CN114526879A - 一种航空管路接头刚度的双向测量装置和方法 - Google Patents

一种航空管路接头刚度的双向测量装置和方法 Download PDF

Info

Publication number
CN114526879A
CN114526879A CN202210192261.2A CN202210192261A CN114526879A CN 114526879 A CN114526879 A CN 114526879A CN 202210192261 A CN202210192261 A CN 202210192261A CN 114526879 A CN114526879 A CN 114526879A
Authority
CN
China
Prior art keywords
pipeline joint
rigidity
base
aviation
turntable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210192261.2A
Other languages
English (en)
Other versions
CN114526879B (zh
Inventor
高培鑫
张德聪
于涛
金杰
王进杰
王娇
石岩
翟敬宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN202210192261.2A priority Critical patent/CN114526879B/zh
Publication of CN114526879A publication Critical patent/CN114526879A/zh
Application granted granted Critical
Publication of CN114526879B publication Critical patent/CN114526879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
    • G01M5/0058Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本申请提供一种航空管路接头刚度的双向测量装置及方法,装置包括设置于底座上的管路接头固定单元、横向刚度测量单元、轴向刚度测量单元,以及位于二者之间的旋转单元。本装置可根据需求直接测量航空管路接头的刚度值,避免了工程模拟过程中不可避免带入的误差和人为不确定因素,大幅提高航空管路接头刚度的测量精度,同时,本装置可通过压力传感器和位移传感器直接获取实时数据,并通过简单的比值计算即可获取其刚度数值,与现有试凑法相比较,可大幅提高航空管路接头刚度的测量效率。另外,本方案通过旋转单元的独特设计,可通过一套装置实现航空管路接头刚度的双向测量,设计精巧、操作简单,能够满足航空管路系统的设计和分析需求。

Description

一种航空管路接头刚度的双向测量装置和方法
技术领域
本发明涉及航空测试领域,尤其涉及一种航空管路接头刚度的双向测量装置和方法。
背景技术
接头是航空液压系统中管路与管路之间、元件与管路之间的重要连接装置。管路接头的刚度对液压管路系统的振动有较大影响,管路接头的刚度过小时,管路系统的振动加剧,容易导致管路系统泄漏、管路接头振裂、密封不良等问题;管路接头的刚度过大时,管路接头容易出现脆性损坏,造成严重的经济损失和安全隐患。因此,精准测量管路接头的刚度参数对航空管路系统的设计和分析具有重要的意义。
目前,在管路系统振动分析中,管路接头的刚度通常无法直接测量,需要以商用软件的建模分析为基础,采用试凑的方法来确定其刚度值。具体的,可将管路接头简化为固支边界或者弹簧单元,输入根据工程经验预设的固支边界或者弹簧单元的刚度值后,经过模型分析可输出其振动特性(如固有频率和管路振型等),通过该振动特性与模态实验得到的管路接头的振动特性相比较,不断调整输入的固支边界或者弹簧单元的刚度值,使得软件输出的振动特性与模态实验得到的振动特性之间的误差落入合理范围内,最终确定固支边界或者弹簧单元的刚度,即为管路接头的刚度。
由此不难看出,以经验和软件模拟为基础的测量方式,其测量效率及测量精度均无法得到保证,同时,在简化、模拟、试凑的过程中,还会引入其他不确定性因素,影响测量精度。可见,现有的管路接头的测量技术无法满足航空管路系统的设计和分析需求。
发明内容
本发明针对现有刚度测量装置精度不足、效率低下的问题,提供一种航空管路接头刚度的双向测量装置和方法。
第一方面,本申请提供一种航空管路接头刚度的双向测量装置包括:底座、设置于所述底座上的管路接头固定单元,与所述管路接头固定单元垂直设置的横向刚度测量单元、与所述管路接头固定单元同向设置的轴向刚度测量单元,以及位于所述管路接头固定单元和所述轴向刚度测量单元之间的旋转单元,其中,所述管路接头固定单元包括依次连接的第一固定底座、第一三爪卡盘和固定杆,所述固定杆的自由端设置有连接孔,航空管路接头套接于所述固定杆外部;所述横向刚度测量单元包括依次连接的第一传动机构、第一滑动部件、第一压力传感器和加载头,在进行航空管路接头横向刚度测试时,所述加载头与所述航空管路接头相接触,还包括第一位移传感装置,所述第一位移传感装置与所述加载头相对设置于所述航空管路接头的两侧;所述旋转单元包括转盘底座,所述转盘底座上安装有转盘,所述转盘上依次设置有第二固定底座和第二滑动部件,所述第二固定底座远离所述第二滑动部件的侧面安装有第二三爪卡盘,所述转盘还设有与所述第二滑动部件相匹配的滑槽,所述第二滑动部件沿着所述滑槽方向上依次连接有第二压力传感器、压力加载叉头和加载横杆;所述轴向刚度测量单元包括第二传动机构和第二位移传感装置,所述第二位移传感装置与所述压力加载叉头的位置相对应。
优选的,所述第一传动机构包括步进电机蜗杆支撑座、蜗轮支撑座,所述步进电机和所述蜗轮支撑座通过第一深沟球轴承相连接,所述第一深沟球轴承上设置有蜗轮,所述蜗杆支撑座通过第二深沟球轴承与蜗杆相连接,所述蜗杆与所述蜗轮相匹配,所述蜗杆的一端设置有滚珠丝杠。
优选的,所述转盘底座与所述转盘螺纹连接,所述转盘底座的中心设有固定轴,所述转盘设有与所述固定轴套接的轴承。
优选的,所述底座为金属底座,所述底座上设置有T型凹槽。
优选的,所述第一位移传感装置包括第一磁力表座、第一纵向悬臂第一横向悬臂和第一位移传感器,所述第一磁力表座磁吸于所述底座上,所述第一纵向悬臂的一端可旋转安装于所述第一磁力表座上,另一端可旋转安装于所述第一横向悬臂的一端,所述第一横向悬臂的另一端与所述位移传感器相连接,所述位移传感器与所述加载头相对设置于所述航空管路接头的两侧。
优选的,所述第一滑动部件包括相互连接的第一滑块和第一连接块,所述第一滑块与所述T型凹槽滑动连接,第一压力传感器固定于所述第一连接块的端面上。
优选的,所述航空管路接头包括螺母和接头体,在进行航空管路接头横向刚度测试时,所述加载头与所述螺母的端面相接触。
第二方面,本申请提供一种航空管路接头刚度的双向测量方法,包括如下步骤:
根据测量需要,调整旋转单元的位置,并预设步进电机的行进参数;
同步采集压力传感器输出的压力数据F和位移传感装置输出的位移数据△x;
根据K=F/△x,获取航空管路接头的刚度数据。
优选的,所述同步采集压力传感器输出的压力数据Fi和位移传感装置输出的位移数据△xi包括:同步采集压力传感器输出的多个压力数据Fi和位移传感装置输出的多个位移数据△xi;根据K=F/△x,获取航空管路接头的刚度数据包括:根据Ki=Fi/△xi,获取航空管路接头的刚度曲线。
本方案的有益效果如下:
本申请提供一种航空管路接头刚度的双向测量装置及方法,本装置包括底座、设置于所述底座上的管路接头固定单元、横向刚度测量单元、轴向刚度测量单元,以及位于所述管路接头固定单元和所述轴向刚度测量单元之间的旋转单元,其中,管路接头固定单元用于单边固定被测元件。横向刚度测量单元可通过第一传动机构为航空管路接头提供横向加载力,同时通过第一压力传感器和第一位移传感装置分别同步检测加载力的大小和被测元件在加载力作用下的横向位移,根据加载力和横向位移的比值即可获得航空管路接头的横向刚度。所述轴向刚度测量单元可通过第二传动机构为航空管路接头提供轴向加载力,同时通过第二位移传感装置同步检测被测元件在加载力作用下的轴向位移。本方案还设计了一种独特的旋转单元,该旋转单元可根据检测需要进行旋转,从而与横向刚度测量单元、轴向刚度测量单元相匹配,具体的,当需要进行横向刚度测量时,转盘旋转至第二固定底座靠近管路接头固定单元的一侧,安装于第二固定底座上的第二三爪卡盘与安装于管路接头固定单元的第一三爪卡盘相匹配,共同固定航空管路接头,以便横向刚度测量单元为航空管路接头提供稳定的加载力;当需要进行轴向刚度测量时,转盘旋转至第二滑动部件靠近管路接头固定单元的一侧,第二滑动部件可在第二传动机构的作用下移动,为航空管路接头提供加载力,同时安装于第二滑动部件上的第二压力传感器同步检测轴向加载力的大小,根据加载力和轴向位移的比值即可获得航空管路接头的轴向刚度。
本申请提供的航空管路接头刚度的双向测量装置,可根据需求直接测量航空管路接头的刚度值,避免了工程模拟过程中不可避免带入的误差和人为不确定因素,大幅提高航空管路接头刚度的测量精度,同时,本装置可通过压力传感器和位移传感器直接获取实时数据,并通过简单的比值计算即可获取其刚度数值,与现有试凑法相比较,可大幅提高航空管路接头刚度的测量效率。另外,本方案通过旋转单元的独特设计,可通过一套装置实现航空管路接头刚度的双向测量,设计精巧、操作简单,能够满足航空管路系统的设计和分析需求。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见的,对于本领域技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种航空管路接头刚度双向测量装置的结构示意图;
图2 为本发明实施例提供的一种航空管路接头刚度双向测量装置的侧面图;
图3 为本发明实施例提供的一种管路接头固定单元的结构示意图;
图4为本发明实施例提供的一种横向刚度测量单元的结构示意图;
图5 为本发明实施例提供的一种航空管路接头的结构示意图;
图6为本发明实施例提供的一种旋转单元的结构示意图;
图7 为本发明实施例提供的一种测量横向刚度时管路接头固定单元与旋转单元的连接示意图;
图8为本发明实施例提供的一种轴向刚度测量时本装置的结构示意图;
图9为本发明实施例提供的一种测量轴向刚度时管路接头固定单元与旋转单元的连接示意图;
图10为本发明实施例提供的一种第一传动机构的结构示意图;
图11为本发明实施例提供的一种转盘底座与所述转盘的连接示意图;
图12为本发明实施例提供的第一位移传感装置的结构示意图;
图13为本发明实施例提供的第一滑动部件的结构示意图;
图中所示:
1-底座、11-T型凹槽、2-管路接头固定单元、21-第一固定底座、22-第一三爪卡盘、23-固定杆、231-连接孔、3-横向刚度测量单元、31-第一传动机构、311-步进电机、312-蜗杆支撑座、313-蜗轮支撑座、314-第一深沟球轴承、315-蜗轮、316-第二深沟球轴承、317-蜗杆、318-滚珠丝杠、32-第一滑动部件、321-第一滑块、322-第一连接块、33-第一压力传感器、34-加载头、35-第一位移传感装置、351-第一磁力表座、352-第一纵向悬臂、353-第一横向悬臂、354-第一位移传感器、4-轴向刚度测量单元、41-第二传动机构、42-第二位移传感装置、5-旋转单元、51-转盘底座、511-固定轴、52-转盘、521-轴承、53-第二固定底座、54-第二滑动部件、55-滑槽、56-第二三爪卡盘、57-第二压力传感器、58-压力加载叉头、59-加载横杆、6-航空管路接头、61-螺母、62-接头体。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护范围。
针对现有刚度测量装置精度不足、效率低下的问题,本方案提供一种航空管路接头刚度的双向测量装置及方法。请参考图1和图2,所示分别为本发明实施例提供的一种航空管路接头刚度双向测量装置的结构示意图和一种航空管路接头刚度双向测量装置的侧面图。由图1和2可见,本申请提供的一种航空管路接头刚度的双向测量装置包括:底座1、设置于所述底座1上的管路接头固定单元2,与所述管路接头固定单元2垂直设置的横向刚度测量单元3、与所述管路接头固定单元2同向设置的轴向刚度测量单元4,以及位于所述管路接头固定单元2和所述轴向刚度测量单元4之间的旋转单元5。当需要对航空管路接头进行横向刚度的测量时,旋转单元5与管路接头固定单元2、横向刚度测量单元3相匹配;当需要对航空管路接头进行轴向刚度的测量时,旋转单元5通过旋转与管路接头固定单元2、轴向刚度测量单元4相匹配。
具体的,请参考图3,所示为本发明实施例提供的一种管路接头固定单元的结构示意图。由图3可见,管路接头固定单元2包括固定于底座1上的第一固定底座21,以及与第一固定底座21依次连接的第一三爪卡盘22和固定杆23,所述固定杆23的自由端设置有连接孔231,航空管路接头6套接于所述固定杆23外部。第一三爪卡盘22相对于其他固定元件,稳定性更强,且通过调整第一三爪卡盘22的爪间距还可以灵活适配不同直径的航空管路接头6。另外,航空管路接头6的内径与固定杆23的外径相匹配,航空管路接头6在固定杆23上不会出现滑动的现象。连接孔231与旋转单元5中的加载横杆59相匹配,加载横杆59可穿过连接孔231固定于固定杆23上,使得轴向刚度测量时,旋转单元5与管路接头固定单元2产生连接关系。
请参考图4,所示为本发明实施例提供的一种横向刚度测量单元的结构示意图。由图4可见,横向刚度测量单元3包括依次连接的第一传动机构31、第一滑动部件32、第一压力传感器33和加载头34,在进行航空管路接头横向刚度测试时,所述加载头34与所述航空管路接头6相接触。具体的,航空管路接头6可包括螺母61和接头体62请参考图5,在进行航空管路接头横向刚度测试时,所述加载头34与所述螺母61的端面相接触。
横向刚度测量单元3还包括第一位移传感装置35,所述第一位移传感装置35与所述加载头34相对设置于所述航空管路接头6的两侧(第一位移传感装置35在图4中未示出,具体位置关系请参考图1)。其中第一传动机构31用于在提供动力,第一滑动部件32在第一传动机构31的作用下移动,推动加载头34对航空管路接头6施加横向加载力,同时,第一压力传感器33和第一位移传感装置35同步检测横向加载力的大小和航空管路接头6位移的大小,通过二者的比值即可获得其横向刚度。由图1可见,轴向刚度测量单元4还包括第二传动机构41和第二位移传感装置42,同样的,第二传动机构41用于在提供动力,第二位移传感装置42可同步检测航空管路接头6轴向位移的大小。
请参考图6 ,所示为本发明实施例提供的一种旋转单元的结构示意图。由图6可见,旋转单元5包括转盘底座51,所述转盘底座51上安装有转盘52,转盘52可在转盘底座51上旋转,所述转盘52上依次设置有第二固定底座53和第二滑动部件54,所述第二固定底座53远离所述第二滑动部件54的侧面安装有第二三爪卡盘56,所述转盘52还设有与所述第二滑动部件54相匹配的滑槽55,所述第二滑动部件54沿着所述滑槽55方向上依次连接有第二压力传感器57、压力加载叉头58和加载横杆59,所述第二位移传感装置42与所述压力加载叉头58的位置相对应(第二位移传感装置42在图5中未示出,具体位置关系请参考图8)。加载横杆59与管路接头固定单元2中的连接孔231相匹配,加载横杆59可穿过连接孔231固定于固定杆23上,使得轴向刚度测量时,旋转单元5与管路接头固定单元2产生连接关系。
本申请提供一种航空管路接头刚度的双向测量装置及方法,本装置由管路接头固定单元2、横向刚度测量单元3、轴向刚度测量单元4、旋转单元5四大组件构成,其中,管路接头固定单元2用于单边固定被测元件航空管路接头。横向刚度测量单元3可通过第一传动机构31为航空管路接头提供横向加载力,同时通过第一压力传感器33和第一位移传感装置35分别同步检测加载力的大小和被测元件在加载力作用下的横向位移,根据加载力和横向位移的比值即可获得航空管路接头的横向刚度。轴向刚度测量单元4可通过第二传动机构41为航空管路接头提供轴向加载力,同时通过第二位移传感装置42同步检测被测元件在加载力作用下的轴向位移。本方案中独特的旋转单元5可根据检测需要进行旋转,从而与横向刚度测量单元3、轴向刚度测量单元4相匹配。
具体的,当需要进行横向刚度测量时,请参考图1和图2,转盘52旋转至第二固定底座53靠近管路接头固定单元2的一侧,安装于第二固定底座53上的第二三爪卡盘56与安装于第一固定底座21的第一三爪卡盘22相匹配,共同固定航空管路接头,以便横向刚度测量单元3为航空管路接头提供稳定的加载力(请参考图7);当需要进行轴向刚度测量时,请参考图8和图9,转盘52旋转至第二滑动部件54靠近管路接头固定单元2的一侧,第二滑动部件54可在第二传动机构41的作用下移动,为航空管路接头提供加载力,同时安装于第二滑动部件54上的第二压力传感器57同步检测轴向加载力的大小,根据加载力和轴向位移的比值即可获得航空管路接头的轴向刚度。
本申请提供的航空管路接头刚度的双向测量装置,可根据需求直接测量航空管路接头的刚度值,避免了工程模拟过程中不可避免带入的误差和人为不确定因素,大幅提高航空管路接头刚度的测量精度,同时,本装置可通过压力传感器和位移传感器直接获取实时数据,并通过简单的比值计算即可获取其刚度数值,与现有试凑法相比较,可大幅提高航空管路接头刚度的测量效率。另外,本方案通过旋转单元5的独特设计,可通过一套装置实现航空管路接头刚度的双向测量,设计精巧、操作简单,能够满足航空管路系统的设计和分析需求。
第一传动机构31和第二传动机构41是本装置的动力提供单元,二者可以是构成相同的结构单元,也可以是构造不同的结构单元。本实施例不限定其具体结构,能够提供稳定可控的推力均可。请参考图10,所示为为本发明实施例提供的一种第一传动机构31的结构示意图。由图10可见,本申请其他优选实施例中第一传动机构31包括步进电机311、蜗杆支撑座312、蜗轮支撑座313,所述步进电机311和所述蜗轮支撑座313通过第一深沟球轴承314相连接,所述第一深沟球轴承314上设置有蜗轮315,所述蜗杆支撑座312通过第二深沟球轴承316与蜗杆317相连接,所述蜗杆317与所述蜗轮315相匹配,所述蜗杆317的一端设置有滚珠丝杠318。在步进电机311进入工作状态后,驱动所述蜗轮315转动,带动所述蜗杆317转动,使得滚珠丝杠318驱动第一滑动部件32移动,从而为航空管路接头6提供加载力。相对应的,第二传动机构41也可以包括步进电机、蜗杆支撑座、蜗轮支撑座,所述步进电机和所述蜗轮支撑座通过第三深沟球轴承相连接,所述第三深沟球轴承上设置有蜗轮,所述蜗杆支撑座通过第四深沟球轴承与蜗杆相连接,所述蜗杆与所述蜗轮相匹配,所述蜗杆的一端设置有滚珠丝杠,这里不再附图表示和赘述。
本申请中,旋转单元5是本方案的独特设计,是实现一套装置同时双向刚度测量的关键部件。请参考图11,所示为本发明实施例提供的一种转盘底座与所述转盘的连接示意图。由图11可见,本申请优选实施例中,所述转盘底座51与所述转盘52螺纹连接,螺纹孔设置于转盘52的四个顶角上,所述转盘底座51的中心还设有固定轴511,所述转盘52设有与所述固定轴511套接的轴承521。在横向刚度或轴向刚度的测量过程中,转盘底座51与所述转盘52始终保持螺纹连接,以保持旋转单元5的整体稳定性。当需要旋转时,可先解除转盘底座51与所述转盘52的螺纹连接,再通过固定轴511旋转90度,以实现不同方向的刚度测量。另外,横向测量和轴向测量相互转换时,转盘52需要旋转的角度是90度,由于转盘52上螺纹孔的位置是对称设置的,其螺纹孔也是旋转角度的定位孔,在转盘52旋转后与转盘底座51的安装过程即为重新定位过程,能够提高加载力施加的精准度,同时提高检测效率。
在本申请的优选实施例中,所述底座1为金属底座,所述底座1上设置有T型凹槽11(请参考图2)。金属材质光滑、不易磨损,且硬度大,在金属底座上设置有T型凹槽11,可与不同滑块部件相配合,组合成为不同检测模块,方便拆卸、组装以及后续更改和调整。另外,金属底座可扩展多种安装方式,如磁吸、电磁吸等。
请参考图12,所示为本发明实施例提供的第一位移传感装置的结构示意图。由图12可见,本申请中,所述第一位移传感装置35还包括第一磁力表座351、第一纵向悬臂352、第一横向悬臂353和第一位移传感器354,所述第一磁力表座351磁吸于所述底座1上,所述第一纵向悬臂352的一端可旋转安装于所述第一磁力表座351上,另一端可旋转安装于所述第一横向悬臂353的一端,所述第一横向悬臂353的另一端与所述位移传感器354相连接,所述位移传感器354与所述加载头34相对设置于所述航空管路接头6的两侧。第一磁力表座351与底座1通过磁吸的方式相连接,便于拆卸和组装,另外,通过第一纵向悬臂352和第一横向悬臂353可调整第一位移传感器354的位置,便于更为精准的测量航空管路接头6的横向和轴向位置。
同样的,本发明中,第二位移传感装置42也可以包括第二磁力表座、第二纵向悬臂、第二横向悬臂和第二位移传感器,所述第二磁力表座磁吸于所述底座上,所述第二纵向悬臂的一端可旋转安装于所述第二磁力表座上,另一端可旋转安装于所述第二横向悬臂的一端,所述第二横向悬臂的另一端与所述位移传感器相连接。第二位移传感装置42结构设置与第一位移传感装置35类似,这里不再赘述。当测量测量航空管路接头6的横向刚度时,可将第二位移传感装置42取下,以减少测量过程中不必要的干扰因素,同样的,当测量测量航空管路接头6的轴向刚度时,也可将第一位移传感装置35取下。另外,第一位移传感装置35和第二位移传感装置42与与底座1的连接方式均不仅限于磁力吸附,也可以通过底座1上设置的T型凹槽11进行卡接。
另外,请参考图13,所示为本发明实施例提供的第一滑动部件的结构示意图。由图13可见,本申请优选实施例中,所述第一滑动部件32还可以包括相互连接的第一滑块321和第一连接块322,所述第一滑块321与所述T型凹槽11滑动连接,第一压力传感器33固定于所述第一连接块322的端面上,以便增强第一压力传感器33的稳定性,提高测量精度。
本申请还提供了一种航空管路接头刚度的双向测量方法,包括如下步骤:
S10:根据测量需要,调整旋转单元的位置,并预设步进电机的行进参数;
S20:同步采集压力传感器输出的压力数据F和位移传感装置输出的位移数据△x;
S30:根据K=F/△x,获取航空管路接头的刚度数据。
本方案通过预设步进电机的行进参数,为航空管路接头6提供一个固定的加载力,后台处理器则同步采集压力传感器输出的压力数据F和位移传感装置输出的位移数据△x,在根据简单的比值计算即可获取横向或者轴向的刚度值,采集和处理过程十分简单,耗时短、效率和精度均可得到保障。
进一步的,为了降低单一采样点存在的误差,本申请其他实施例还提出了优选方法,具体步骤如下:
S100:根据测量需要,调整旋转单元的位置,并预设步进电机的行进参数;
S200:同步采集压力传感器输出的多个压力数据Fi和位移传感装置输出的多个位移数据△xi;
S300:根据Ki=Fi/△xi,获取航空管路接头的刚度曲线。在刚度曲线上能够获取任意加载力下的刚度值,同时刚度曲线还可以排除误差较大的采样点,从而方法上进一步提高测量的准确性。
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护范围。

Claims (9)

1.一种航空管路接头刚度的双向测量装置,其特征在于,包括:底座(1)、设置于所述底座(1)上的管路接头固定单元(2),与所述管路接头固定单元(2)垂直设置的横向刚度测量单元(3)、与所述管路接头固定单元(2)同向设置的轴向刚度测量单元(4),以及位于所述管路接头固定单元(2)和所述轴向刚度测量单元(4)之间的旋转单元(5),其中,
所述管路接头固定单元(2)包括依次连接的第一固定底座(21)、第一三爪卡盘(22)和固定杆(23),所述固定杆(23)的自由端设置有连接孔(231),航空管路接头(6)套接于所述固定杆(23)外部;
所述横向刚度测量单元(3)包括依次连接的第一传动机构(31)、第一滑动部件(32)、第一压力传感器(33)和加载头(34),在进行航空管路接头横向刚度测试时,所述加载头(34)与所述航空管路接头(6)相接触,还包括第一位移传感装置(35),所述第一位移传感装置(35)与所述加载头(34)相对设置于所述航空管路接头(6)的两侧;
所述旋转单元(5)包括转盘底座(51),所述转盘底座(51)上安装有转盘(52),所述转盘(52)上依次设置有第二固定底座(53)和第二滑动部件(54),所述第二固定底座(53)远离所述第二滑动部件(54)的侧面安装有第二三爪卡盘(56),所述转盘(52)还设有与所述第二滑动部件(54)相匹配的滑槽(55),所述第二滑动部件(54)沿着所述滑槽(55)方向上依次连接有第二压力传感器(57)、压力加载叉头(58)和加载横杆(59);
所述轴向刚度测量单元(4)包括第二传动机构(41)和第二位移传感装置(42),所述第二位移传感装置(42)与所述压力加载叉头(58)的位置相对应。
2.根据权利要求1所述的装置,其特征在于,所述第一传动机构(31)包括步进电机(311)蜗杆支撑座(312)、蜗轮支撑座(313),所述步进电机(311)和所述蜗轮支撑座(313)通过第一深沟球轴承(314)相连接,所述第一深沟球轴承(314)上设置有蜗轮(315),所述蜗杆支撑座(312)通过第二深沟球轴承(316)与蜗杆(317)相连接,所述蜗杆(317)与所述蜗轮(315)相匹配,所述蜗杆(317)的一端设置有滚珠丝杠(318)。
3.根据权利要求1所述的装置,其特征在于,所述转盘底座(51)与所述转盘(52)螺纹连接,所述转盘底座(51)的中心设有固定轴(511),所述转盘(52)设有与所述固定轴(511)套接的轴承(521)。
4.根据权利要求1所述的装置,其特征在于,所述底座(1)为金属底座,所述底座(1)上设置有T型凹槽(11)。
5.根据权利要求1所述的装置,其特征在于,所述第一位移传感装置(35)包括第一磁力表座(351)、第一纵向悬臂(352)、第一横向悬臂(353)和第一位移传感器(354),所述第一磁力表座(351)磁吸于所述底座(1)上,所述第一纵向悬臂(352)的一端可旋转安装于所述第一磁力表座(351)上,另一端可旋转安装于所述第一横向悬臂(353)的一端,所述第一横向悬臂(353)的另一端与所述位移传感器(354)相连接,所述位移传感器(354)与所述加载头(34)相对设置于所述航空管路接头(6)的两侧。
6.根据权利要求4所述的装置,其特征在于,所述第一滑动部件(32)包括相互连接的第一滑块(321)和第一连接块(322),所述第一滑块(321)与所述T型凹槽(11)滑动连接,第一压力传感器(33)固定于所述第一连接块(322)的端面上。
7.根据权利要求1所述的装置,其特征在于,所述航空管路接头(6)包括螺母(61)和接头体(62),在进行航空管路接头横向刚度测试时,所述加载头(34)与所述螺母(61)的端面相接触。
8.一种航空管路接头刚度的双向测量方法,其特征在于,包括如下步骤:
根据测量需要,调整旋转单元的位置,并预设步进电机的行进参数;
同步采集压力传感器输出的压力数据F和位移传感装置输出的位移数据△x;
根据K=F/△x,获取航空管路接头的刚度数据。
9.根据权利要求8所述的方法,其特征在于,所述同步采集压力传感器输出的压力数据Fi和位移传感装置输出的位移数据△xi包括:同步采集压力传感器输出的多个压力数据Fi和位移传感装置输出的多个位移数据△xi;根据K=F/△x,获取航空管路接头的刚度数据包括:根据Ki=Fi/△xi,获取航空管路接头的刚度曲线。
CN202210192261.2A 2022-03-01 2022-03-01 一种航空管路接头刚度的双向测量装置和方法 Active CN114526879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210192261.2A CN114526879B (zh) 2022-03-01 2022-03-01 一种航空管路接头刚度的双向测量装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210192261.2A CN114526879B (zh) 2022-03-01 2022-03-01 一种航空管路接头刚度的双向测量装置和方法

Publications (2)

Publication Number Publication Date
CN114526879A true CN114526879A (zh) 2022-05-24
CN114526879B CN114526879B (zh) 2023-06-23

Family

ID=81624458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210192261.2A Active CN114526879B (zh) 2022-03-01 2022-03-01 一种航空管路接头刚度的双向测量装置和方法

Country Status (1)

Country Link
CN (1) CN114526879B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1751654A1 (ru) * 1990-11-22 1992-07-30 Белорусский Политехнический Институт Устройство дл контрол подшипников качени
CN102147320A (zh) * 2011-02-28 2011-08-10 西安理工大学 回转液压静压导轨轴向刚度和径向刚度试验方法及装置
CN103926077A (zh) * 2014-04-24 2014-07-16 清华大学 一种滚珠丝杠静动刚度综合测量装置
CN103940600A (zh) * 2014-04-16 2014-07-23 大连理工大学 一种套齿联轴器刚度测试装置和方法
CN108760275A (zh) * 2018-06-29 2018-11-06 上海第二工业大学 刀具-刀柄-主轴系统结合部静刚度分析装置及分析方法
CN110207981A (zh) * 2019-05-29 2019-09-06 南京理工大学 一种无损滚珠丝杠副静刚度测量装置
CN211205690U (zh) * 2020-02-02 2020-08-07 烟台大学 双测距航空带垫卡箍力学刚度参数检测装置
CN212180262U (zh) * 2020-04-30 2020-12-18 浙江兆丰机电股份有限公司 一种汽车轮毂轴承综合刚度测量试验装置
CN112414705A (zh) * 2020-12-02 2021-02-26 中国工程物理研究院机械制造工艺研究所 一种静压主轴\轴承用角刚度检测装置及方法
CN113466037A (zh) * 2021-06-16 2021-10-01 中国航发沈阳发动机研究所 针对卡箍动静态力学性能的一体化测试仪及其使用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1751654A1 (ru) * 1990-11-22 1992-07-30 Белорусский Политехнический Институт Устройство дл контрол подшипников качени
CN102147320A (zh) * 2011-02-28 2011-08-10 西安理工大学 回转液压静压导轨轴向刚度和径向刚度试验方法及装置
CN103940600A (zh) * 2014-04-16 2014-07-23 大连理工大学 一种套齿联轴器刚度测试装置和方法
CN103926077A (zh) * 2014-04-24 2014-07-16 清华大学 一种滚珠丝杠静动刚度综合测量装置
CN108760275A (zh) * 2018-06-29 2018-11-06 上海第二工业大学 刀具-刀柄-主轴系统结合部静刚度分析装置及分析方法
CN110207981A (zh) * 2019-05-29 2019-09-06 南京理工大学 一种无损滚珠丝杠副静刚度测量装置
CN211205690U (zh) * 2020-02-02 2020-08-07 烟台大学 双测距航空带垫卡箍力学刚度参数检测装置
CN212180262U (zh) * 2020-04-30 2020-12-18 浙江兆丰机电股份有限公司 一种汽车轮毂轴承综合刚度测量试验装置
CN112414705A (zh) * 2020-12-02 2021-02-26 中国工程物理研究院机械制造工艺研究所 一种静压主轴\轴承用角刚度检测装置及方法
CN113466037A (zh) * 2021-06-16 2021-10-01 中国航发沈阳发动机研究所 针对卡箍动静态力学性能的一体化测试仪及其使用方法

Also Published As

Publication number Publication date
CN114526879B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN108627344B (zh) 一种气浮球轴承性能检测装置及检测方法
CN110346137B (zh) 用于气浮球轴承承载特性测试的自动连续动态加载方法
US5795990A (en) Method and apparatus for measuring friction and wear characteristics of materials
US4805314A (en) Method and apparatus for spatial coordinate measurement
CN107829721A (zh) 一种适用于钻具姿态测量模块的动态测试装置
CN104880308B (zh) 一种主轴轴向力等静压加载装置
CN204115638U (zh) 曲轴轴颈随动测量装置
CN110207981B (zh) 一种无损滚珠丝杠副静刚度测量装置
JPH07174544A (ja) ロール真円度を測定して加工する装置および方法
WO2020238257A1 (zh) 一种用于刀具涂层摩擦性能测试的摩擦实验装置
CN111811450A (zh) 一种海管表面三维坐标测量仪
JPH02285209A (ja) 直交座標測定機とそのテーブルの回転軸線を決定する方法
CN106769428A (zh) 一种岩石试件轴心精确定位的四爪卡盘试验装置
CN111578978B (zh) 一种高精度传感器标定工作台
CN106504631A (zh) 基于悬浮技术的航天器十二自由度全物理模拟装置
CN113551909B (zh) 一种向心关节轴承试验台架
US7421795B2 (en) Sapphire alignment fixture
CN114526879A (zh) 一种航空管路接头刚度的双向测量装置和方法
CN112254961B (zh) 一种传动效率高低温测试装置
CN111156941B (zh) 一种车辆刹车片表面全跳动检测装置
WO2018201340A1 (zh) 一种在位测量圆环形平面形状误差的方法
JP2001194269A (ja) トラクション試験方法とその装置
CN212320665U (zh) 一种海管表面三维坐标测量仪
CN115267071A (zh) 一种旋转式管道缺陷检测实验平台及其运行方法
CN111623817B (zh) 一种高精度无磁速率转台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant