CN114540383A - SlSRT1基因在调控番茄侧枝发育中的应用 - Google Patents

SlSRT1基因在调控番茄侧枝发育中的应用 Download PDF

Info

Publication number
CN114540383A
CN114540383A CN202210423237.5A CN202210423237A CN114540383A CN 114540383 A CN114540383 A CN 114540383A CN 202210423237 A CN202210423237 A CN 202210423237A CN 114540383 A CN114540383 A CN 114540383A
Authority
CN
China
Prior art keywords
gene
slsrt1
tomato
development
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210423237.5A
Other languages
English (en)
Other versions
CN114540383B (zh
Inventor
夏晓剑
王婷
周艳虹
喻景权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210423237.5A priority Critical patent/CN114540383B/zh
Publication of CN114540383A publication Critical patent/CN114540383A/zh
Application granted granted Critical
Publication of CN114540383B publication Critical patent/CN114540383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01098Histone deacetylase (3.5.1.98), i.e. sirtuin deacetylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了SlSRT1基因在调控番茄侧枝发育中的应用。本发明构建获得了SlSRT1基因过表达及基因敲除的转基因番茄植株,通过观察转基因番茄植株侧枝表型、分析SlSRT1与番茄侧枝发育的关键抑制因子SlBRC1的紧密联系,发现SlSRT1基因能够促进番茄侧枝发育,这主要是由于SlSRT1抑制了SlBRC1基因的组蛋白H3K9的乙酰化修饰,进而调控SlBRC1基因的转录表达。本发明揭示了SlSRT1基因在调控番茄侧枝发育中的功能,丰富了番茄侧枝生长发育的分子理论,对调控及改良番茄株型,降低生产成本,提高栽培效率以及实现番茄高产优质有着重要实际意义。

Description

SlSRT1基因在调控番茄侧枝发育中的应用
技术领域
本发明涉及植物基因工程技术领域,尤其涉及SlSRT1基因在调控番茄侧枝发育中的应用。
背景技术
番茄(Solanum lycopersicum L.),是一种重要的蔬菜作物,在我国及全世界都广泛栽培生产,在农业和国民生活中享有不可取代的地位。实现番茄高产、稳产和优质是科研工作者和育种学家一直以来的目标,而实现番茄产量和品质提升的一大途径就是番茄的株型改良。良好的株型不仅可以提高番茄对光照的利用效率、协调“库-源”平衡、增加通风减少病害发生,还可以降低生产成本、节约农业资源、提高经济效益,实现番茄的优质高效生产。因此,研究并发掘调控番茄株型的方法显得尤为重要。
侧枝是植物株型的重要方面,侧枝发育受到自身遗传因子,内源激素如生长素、细胞分裂素、独脚金内酯和油菜素内酯等以及环境如温度、光强、光质、矿质营养等诸多因素影响(Schumacher K,Schmitt T,Rossberg M,et al.1999.The Lateral suppressor(Ls)gene of tomato encodes a new member of the VHIID protein family.Proceedingsof the National Academy of Sciences U.S.A.96(1):290-295.Doi10.1073/pnas.96.1.290.;Schmitz G,Tillmann E,Carriero F,et al.2002.The tomato Blindgene encodes a MYB transcription factor that controls the formation oflateral meristems.Proceedings of the National Academy of Sciences U.S.A.99(2):1064-1069.Doi10.1073/pnas.022516199.;Barbier FF,Dun EA,Kerr SC,etal.2019.An update on the signals controlling shoot branching.Trends in PlantScience 24(3):220-236.Doi10.1016/j.tplants.2018.12.001.)。这些因素彼此协同或拮抗,紧密联系,形成了一个多元复杂的交叉调控网络。
BRANCHED1(BRC1)作为侧枝生长发育过程中的关键转录因子,在该信号网络中具有核心地位。BRC1及其同源基因TEOSINTE BRANCHED1(TB1)、FINE CULM1(FC1)同属于TCP基因家族。BRC1可以整合光照、温度等环境信号以及多种激素信号进而调控细胞的分裂与分化从而抑制侧芽的生长发育(Aguilar-Martinez JA,Poza-Carrion C,CubasP.2007.Arabidopsis BRANCHED1 acts as an integrator of branching signalswithin axillary buds.Plant Cell 19(2):458-472.Doi10.1105/tpc.106.048934.;Singh RK,Maurya JP,Azeez A,et al.2018.A genetic network mediating the controlof bud break in hybrid aspen.Nature Communications 9:4173.Doi10.1038/s41467-018-06696-y.;Xia XJ,Dong H,Yin YL,et al.2021.Brassinosteroid signalingintegrates multiple pathways to release apical dominance intomato.Proceedings of the National Academy of Sciences U.S.A.118(11):e2004384118.Doi10.1073/pnas.2004384118.)。
与BRC1功能及作用机制类似,DORMANCY-ASSOCIATED MADS-BOX(DAM)基因是目前研究发现在多年生木本植物中直接调控芽休眠的重要转录因子(Singh RK,Maurya JP,Azeez A,et al.2018.A genetic network mediating the control of bud break inhybrid aspen.Nature Communications 9:4173.Doi10.1038/s41467-018-06696-y.),而越来越多的证据表明,环境信号调控芽休眠的过程中,发生了DAM基因的表观遗传修饰,例如其组蛋白H3的乙酰化修饰,组蛋白H3K4、H3K27的甲基化,CHH甲基化等(Yang QS,Gao YH,Wu XY,et al.2021.Bud endodormancy in deciduous fruit trees:advances andprospects.Horticulture Research 8(1):139.Doi10.1038/s41438-021-00575-2.;LeidaC,Conesa A,Llacer G,et al.2012.Histone modifications and expression ofDAM6gene in peach are modulated during bud dormancy release in a cultivar-dependent manner.New Phytologist 193(1):67-80.Doi10.1111/j.1469-8137.2011.03863.x.;Wu RM,Wang TC,Richardson AC,et al.2019.Histonemodification and activation by SOC1-like and drought stress-relatedtranscription factors may regulate AcSVP2 expression during kiwifruit winterdormancy.Plant Science 281:242-250.Doi10.1016/j.plantsci.2018.12.001.;Zhu H,Chen PY,Zhong Sl,et al.2020.Thermal-responsive genetic and epigeneticregulation of DAM cluster controlling dormancy and chilling requirement inpeach floral buds.Horticulture Research 7(1):114.Doi10.1038/s41438-020-0336-y.)。但是,番茄侧枝的生长发育调控过程中,是否也发生了SlBRC1组蛋白的表观遗传修饰仍不清楚。
