基(CH2)和次甲基(CH)的特征峰,说明脱氧胆酸已成功连接至多糖骨架上,采用质子峰的积分面积估算脱氧胆酸取代度约为4.5。根据理论推测聚乙烯亚胺中NHCH2CH2对应的质子峰将在2.3-2.8ppm处出现,会与在2.4-2.7ppm之间的琥珀酸酐上的亚甲基和出现在2.8-2.9pp胱胺的亚甲基的质子吸收峰重叠,因此,利用元素分析检测聚乙烯亚胺接枝于P-ss-D后新生成的聚合物P-ss-DP中N元素含量的百分比,以验证成功制备聚合物P-ss-DP。采用元素分析检测(ICP-MS)聚合物P-ss-DP的结果为:C含量为49.88%,H含量为8.53%,N含量为18.88%,S含量为20.13%。
实施例3核酸递送系统(P-ss-DP/mRNA纳米粒子复合物)的制备
称取适量实施例1的P-ss-DP高分子粉末溶解于Tris-HCl缓冲液中(10mM,pH7.4),将适当浓度的上述高分子储存液按照预先设定的N/P(氮磷比,载体分子中氨基基团提供的正电荷与核酸分子中磷酸基团提供的负电荷的物质的量之比)为1、5、10、20、30加入到mRNA溶液中,涡旋混匀,并调整最终自组装形成的高分子&mRNA复合物中mRNA浓度为33.3ng/μL。混合后的P-ss-DP/mRNA纳米粒子在4℃下孵育过夜后使用。
实施例4核酸递送系统的结构表征和形貌观察
(1)结构表征
利用动态光散射(DLS)考察粒径及多分散系数及电位仪考察实施例3的P-ss-DP/mRNA纳米粒子复合物的电位。结果见表1。
表1
Figure BDA0003519263600000081
(2)形貌观察
P-ss-DP/mRNA纳米粒子复合物的形态通过透射电子显微镜来观测。首先,将镀碳膜疏水铜网用等离子清洗机处理0.5min,使其表面变为亲水,随后把铜网浸入到预先配置好的复合物溶液-醋酸双氧铀混合溶液中(体积比为1:1),孵育10min,之后取出铜网在空气中静置约20min至其表面完全干燥,然后送样透射电子显微镜观测。结果见图4。
由图4可知,mRNA与P-ss-DP自组装形成具有纳米尺度,球形的纳米粒子,且尺寸均一。
实施例5凝胶阻滞实验
利用凝胶阻滞实验检测聚合物高分子P-ss-DP与mRNA的结合能力,将mRNA(浓度:50ng/μL,2mL)按N/P为1、5、10、20、30与P-ss-DP聚合物高分子溶液(1mL)混合,吹打混匀于25℃水浴箱中孵育30min后,在浓度为1%的琼脂糖凝胶中(含有0.2μg/mL溴化乙锭)进行电泳检测。电压设置为100V,电泳60min左右,当指示剂移动至适当位置终止电泳,并在凝胶成像系统中拍照。结果见图5。
结果显示,mRNA按N/P为10~30与P-ss-DP聚合物高分子混合制备P-ss-DP/mRNA,mRNA的负电荷够被P-ss-DP完全中和。
实施例6还原性响应实验
向纳米胶束(3mL)水溶液中分别加入还原性小分子谷胱甘肽(GSH),使混合液中GSH的终浓度为10mM,置于37℃,180rpm条件下的恒温摇床中振荡,在一定时间点取出一定量溶液,利用DLS检测胶束粒径的变化。结果如图6。
结果显示,加入还原性GSH(谷胱甘肽)后,纳米粒子的结构发生明显变化,结构变得松散,容易包裹的mRNA释放。
实施例7转染效率评价实验
利用荧光倒置显微镜观察P-ss-DP转染绿色荧光蛋白mRNA至HUVEC细胞后,绿色荧光蛋白的表达情况,以初步评价纳米载体HP-ss-DP运载mRNA的能力。结果见图7。
结果显示,P-ss-DP能够帮助mRNA(eGFP)进入细胞内部,实现绿色荧光蛋白的表达。
实施例8胶束稳定性测试实验
肝素竞争实验:制备N/P为10的P-ss-DP/mRNA复合物,向该溶液体系中分别加入一系列不同浓度的肝素钠溶液,37℃水浴箱水浴2小时,接着在含有0.2μg/mL溴化乙锭的1%琼脂糖凝胶中进行电泳,最后于凝胶成像系统中拍照。结果见图8。
结束显示,缺少胆碱的复合物(P-P)胶体稳定性较差,结构很容易在含有肝素钠环境中解离,释放mRNA,而含有胆碱的复合物(P-ss-DP)的稳定性明显提高,结构能够抵抗肝钠的竞争。而P-ss-DP在还原环境中,胶体稳定性又明显降低,在含有肝素钠环境中能够迅速释放mRNA。结果表明P-ss-DP复合物具有良好的还原响应性。
实施例9细胞摄取实验
细胞摄取效率由流式细胞仪进行评估,使用Cy5染料标记的mRNA(在这里使用eGFPmRNA)按前述方法自组装形成纳米粒子。HeLa细胞以105个/孔的密度种在六孔板上,每孔加入包含10%胎牛血清和1%双抗的DMEM培养基,并在37℃、5%CO2的细胞培养箱中孵育24h。随后,用新鲜的DMEM培养基取代原来的培养基,同时每孔加入150μL预先配置好的P-ss-DP复合物溶液(mRNA浓度为33.3ng/μL)。孵育不同时间后,细胞用PBS冲洗三次移除多余的Cy5染料。用胰蛋白酶将细胞消化后,加入培养基吹散,然后离心5min收集细胞,转速2800r/min。最后,加入200μL PBS重悬细胞,并用流式细胞仪对其进行分析。结果见图9
结果显示,背景荧光强度约为90,复合物都能帮助mRNA内吞,其中P-ss-DP内吞效率明显更高,P-P在孵育3小时摄取不再增加,而P-ss-PP的内吞持续增加,这说明,P-ss-DP具有更高的胶体稳定性,因此,P-ss-DP能够在细胞外保持胶体结构性,持续被细胞内吞。
实施例10 mRNA表达效率测试实验
按照实施例3的方法,用报告基因red fluorescence protein(RFP)mRNA与P-ss-DP制备复合物,得P-ss-DP/mRNA复合物。
同时制备P-P高分子和P-cc-DP高分子
P-P:未引入胆碱的高分子,与本发明实施例1P-ss-DP结构相比,缺少胆碱;
P-ss-DP:本发明实施例1的P-ss-DP高分子;
P-cc-DP:二硫键替换成不可断裂的连接,其他结构与P-ss-DP相同。
P-P高分子和P-cc-DP高分子分别按照实施例3的方法制备P-P/mRNA复合物和P-cc-DP/mRNA复合物。
将HeLa细胞传代,以105个/mL的密度接种于6孔板,每孔加入2mL含有10%胎牛血清、1%双抗的DMEM培养基。放入37℃、5%CO2的细胞培养箱中培养24h至细胞铺满孔板底部70-80%的面积。24h后弃掉原培养基,每孔加入2mL新鲜的DMEM培养基,同时分别加入以上高分子/mRNA复合物,每孔150μL(其中高分子50μL,mRNA 100μL,mRNA终浓度33.3ng/μL),并用移液枪吹打混匀。之后将孔板放入细胞培养箱孵育24h,随后取出更换新鲜DMEM培养基。再孵育24h后,细胞用PBS冲洗两次移除游离的红色荧光蛋白。用胰蛋白酶将细胞消化后,加入1mL新鲜培养基吹散,然后离心5min收集细胞,转速2800r/min。最后,加入200μLPBS重悬细胞,并用流式细胞仪对其进行定量分析。
结果见图10。
结果表明,P-ss-DP组表达量最高,并且明显高于P-cc-DP,说明本发明P-ss-DP在胞内响应性二硫键断裂,释放mRNA,对于提升mRNA的表达具有重大意义。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

1.一种mRNA转染材料,由普鲁兰多糖骨架接枝阳离子聚合物制得,所述普鲁兰多糖骨架具有式I结构:
Figure FDA0003519263590000011
n为聚合度,n大于零;
所述阳离子聚合物为聚乙烯亚胺、聚赖氨酸、聚酰胺-胺型树枝状高分子、或壳聚糖。
2.根据权利要求1所述的mRNA转染材料,其特征在于,所述阳离子聚合物为聚乙烯亚胺,所述mRNA转染材料具有式II所示的结构:
Figure FDA0003519263590000012
n、x和y为聚合度,n、x和y均大于零。
3.权利要求1或2所述的mRNA转染材料的制备方法,其特征在于,将具有式I所示结构的普鲁兰多糖骨架与所述阳离子聚合物接枝反应,获得具有式II所示结构的化合物。
4.根据权利要求3所述的制备方法,其特征在于,所述接枝反应的温度为35℃,时间为48h,催化剂为CDI。
5.根据权利要求3所述的制备方法,其特征在于,所述普鲁兰多糖骨架的制备方法包括:
a)将普鲁兰多糖和琥珀酰酐反应,获得琥珀酰化的普鲁兰多糖;
b)将琥珀酰化的普鲁兰多糖与胱胺二盐酸盐反应,获得具有式III所示结构的化合物;
c)将式III所示结构的化合物与脱氧胆酸反应,获得具有式I所示结构的普鲁兰多糖骨架;
Figure FDA0003519263590000021
6.根据权利要求5所述的制备方法,其特征在于,步骤a)中,所述反应在震荡条件下进行,催化剂为DMAP,溶剂为DMSO,反应的温度为45℃,时间为24h;所述反应结束之后还包括醇沉、离心、去离子水溶解沉淀、透析纯化、冷冻干燥的步骤。
7.根据权利要求5所述的制备方法,其特征在于,步骤b)中,所述反应在震荡条件下进行,催化剂为NHS和EDC,反应的温度为30℃,时间为24h;所述反应结束之后还包括将反应液依次进行氯化钠溶液透析24h、去离子水透析48h、冷冻干燥的步骤。
8.根据权利要求5所述的制备方法,其特征在于,步骤c)中,所述反应在剧烈搅拌条件下进行,所述反应的温度为25℃,时间为72h;所述反应结束之后还包括将反应液依次进行醇沉、离心、去离子水溶解沉淀、透析纯化、冷冻干燥的步骤。
9.一种mRNA转染系统,其特征在于,由权利要求权利要求1或2所述的mRNA转染材料或权利要求3~8任一项所述的制备方法制得的mRNA转染材料包裹核酸制得。
10.根据权利要求9所述的mRNA转染系统,其特征在于,所述核酸包括DNA和RNA中的至少一种。
11.根据权利要求10所述的mRNA转染系统,其特征在于,所述DNA为单链DNA、双链DNA或环状DNA,所述RNA为siRNA、miRNA或mRNA。
12.根据权利要求9~11任一项所述的mRNA转染系统,其特征在于,所述mRNA转染材料以氨基基团提供的正电荷计,所述核酸以核酸分子中的磷酸基团提供的负电荷计,所述mRNA转染材料和核酸的摩尔比为5~30:1。
13.权利要求9~12任一项所述的mRNA转染系统的制备方法,其特征在于,包括:将所述的mRNA转染材料溶于10mM pH 7.4的Tris-HCl缓冲液中,加入到mRNA溶液中,涡旋混匀,经自组装形成核酸高分子复合物,获得所述的mRNA转染系统。
14.权利要求1或2所述的mRNA转染材料或权利要求3~8任一项所述的制备方法制得的mRNA转染材料、权利要求9~12任一项所述的mRNA转染系统在制备核酸药物中的应用。
15.一种核酸药物,其特征在于,包括权利要求9~12任一项所述的mRNA转染系统和药学上可接受的辅料。
CN202210176702.XA 2022-02-24 2022-02-24 一种mRNA转染材料、mRNA转染系统及应用 Pending CN114540423A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210176702.XA CN114540423A (zh) 2022-02-24 2022-02-24 一种mRNA转染材料、mRNA转染系统及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210176702.XA CN114540423A (zh) 2022-02-24 2022-02-24 一种mRNA转染材料、mRNA转染系统及应用

Publications (1)

Publication Number Publication Date
CN114540423A true CN114540423A (zh) 2022-05-27

Family

ID=81679205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210176702.XA Pending CN114540423A (zh) 2022-02-24 2022-02-24 一种mRNA转染材料、mRNA转染系统及应用

Country Status (1)

Country Link
CN (1) CN114540423A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041405A (zh) * 2012-12-26 2013-04-17 深圳先进技术研究院 诊疗一体化载药聚合物及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041405A (zh) * 2012-12-26 2013-04-17 深圳先进技术研究院 诊疗一体化载药聚合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LILICHEN等: "Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy", 《MATERIALS SCIENCE AND ENGINEERING: C》 *
SHAHROUZ TARANEJOO等: "Bioreducible PEI-functionalized glycol chitosan: A novel gene vector with reduced cytotoxicity and improved transfection efficiency", 《CARBOHYDRATE POLYMERS》 *

Similar Documents

Publication Publication Date Title
Luo et al. A strategy to improve serum-tolerant transfection activity of polycation vectors by surface hydroxylation
Sun et al. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery
Zhu et al. Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles
Opanasopit et al. Development and characterization of pectinate micro/nanoparticles for gene delivery
Pittella et al. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity
Morris et al. Folate mediated histidine derivative of quaternised chitosan as a gene delivery vector
Srinivasachari et al. Versatile supramolecular pDNA vehicles via “click polymerization” of β-cyclodextrin with oligoethyleneamines
CN102241790B (zh) 一种两亲性壳聚糖衍生物及其制备方法和应用
Tripathi et al. Linear polyethylenimine-graft-chitosan copolymers as efficient DNA/siRNA delivery vectors in vitro and in vivo
He et al. Controlled drug release system based on cyclodextrin-conjugated poly (lactic acid)-b-poly (ethylene glycol) micelles
Sardo et al. Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system
Zeng et al. Chitosan-modified poly (D, L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing
Li et al. GSH/pH dual-responsive biodegradable camptothecin polymeric prodrugs combined with doxorubicin for synergistic anticancer efficiency
Thapa et al. Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: Optimal substitution is critical for effective delivery
Qian et al. Synthesis and preliminary cellular evaluation of phosphonium chitosan derivatives as novel non-viral vector
CN111658784B (zh) 一种多糖季铵盐在递送核酸和蛋白质上的应用
CN102260356B (zh) 一种用作基因载体的壳聚糖衍生物及其制备方法和用途
CN103255174A (zh) 以聚乙二醇接枝的透明质酸为外层的三元复合物及三元复合物的液体与应用
Nimesh et al. Guanidinium-grafted polyethylenimine: an efficient transfecting agent for mammalian cells
Guzman-Villanueva et al. Enhanced cellular uptake and gene silencing activity of siRNA molecules mediated by chitosan-derivative nanocomplexes
CN102174184A (zh) 一种生物可降解的聚合物及其制备方法以及核酸药物运输载体
Chen et al. Fabrication of zein-based hydrophilic nanoparticles for efficient gene delivery by layer-by-layer assembly
Wang et al. Synthesis and evaluation of chitosan-graft-polyethylenimine as a gene vector
Wang et al. Co-delivery of 5-fluorocytosine and cytosine deaminase into glioma cells mediated by an intracellular environment-responsive nanovesicle
Vakilian et al. Fabrication and optimization of linear pei-modified crystal nanocellulose as an efficient non-viral vector for in-vitro gene delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220527