已有的研究表明,SRT1是组蛋白去乙酰化酶(HDACs)的SIR2亚家族中的一员,其主要作用于组蛋白H3K9位点的去乙酰化,参与调控植物激素响应、生长发育及逆境抗性等(Zhang F,Wang LK,Ko EE,et al.2018.Histone deacetylases SRT1 and SRT2interactwith ENAP1 to mediate ethylene-induced transcriptional repression.Plant Cell30(1):153-166.Doi10.1105/tpc.17.00671.;Huang LM,Sun QW,Qin FJ,etal.2007.Down-regulation of a SILENT INFORMATION REGULATOR2-related histonedeacetylase gene,OsSRT1,induces DNA fragmentation and cell death inrice.Plant Physiology 144(3):1508-1519.Doi10.1104/pp.107.099473.)。
但目前未有任何研究涉及SlSRT1基因在调控番茄植株侧枝发育中的作用。
发明内容
本发明提供了SlSRT1基因在调控番茄侧枝发育中的新应用,丰富了番茄侧枝生长发育的分子调控理论,尤其是组蛋白乙酰化参与调控侧枝发育的作用,为番茄种质资源创新,改良番茄株型,实现高产优产提供参考依据。
具体技术方案如下:
本发明提供了SlSRT1基因在调控番茄侧枝发育中的应用,所述SlSRT1基因的核苷酸序列如SEQ ID NO.1所示。
该SlSRT1基因编码的蛋白质的氨基酸序列如SEQ ID NO.2所示。本发明通过构建SlSRT1基因过表达及基因编辑的转基因番茄,发现SlSRT1基因促进番茄植株侧枝发育,并且伴随侧芽组蛋白H3乙酰化程度的降低;此外,还进一步发现SlSRT1基因调控SlBRC1基因的组蛋白乙酰化进而抑制其基因表达,而SlBRC1基因的转录调控对于SlSRT1基因促进番茄侧枝发育至关重要。
进一步地,所述调控的方式为以下之一:
(i)通过过表达SlSRT1基因,促进番茄侧枝的发育,从而获得侧枝繁茂的株系;
(ii)通过敲除SlSRT1基因,抑制番茄侧枝的发育,从而获得侧枝较少、株型较为紧凑的株系。
进一步地,所述SlSRT1基因通过抑制SlBRC1基因的组蛋白乙酰化,来抑制SlBRC1基因的转录表达,从而促进番茄侧枝的发育。
进一步地,构建敲除SlSRT1基因的突变体的方法为:
(1)设计SlSRT1基因的靶序列sgRNA1,构建番茄SlSRT1基因编辑的CRISPR/Cas9载体;
(2)将所述载体转入农杆菌感受态细胞中,获得CRISPR/Cas9载体的农杆菌;
(3)利用含SlSRT1基因编辑载体的农杆菌侵染液侵染普通野生型番茄的子叶,通过组织培养重新获得幼苗,筛选获得SlSRT1基因缺失的突变体植株。
进一步地,所述载体为pCAMBIA1301;宿主细胞为农杆菌GV3101。
进一步地,所述靶序列sgRNA1如SEQ ID NO.3所示。
与现有技术相比,本发明具有以下有益效果:
(1)本发明构建获得了SlSRT1基因过表达及基因敲除的转基因番茄植株,通过观察转基因番茄植株侧枝表型、分析SlSRT1与番茄侧枝发育的关键抑制因子SlBRC1的紧密联系,发现SlSRT1基因能够促进番茄侧枝发育,这主要是由于SlSRT1抑制了SlBRC1基因的组蛋白H3K9的乙酰化修饰,进而调控SlBRC1基因的转录表达。
(2)本发明揭示了SlSRT1基因在调控番茄侧枝发育中的功能,丰富了番茄侧枝生长发育的分子理论,对调控及改良番茄株型,降低生产成本,提高栽培效率以及实现番茄高产优质有着重要实际意义。
附图说明
图1为实施例1中SlSRT1基因敲除的番茄植株检测结果。
图2为实施例3中SlSRT1基因在番茄不同组织器官中的表达情况;其中,Stem为茎;Leaf为叶片;Apical bud为顶芽;Lateral bud为侧芽;Relative Expression为基因相对表达量;
图3为实施例4中野生型番茄植株、SlSRT1基因敲除植株和SlSRT1基因过表达植株的株高及茎粗结果;其中图A为植株整体生长表型;B为植株株高统计;C为植株茎粗统计;srt1为SlSRT1基因敲除植株;WT为普通野生型番茄品种Condine Red;OE-SRT1为SlSRT1过表达植株;
图4为实施例4中野生型番茄植株、SlSRT1基因敲除植株和SlSRT1基因过表达植株的侧芽生长表型、侧芽处SlBRC1基因表达;其中,图A为植株侧芽表型;B为植株侧芽长度统计;C为植株侧芽处SlBRC1基因表达情况;srt1为SlSRT1基因敲除植株;WT为普通野生型番茄品种CR;OE-SRT1为SlSRT1过表达植株。
图5为实施例5中野生型番茄植株、SlSRT1基因敲除植株和SlSRT1基因过表达植株的侧芽处组蛋白H3乙酰化水平变化;
图6为实施例6中SlSRT1对SlBRC1组蛋白乙酰化修饰的影响;其中图A为侧芽处SlSRT1与SlBRC1启动子的结合检测结果;图B为SlSRT1对SlBRC1组蛋白H3K9的乙酰化修饰的影响;srt1为SlSRT1基因敲除植株;WT为普通野生型番茄品种CR;OE-SRT1为SlSRT1过表达植株;%ChIP signal/input为相对野生型植株阴性对照的抗体结合信号强度。
具体实施方式
下面结合具体实施例对本发明作进一步描述,以下列举的仅是本发明的具体实施例,但本发明的保护范围不仅限于此。
实施例1 SlSRT1基因敲除植株的获得
1、SlSRT1基因CRISPR/Cas9基因编辑载体的构建
从网站NCBI(http://www.ncbi.nlm.nih.gov/)数据库中搜索获得番茄组蛋白去乙酰化酶SRT1的基因组序列,使用网址(https://www.genome.arizona.edu/crispr/CRISPRsearch.html)CRISPR-P进行SlSRT1基因sgRNA(small guide RNA)候选靶点TTAGTGGTGTTTACAGGAGC的设计,并在两端添加BbsI限制性内切酶粘性末端(aaaatctcctacttctacga),具体序列如SEQ ID NO.3所示,此单链sgRNA退火后即形成双链sgRNA。将载体质粒U6-26-sgRNA-35S-cas9SK用BbsI限制性内切酶进行单酶切,酶切条件为37℃,酶切30分钟。利用T4 DNA连接酶将备好的目的片段与载体连接,经测序公司测序检验后得到构建成功的载体U6-26-sgRNA-SlSRT1-SK。用KpnI与HindIII限制性内切酶同时对U6-26-sgRNA-SlSRT1-SK和pCAMBIA1301载体进行双酶切,之后同样用T4连接酶连接,经测序公司测序检验后得到构建成功的基因敲除载体pCAMBIA1301-U6-26-sgRNA-SlSRT1-35S-cas9。
2、SlSRT1基因CRISPR/Cas9基因编辑植株的获取
通过电击法获得转入pCAMBIA1301-U6-26-sgRNA-SlSRT1-35S-cas9的农杆菌,农杆菌感受态为农杆菌GV3101,通过农杆菌侵染野生型番茄品种CR(Condine Red)子叶,子叶再经过植物组织培养过程发育成为完整的转基因番茄植株。随后根据靶点位置,在上下游设计引物,引物为cri-srt1-F(GAGAGACTTGCTGTGATGAT)和cri-srt1-R(CTGAAGAGTCCAAATACCCT),具体序列如SEQ ID NO.4和SEQ ID NO.5所示,对提取的转基因植株DNA利用PCR技术扩增,并进行测序验证,筛选获得缺失1个碱基的srt1#1和插入1个碱基的srt1#2、srt1#3的杂合T0代植株(图1),之后自交得到T1代纯合srt1#1、srt1#2、srt1#3植株。
实施例2SlSRT1基因过表达番茄植株的获取
1、SlSRT1基因过表达载体的构建
根据SlSRT1基因和过表达载体pFGC1008-HA序列,选取限制性酶切位点(AscI和KpnI)并设计同源臂,使用软件CE DesignV1.03生成特异性引物SlSRT1-F(AGGCGCGCCATGTCTCTGGGTTATGCT)和SlSRT1-R(GGGGTACCCCTTACATTAATTACAGTTCTGG),序列分别如SEQ ID NO.6和SEQ ID NO.7所示。
利用此引物和野生型番茄CR叶片的cDNA,扩增全长并纯化后获得目的片段。利用同源重组原理,用限制性内切酶AscI和KpnI双酶切pFGC1008-HA载体并纯化,然后利用同源重组酶Exnase II(南京诺唯赞)将SlSRT1片段连接到线性化后的pFGC1008-HA载体上,经测序公司检测后得到过表达载体pFGC1008-SlSRT1-HA。该载体在植物体内成功表达后会产生SlSRT1-HA融合蛋白,该基因编码蛋白质的氨基酸序列如SEQ ID NO.2所示。
2、SlSRT1基因过表达植株的获取
培养方法同SlSRT1基因编辑植株的获取方法,利用含过表达载体质粒pFGC1008-SlSRT1-HA的农杆菌GV3101侵染液侵染野生型番茄品种CR的子叶,之后在含不同比例激素的培养基诱导组织生长至生根,获得T0代转基因植株。利用Western Blot验证T0代植株,检测其是否含SlSRT1-HA特异性条带从而获得SlSRT1基因过表达番茄植株。
实施例3SlSRT1基因在番茄不同组织器官中的表达情况
采用实时荧光定量法,利用SYBR荧光染料(Vazyme),根据说明书(南京诺唯赞)混合反应体系,利用Light
Figure BDA0003607353400000051
480Ⅱ荧光定量PCR仪(Roche,CH)进行SlSRT1基因在番茄不同组织器官中的表达测定,SlSRT1基因的特异性引物为(RT-SlSRT1-F:5'-TGGGTTGAAGGAAACTGCAC-3';RT-SlSRT1-R:5'-GGTAGAGCATCCTCCCAGTC-3')测定完成后以番茄Actin作为内参基因,利用2-△△CT法计算目的基因相对表达量(Livak KJ,SchmittgenTD.2001.Analysis of relative gene expressiondata using Real-Time QuantitativePCR and the 2-ΔΔCT method.Methods 25(4):402-408.https://doi.org/10.1006/meth.2001.1262.)。
结果表明,SlSRT1基因在番茄茎、叶、顶芽及侧芽均有表达,而叶、顶芽及侧芽表达量较高,尤其是在侧芽中(图2)。
实施例4
1、SlSRT1基因敲除、过表达以及野生型番茄植株株高和茎粗
株高、茎粗表型统计具体操作如下:
实验材料为野生型番茄CR、SlSRT1基因敲除植株、SlSRT1基因过表达植株。将番茄种子浸没于盛有水的锥形瓶中,于28℃恒速摇床(200rpm/min)催芽2d左右,待种子胚根露白,长度为0.5~1cm时,将其播种至72孔穴盘(草炭:蛭石为3:1),之后将其培养于植物工厂,环境为光强200μmol m-2s-1,光周期12h/12h,昼夜温度25℃/20℃,相对湿度70%~80%,每周浇2~3次Hoagland营养液。待幼苗长到4叶1心时,将其单株移栽到含同样基质的底部直径7cm,高度9cm的营养钵中,置于植物工厂继续培养。待野生型植株生长至约6叶1心时,利用直尺测量株高,株高统计从子叶开始至顶芽,通过游标卡尺测量第2~3节茎之间的直径,每组处理包含4个生物重复。
结果:与野生型植株相比,SlSRT1基因敲除的植株株高显著变矮,茎粗显著减少,SlSRT1基因过表达番茄植株株高略增加,茎粗也有所增加(图3)。
2、SlSRT1基因敲除、过表达以及野生型番茄植株侧芽表型及侧芽处SlBRC1基因表达情况
相关具体操作如下:
培养条件同上,待野生型植株生长至约6叶1心时,利用直尺测量侧芽长度,测量从叶腋至侧芽顶端,由下至上测量5个节位,每组处理包含4个生物重复。提取侧芽总RNA,所用侧芽长度应≤1cm,转录后用特异性引物(RT-SlBRC1-F:5'-TGGTGCAATTTGTGCATCTA-3';RT-SlBRC1-R:5'-ATCTTGAGCGGTTTCCTTGT-3')进行qRT-PCR检测SlSRT1基因敲除、过表达以及野生型番茄植株侧芽处SlBRC1的基因表达情况。
结果:由统计的侧芽表型可知,与野生型植株相比,SlSRT1基因敲除的番茄植株侧芽长度显著减小,侧芽处SlBRC1表达显著上调,SlSRT1基因过表达番茄植株侧芽长度显著增加,侧芽处SlBRC1表达显著下降(图4)。
实施例5 SlSRT1基因敲除、过表达以及野生型番茄植株侧芽处组蛋白乙酰化水平变化
侧芽组蛋白乙酰化水平检测具体操作如下:
取番茄侧芽(所取侧芽长度应≤1cm)0.2g冻于液氮。组蛋白提取采用EpiQuikTMTotal Histone Extraction Kit试剂盒(Epigentek,USA)详细方法见试剂盒说明书。
组蛋白提取后,其乙酰化水平采用Western印迹进行分析,凝胶电泳、转膜、封闭以及抗体处理等过程参照Li等(Li XJ,Guo X,Zhou YH.et al.2016.Overexpression of abrassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacitythrough activation of Calvin cycle enzymes in tomato.BMC Plant Biology 16:33.Doi10.1186/s12870-016-0715-6.)。利用一抗anti-H3K9Ac[Histone H3(acetyl K9)](Sigma-Aldrich,USA)和anti-H3(Histone H3)(Sigma-Aldrich,USA)进行免疫印迹,二抗分别为anti-rabbit(Cell Signaling Technology,US)和anti-mouse(Cell SignalingTechnology,US)。孵育后,处理化学发光试剂,随后采用ChemiDocTM imaging System(BIO-RAD)观察蛋白条带并拍照。
结果:由Western Blot的蛋白条带结果可知,与野生型植株相比,SlSRT1基因敲除的番茄植株侧芽处组蛋白H3K9位点上的乙酰化水平升高,而SlSRT1基因过表达番茄植株侧芽处的组蛋白H3K9位点上的乙酰化水平则有所降低,说明SlSRT1基因的缺失能够抑制侧芽处组蛋白H3的乙酰化修饰(图5)。
实施例6 SlSRT1对SlBRC1组蛋白乙酰化修饰的影响
1、SlSRT1与SlBRC1启动子的结合检测
具体操作如下:
采用染色质免疫共沉淀技术(ChIP-PCR),使用EpiQuikTM Plant ChIP试剂盒(Epigentek,P-2014,USA)。以野生型番茄CR和SlSRT1基因过表达番茄植株为实验材料,取侧芽(所取侧芽长度应≤1cm)1.0g,加入37ml含1%甲醛的PBS缓冲液(100mM,pH 7.0),利用真空泵固定后加入2M甘氨酸1.25ml,继续抽滤以终止反应。蛋白-染色质复合物的提取详细见试剂盒说明书,其中,染色质用HA抗体(Pierce,26183,Illinois,USA)进行免疫沉淀,阴性对照为anti-mouse IgG(Abcam,ab205719,Cambridge,MA,USA)。将染色质通过超声破碎成大小为200-1000bp的片段并富集后,通过分析SlBRC1转录起始密码子上游2000bp的启动子序列,设计并使用引物(ChIP-SlBRC1-F:5'-AATGAACAATCGGCTCAGGA-3';ChIP-SlBRC1-R:5'-GGAACAATGTGGTGGTTTGGA-3')进行qRT-PCR检测结合强度。
结果表明:SlBRC1基因的启动子序列在SlSRT1基因过表达的番茄植株中富集强度显著高于野生型,这表明SlSRT1对SlBRC1的转录表达有调控作用(图6A)。
2、SlSRT1对SlBRC1组蛋白H3K9的乙酰化修饰的影响
具体操作如下:
采用染色质免疫共沉淀技术(ChIP-PCR),使用EpiQuikTM Plant ChIP试剂盒(Epigentek,P-2014,USA)。以SlSRT1基因敲除、过表达以及野生型番茄植株为实验材料,取番茄幼嫩叶片1.5g,加入37ml含1%甲醛的PBS缓冲液(100mM,pH 7.0),利用真空泵固定后加入2M甘氨酸1.25ml,继续抽滤以终止反应。蛋白-染色质复合物的提取详细见试剂盒说明书,其中,染色质用anti-H3K9Ac[Histone H3(acetyl K9)](Sigma-Aldrich,USA)抗体进行免疫沉淀,阴性对照为anti-mouse IgG(Abcam,ab205719,Cambridge,MA,USA)。将染色质通过超声破碎成大小为200-1000bp的片段并富集后,使用引物(ChIP-SlBRC1-F:5'-AATGAACAATCGGCTCAGGA-3';ChIP-SlBRC1-R:5'-GGAACAATGTGGTGGTTTGGA-3')进行qRT-PCR检测结合强度。
结果表明:与野生型植株相比,SlSRT1过表达植株SlBRC1的组蛋白H3K9乙酰化水平显著降低,SlSRT1基因敲除植株的SlBRC1的组蛋白H3K9乙酰化水平显著升高,这表明SlSRT1基因能够直接抑制SlBRC1的组蛋白H3K9乙酰化修饰(图6B)。
综合以上研究,本发明发现了SlSRT1基因促进番茄侧枝生长发育,主要是通过对侧芽发育的关键抑制因子SlBRC1组蛋白去乙酰化进而抑制其转录表达。将SlSRT1敲除使其丧失功能可促进SlBRC1基因表达抑制番茄侧芽生长,有利于构建株型良好的番茄种质。
序列表
<110> 浙江大学
<120> SlSRT1基因在调控番茄侧枝发育中的应用
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1419
<212> DNA
<213> 番茄(Solanum lycopersicum L.)
<400> 1
atgtctctgg gttatgctga aaagctttct tttatagaag atgtgggcaa tgttgggatg 60
actgagtatt ttgacccacc tctccttttg caagacaaaa ttgagagact tgctgtgatg 120
atacaaaaga gtaagcattt agtggtgttt acaggagcag gaatatccac ttcttgtggt 180
atacctgatt ttcgtggtcc caagggtatt tggactcttc agagagaagg gaaagcgcta 240
ccagaagcat cattgccttt tcatcgtgca actccaagca tgacacacat ggccctagtg 300
gaactagaga aggcgggttt tctaaagttt cttataagcc agaacattga tggccttcat 360
cttcgctctg gaattccaag ggagaagctt tctgaattac atggggattc ttttatggaa 420
cgatgccctt cttgtggaat tgagtatatg agggattttg aaatagaaac tattgggttg 480
aaggaaactg cacggcgttg ttccaaggtg ggctgtggtg caagacttaa agacacagtt 540
cttgactggg aggatgctct acctccaaag gagatgaatc cagctgagag acactgcaaa 600
atggctgatg ttgtgttatg tctagggaca agtttgcaga tcacccctgc ctgtaatttg 660
cctctaaaat cactcaaagg cggtggaaag attgtaatag ttaatcttca gaaaactccc 720
aaggacaaga aagcaagcct actgattcat ggtcttgtag acaaggttat cacaggagtc 780
atggaattcc tcagtctgcg aatcccacct tttattagaa ttgatcttct ccagaccatt 840
tttactcaag cctcaagtct tgatgaaaaa tatgtaaatt ggagccttgc agtggcaagc 900
gtccatggaa atagagcacc attgcctttt atcaaatctg tagaggtttc tttttcagaa 960
agtcaaaaca tgaaagcggc tgtcctggat aaacaacctc tttatctgaa aaggcggaca 1020
gttaagagta caaatccttt taacattatg atgaaattga acttcagtga tggttgcaag 1080
tgctcatcgg ctgaaatcat gattcctatt gattttaaga tttcagcaga cgtgttcaaa 1140
gatgataaag actccatctt acagaatcta agagaaagcg ccctcacgga tcctagctgt 1200
ggacagacat cagttattga gaaaaaggtc attatggttc ctaaaagtga agtcatagta 1260
catgccattg taacaaacat cgtcaagttc gacagaagct atgatgggga tctaagtaat 1320
ggctcattca aaaggaaata tgaatgtctt aatggcgtaa ttccatcgcg aaaacggtcc 1380
aacggtagaa aacccagaac tgtaattaat gtaaggtga 1419
<210> 2
<211> 472
<212> PRT
<213> 番茄(Solanum lycopersicum L.)
<400> 2
Met Ser Leu Gly Tyr Ala Glu Lys Leu Ser Phe Ile Glu Asp Val Gly
1 5 10 15
Asn Val Gly Met Thr Glu Tyr Phe Asp Pro Pro Leu Leu Leu Gln Asp
20 25 30
Lys Ile Glu Arg Leu Ala Val Met Ile Gln Lys Ser Lys His Leu Val
35 40 45
Val Phe Thr Gly Ala Gly Ile Ser Thr Ser Cys Gly Ile Pro Asp Phe
50 55 60
Arg Gly Pro Lys Gly Ile Trp Thr Leu Gln Arg Glu Gly Lys Ala Leu
65 70 75 80
Pro Glu Ala Ser Leu Pro Phe His Arg Ala Thr Pro Ser Met Thr His
85 90 95
Met Ala Leu Val Glu Leu Glu Lys Ala Gly Phe Leu Lys Phe Leu Ile
100 105 110
Ser Gln Asn Ile Asp Gly Leu His Leu Arg Ser Gly Ile Pro Arg Glu
115 120 125
Lys Leu Ser Glu Leu His Gly Asp Ser Phe Met Glu Arg Cys Pro Ser
130 135 140
Cys Gly Ile Glu Tyr Met Arg Asp Phe Glu Ile Glu Thr Ile Gly Leu
145 150 155 160
Lys Glu Thr Ala Arg Arg Cys Ser Lys Val Gly Cys Gly Ala Arg Leu
165 170 175
Lys Asp Thr Val Leu Asp Trp Glu Asp Ala Leu Pro Pro Lys Glu Met
180 185 190
Asn Pro Ala Glu Arg His Cys Lys Met Ala Asp Val Val Leu Cys Leu
195 200 205
Gly Thr Ser Leu Gln Ile Thr Pro Ala Cys Asn Leu Pro Leu Lys Ser
210 215 220
Leu Lys Gly Gly Gly Lys Ile Val Ile Val Asn Leu Gln Lys Thr Pro
225 230 235 240
Lys Asp Lys Lys Ala Ser Leu Leu Ile His Gly Leu Val Asp Lys Val
245 250 255
Ile Thr Gly Val Met Glu Phe Leu Ser Leu Arg Ile Pro Pro Phe Ile
260 265 270
Arg Ile Asp Leu Leu Gln Thr Ile Phe Thr Gln Ala Ser Ser Leu Asp
275 280 285
Glu Lys Tyr Val Asn Trp Ser Leu Ala Val Ala Ser Val His Gly Asn
290 295 300
Arg Ala Pro Leu Pro Phe Ile Lys Ser Val Glu Val Ser Phe Ser Glu
305 310 315 320
Ser Gln Asn Met Lys Ala Ala Val Leu Asp Lys Gln Pro Leu Tyr Leu
325 330 335
Lys Arg Arg Thr Val Lys Ser Thr Asn Pro Phe Asn Ile Met Met Lys
340 345 350
Leu Asn Phe Ser Asp Gly Cys Lys Cys Ser Ser Ala Glu Ile Met Ile
355 360 365
Pro Ile Asp Phe Lys Ile Ser Ala Asp Val Phe Lys Asp Asp Lys Asp
370 375 380
Ser Ile Leu Gln Asn Leu Arg Glu Ser Ala Leu Thr Asp Pro Ser Cys
385 390 395 400
Gly Gln Thr Ser Val Ile Glu Lys Lys Val Ile Met Val Pro Lys Ser
405 410 415
Glu Val Ile Val His Ala Ile Val Thr Asn Ile Val Lys Phe Asp Arg
420 425 430
Ser Tyr Asp Gly Asp Leu Ser Asn Gly Ser Phe Lys Arg Lys Tyr Glu
435 440 445
Cys Leu Asn Gly Val Ile Pro Ser Arg Lys Arg Ser Asn Gly Arg Lys
450 455 460
Pro Arg Thr Val Ile Asn Val Arg
465 470
<210> 3
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 3
ttagtggtgt ttacaggagc 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 4
gagagacttg ctgtgatgat 20
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 5
ctgaagagtc caaataccct 20
<210> 6
<211> 27
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 6
aggcgcgcca tgtctctggg ttatgct 27
<210> 7
<211> 31
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 7
ggggtacccc ttacattaat tacagttctg g 31
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 8
tgggttgaag gaaactgcac 20
<210> 9
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 9
ggtagagcat cctcccagtc 20
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 10
tggtgcaatt tgtgcatcta 20
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 11
atcttgagcg gtttccttgt 20
<210> 12
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 12
aatgaacaat cggctcagga 20
<210> 13
<211> 21
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 13
ggaacaatgt ggtggtttgg a 21
<210> 14
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 14
aatgaacaat cggctcagga 20
<210> 15
<211> 21
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 15
ggaacaatgt ggtggtttgg a 21

Claims (6)

1.SlSRT1基因在调控番茄侧枝发育中的应用,其特征在于,所述SlSRT1基因的核苷酸序列如SEQ ID NO.1所示。
2.如权利要求1所述的应用,其特征在于,所述调控的方式为以下之一:
(i)通过过表达SlSRT1基因,促进番茄侧枝的发育,从而获得侧枝繁茂的株系;
(ii)通过敲除SlSRT1基因,抑制番茄侧枝的发育,从而获得侧枝较少、株型较为紧凑的株系。
3.如权利要求2所述的应用,其特征在于,所述SlSRT1基因通过抑制SlBRC1基因的组蛋白乙酰化,来抑制SlBRC1基因的转录表达,从而促进番茄侧枝的发育。
4.如权利要求2所述的应用,其特征在于,构建敲除SlSRT1基因的突变体的方法为:
(1)设计SlSRT1基因的靶序列sgRNA1,构建番茄SlSRT1基因编辑的CRISPR/Cas9载体;
(2)将所述载体转入农杆菌感受态细胞中,获得CRISPR/Cas9载体的农杆菌;
(3)利用含SlSRT1基因编辑载体的农杆菌侵染液侵染普通野生型番茄的子叶,通过组织培养重新获得幼苗,筛选获得SlSRT1基因缺失的突变体植株。
5.如权利要求4所述的应用,其特征在于,所述载体为pCAMBIA1301;宿主细胞为农杆菌GV3101。
6.如权利要求4所述的应用,其特征在于,步骤(1)中,所述靶序列sgRNA1如SEQ IDNO.3所示。
CN202210423237.5A 2022-04-21 2022-04-21 SlSRT1基因在调控番茄侧枝发育中的应用 Active CN114540383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210423237.5A CN114540383B (zh) 2022-04-21 2022-04-21 SlSRT1基因在调控番茄侧枝发育中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210423237.5A CN114540383B (zh) 2022-04-21 2022-04-21 SlSRT1基因在调控番茄侧枝发育中的应用

Publications (2)

Publication Number Publication Date
CN114540383A true CN114540383A (zh) 2022-05-27
CN114540383B CN114540383B (zh) 2023-04-25

Family

ID=81667101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210423237.5A Active CN114540383B (zh) 2022-04-21 2022-04-21 SlSRT1基因在调控番茄侧枝发育中的应用

Country Status (1)

Country Link
CN (1) CN114540383B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430213A (zh) * 2021-08-13 2021-09-24 合肥工业大学 一种调控番茄侧枝的基因及方法
CN113846121A (zh) * 2021-11-13 2021-12-28 吉林大学 一种番茄侧枝发生的调控方法
CN114150013A (zh) * 2021-10-29 2022-03-08 浙江大学 SlHDA4基因在培育顶端优势增强型番茄种质中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430213A (zh) * 2021-08-13 2021-09-24 合肥工业大学 一种调控番茄侧枝的基因及方法
CN114150013A (zh) * 2021-10-29 2022-03-08 浙江大学 SlHDA4基因在培育顶端优势增强型番茄种质中的应用
CN113846121A (zh) * 2021-11-13 2021-12-28 吉林大学 一种番茄侧枝发生的调控方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOLANUM等: "PREDICTED: Solanum lycopersicum NAD-dependent protein deacetylase SRT1 (LOC101251202), transcript variant X1,mRNA)" *

Also Published As

Publication number Publication date
CN114540383B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN107435047B (zh) 一种植物磷信号网络中耐低磷关键基因GmPHR25及其与应用
WO2016029630A1 (zh) miR528的调控位点及其应用
CN113621625B (zh) 芝麻SiERF103基因在增强植物抗性中的应用
CN112626082B (zh) 玉米基因ZmSCL14在调控植物根部发育中的应用
CN112481276B (zh) 玉米基因ZmSCL14在调控植物开花期中的应用
CN114085854B (zh) 一种水稻抗旱、耐盐基因OsSKL2及其应用
CN115724931B (zh) 水稻基因OsBRR1在调控水稻株型及粒型中的应用
CN108034662B (zh) 小麦条锈菌pstg_06025基因在条锈病防治中的应用和抗条锈菌小麦的培育方法
CN113913440B (zh) GhD1119基因调控陆地棉开花方面的应用
CN110438134A (zh) 植物叶片卷曲相关蛋白OsRoc8及其编码基因与应用
CN113024645B (zh) 小麦转录因子wrky70基因在调控植物生长发育中的应用
CN114540383A (zh) SlSRT1基因在调控番茄侧枝发育中的应用
CN114736280A (zh) ZmROA1蛋白在调控植物耐密性中的应用
CN104805100B (zh) 水稻基因OsSμBP‑2在延缓植物叶片衰老中的应用
CN115287290B (zh) 组蛋白去甲基化酶基因OsJMJ718及其编码蛋白在调控水稻种子活力中的应用
CN117402908B (zh) Gl6.1基因在调控水稻粒型中的应用
CN116769797B (zh) 一种茉莉酸甲酯及PpyMYC2基因在萌芽中的应用
CN114990131B (zh) OsHLS1在获得半矮化水稻中的应用
CN117305266B (zh) 一种与水稻抗逆相关的基因OsBDG1及其编码蛋白的应用
CN116376964B (zh) 一种调控水稻低温发芽的基因及其应用
CN115807025B (zh) OsXMK1基因在调控水稻细菌性条斑病抗性中的应用
CN115044592B (zh) 一种调控玉米株型和瘤黑粉病抗性的基因ZmADT2及其编码蛋白和应用
CN110129338B (zh) 玉米转录因子ZmEREB160基因及其应用
WO2022213453A1 (zh) 一种调控植物抗铝性的铝离子受体alr1基因或蛋白的应用
CN115724932A (zh) SlSPL13基因或其编码的蛋白调控番茄根系及根系分泌物中独脚金内酯含量

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant