CN114518395B - 一种基于吸附态洛伊希瓦氏菌pv-4实现微生物电化学传感器即时检测的方法 - Google Patents

一种基于吸附态洛伊希瓦氏菌pv-4实现微生物电化学传感器即时检测的方法 Download PDF

Info

Publication number
CN114518395B
CN114518395B CN202111477245.XA CN202111477245A CN114518395B CN 114518395 B CN114518395 B CN 114518395B CN 202111477245 A CN202111477245 A CN 202111477245A CN 114518395 B CN114518395 B CN 114518395B
Authority
CN
China
Prior art keywords
shewanella
electrode
loihica
detection
electrochemical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111477245.XA
Other languages
English (en)
Other versions
CN114518395A (zh
Inventor
易越
罗霖
罗爱芹
梁阿新
毛执鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202111477245.XA priority Critical patent/CN114518395B/zh
Publication of CN114518395A publication Critical patent/CN114518395A/zh
Application granted granted Critical
Publication of CN114518395B publication Critical patent/CN114518395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

以电化学活性微生物(EAB)为核心的微生物电化学传感器(MEB),可以直接将待测物质信息转导为电信号,具有操作简单、检测迅速、灵敏度高、检测成本低等优势,在生物医学及环境监测领域具有良好的应用前景。即时检测是生物医学及环境监测领域的重要发展方向。然而,传统MEB均使用EAB所形成的成熟生物膜作为传感元件,这导致了冗长和复杂的传感器启动过程,无法满足即时检测的需求。为解决这一问题,本发明提出了一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV‑4实现微生物电化学传感器即时检测的方法,该方法不依赖成熟的EAB生物膜作为传感元件,避免了耗时的生物膜孵育过程。本发明能够突破性地实现MEB即时检测,对于推动MEB实际应用具有重要意义。

Description

一种基于吸附态洛伊希瓦氏菌PV-4实现微生物电化学传感器即时检测的方法
技术领域
本发明涉及微生物电化学技术领域,具体涉及一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现微生物电化学传感器即时检测的方法。
背景技术
生物传感器具有成本低廉、操作简单、选择性强和检测快速等特点,同时检测结果能够真实地反映样品的生物利用度信息,已广泛地应用于生物医学、食药分析、环境监测等领域。一般而言,生物传感器的检测原理主要包含两个过程,首先是利用生物元器件感应样品中的待测物质,然后将生物元器件与待测物质发生的生物学反应转换为电信号。最早所采用的生物元器件是酶,基于酶的特异性催化作用可以实现对目标物的选择性检测。此后,核酸、适配体、抗体、荧光蛋白等也被应用于生物传感器。然而,这些生物活性分子制备过程依赖极高的分子生物学专业技术,需要过表达、纯化、重构等复杂过程,限制了其实际应用。同时,现有的生物元器件与待测物质的生物学反应主要为产生光信号。例如广泛使用的免疫荧光技术的基本原理是生物元器件与待测物质结合后会产生荧光信号,另一项已产业化的酶联免疫吸附技术则是利用生物元器件与待测物质结合后可催化颜色反应的发生。但将待测物质浓度信息转导为荧光或色度等光信号后还需要借助复杂或昂贵的仪器实现光电转换,极大地增加了生物传感器的使用成本。更重要的是,光信号极易受环境和背景色彩的影响,导致检测结果出现假阴性或者假阳性,这也明显降低了检测结果的准确度和可重复性。
微生物电化学传感器(Microbial Electrochemical Sensor,MEB)有望解决这些问题。MEB的核心是电化学活性微生物(Electrochemical Actively Bacteria, EAB)。与其他环境微生物相比,EAB具有独特的胞外电子传递(Extracellular Electron Transfer,EET)功能,可以将呼吸链产生的电子传递至胞外形成输出电流(正向EET),或直接消耗输入电流完成能量代谢(反向EET)。因此,当EAB 与待测物质发生生化反应后,可以直接影响EET的电子传递速率,最终表现为输出/输入电流的变化。与其他生物传感器相比,EAB同时包含了生物活性物质和信号转导元件,不需要额外的信号转导过程即可将待测物质信息直接转导为电信号;同时,EAB作为完整的天然细胞,不需要基因工程、蛋白分离、纯化、重构等复杂的分子生物学技术,具有较低的技术门槛和使用成本,被认为是目前最有前景的生物传感器技术。
MEB技术首次报道于2003年,基于EAB的正向EET过程,韩国科学技术研究院ByungHong Kim教授团队率先实现了对生物利用度评价指标——生化需氧量的快速检测,将传统检测方法所需要5天的检测时间降低至4小时。该方法的基本原理是EAB可以将有机物中的化学能转化为电能,因此在EAB生物量保持稳定的条件下,输出电流与底物浓度在一定范围内具有良好的线性关系。2007 年,韩国科奥比研究院Mia Kim等人进一步地利用MEB检测了水质生物毒性。与其他水质生物毒性检测技术相比,采用这一技术成功突破了水质生物毒性实时快速检测的应用瓶颈。该方法的基本原理是利用EAB分解有机物产生的电信号,当水体中出现有毒物质时,EAB的电信号会出现下降,因此通过测量EAB的电信号即可检测水质毒性。与其他水质生物毒性检测技术相比,采用这一技术成功突破了水质生物毒性实时快速检测的应用瓶颈。2020年,我国刘红教授团队创新地采用EAB的正向和反向EET,利用MEB实现了对水体生化需氧量和硝态氮的同步快速检测。此外,MEB还被应用于检测癌症标志物富马酸、肠道微生物重要代谢产物氧化三甲胺等物质。这些方法的基本原理均是利用EAB可以直接吸收电子并还原待测物质,因此通过测量输入电流即可分析待测物质的浓度。与传统生物电化学传感器(例如酶电化学传感器或免疫电化学传感器)相比, MEB可以将电信号强度提升至毫安级别,比传统研究报道的结果高3-6个数量级,同时MEB检测的灵敏度可达到安/摩尔,也较以往研究提高了10-100倍。综上,MEB结合全细胞传感器和电化学传感器的特点,仅利用同一生物元器件即可同步实现待测物质识别与生物信号转导,具有高效、快捷、方便、低成本等优势,对生物医学及环境指标的快速检测具有重要意义。
尽管MEB具有检测成本低、灵敏度高、特异性强及易微型化等优势,但传统MEB均使用了EAB所形成的成熟生物膜作为传感元件,这导致了冗长和复杂的传感器启动过程(通常需要1-4周)。例如,北京航空航天大学刘红教授团队前期利用MEB检测水质生物毒性毒性的研究中,基于纯培养洛伊希瓦氏菌 (Shewanella loihica)PV-4的MEB启动时间约为8000分钟(约5.5天),而基于以Geobacter为优势菌群的混菌MEB启动时间约为12000分钟(约8.3天)。在另一项利用MEB同步检测水体生化需氧量和硝态氮的研究中,能够检测水体生化需氧量(具有正向EET能力)的EAB生物膜成熟时间约为8000分钟(约 5.5天),而能够检测水体硝态氮浓度(具有反向EET能力)的EAB生物膜成熟时间超过5000分钟(约3.5天)。因此,由于依赖成熟生物膜作为传感元件,MEB 使用前需要长达几周的启动和培养过程。然而,在复杂的实际使用环境中,对于 MEB所能够测量的指标(例如水体生化需氧量、水质生物毒性等)检测均存在着即时检测和应急检测的需求。因此,如何避免耗时的生物膜孵育过程、突破性地实现MEB即时检测,对于推动MEB实际应用具有重要意义。
生物膜是微生物所形成的有组织群体,其形成过程主要包括三个阶段。首先,处于悬浮状态下的微生物利用鞭毛等部件,从液相或者气相中迁移至固相载体表面,这称之为定殖阶段;当微生物迁移在载体表面后,微生物与载体的接触能够直接刺激微生物快速表达与胞外聚合物合成、分泌相关的通路,通过分泌大量的蛋白、多糖等物质提高微生物胞体与载体的结合力,即吸附阶段;最后,微生物通过生长增殖,形成具有一定厚度和致密程度的三维复杂且高度有序结构,达到生物膜的成熟阶段。传统MEB技术均基于EAB成熟生物膜,这主要是由于在尚未形成成熟生物膜的条件下,EAB可能不能产生电信号。例如此前基于混菌的研究发现,混菌EAB生物膜在成熟阶段产电量超过400mV,但其生物膜早期阶段产电量仅为1mV。有趣的是,发明人近期通过实验发现,模式EAB菌株洛伊希瓦氏菌(Shewanellaloihica)PV-4可以通过外膜具有氧化还原活性的细胞色素c等物质,当吸附在电极表面后即能够完成胞外电子传递过程,展现出明显的电化学活性。
因此,为了克服传统MEB依赖成熟生物膜的实际应用瓶颈,解决MEB无法即时检测的问题,本发明报道了采用吸附态洛伊希瓦氏菌(Shewanella loihica) PV-4作为传感元件,实现MEB即时检测的方法,具体为:
一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现微生物电化学传感器即时检测的方法,该方法的基本原理为当洛伊希瓦氏菌(Shewanella loihica) PV-4吸附在电极表面后,即洛伊希瓦氏菌(Shewanella loihica)PV-4处于生物膜早期阶段,具有明显的电化学活性和产生生物电信号的能力;该方法的特征在于,以具有正向和反向胞外电子传递能力的电化学活性微生物洛伊希瓦氏菌 (Shewanella loihica)PV-4为核心,将洛伊希瓦氏菌(Shewanella loihica)PV-4 菌体快速吸附在多孔电极表面,在不需要孵育成熟生物膜的条件下,构建微生物电化学传感器,并基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4产生的生物电信号,通过检测生物电信号强度变化,实现微生物电化学传感器的即时检测。
多孔电极包括碳纤维布、碳纤维纸、碳纤维毡、石墨毡、活性炭、玻璃纤维,利用多孔电极比表面积大、强吸附性的特性,实现将洛伊希瓦氏菌(Shewanella loihica)PV-4菌体快速吸附在多孔电极表面。
洛伊希瓦氏菌(Shewanella loihica)PV-4菌体,其处于对数生长期或稳定期,菌悬液在600nm处吸光度在0.5-2.0范围内。
微生物电化学传感器,包括工作电极、对电极和参比电极,其中工作电极为吸附有洛伊希瓦氏菌(Shewanella loihica)PV-4的碳纤维布,碳纤维布尺寸为 1cm*1cm,对电极为1mm*37mm的铂丝电极,参比电极为Ag/AgCl电极,传感器的工作体积为40mL。
该方法可构建能够即时检测氧化三甲胺或富马酸或水质生物毒性或生化需氧量的微生物电化学传感器。
该方法体操作流程为:
(1)利用Luria-Bertani培养基扩大化培养洛伊希瓦氏菌(Shewanella loihica)PV- 4,培养方式为好氧培养,环境温度设置为20.0±0.5℃,转速为150RPM,接种量为0.2%的体积比;
(2)培养12-18h后,洛伊希瓦氏菌(Shewanella loihica)PV-4已处于对数生长期或稳定期,菌悬液在600nm处吸光度为1.0-2.0,菌悬液保存备用;
(3)将菌悬液10000RPM离心10min,然后用浓度为10mM的4-羟乙基哌嗪乙磺酸缓冲液重悬,重悬后的重悬菌液在600nm处吸光度为2.0;
(4)将1cm*1cm的碳纤维布插入重悬菌液中1h,制备快速吸附了洛伊希瓦氏菌(Shewanella loihica)PV-4菌体的电极;
(5)在洁净工作台中组装电化学系统,电化学系统工作体积为40mL,包含工作电极、对电极和参比电极,其中工作电极为快速吸附了洛伊希瓦氏菌 (Shewanella loihica)PV-4菌体的电极,对电极为1mm*37mm的铂丝电极,参比电极为Ag/AgCl电极,电化学系统池体为圆柱形玻璃杯,池盖为聚四氟乙烯材质,电化学系统可密封运行;
(6)将三电极连接电化学工作站或恒电位仪;
(7)将DM电解液加入到生物电化学系统中,每升DM电解液中包含1g NaHCO3、0.13g KCl、0.027g CaCl2·2H2O、0.2g MgCl2·6H2O、5.85g NaCl和7.2g HEPES,将工作电极电势设置为0V,电解液以3.0mL/min自循环,待生物电信号稳定后,即可用于检测;
(8)根据待测样品调整工作电极电势设置方式,将待测样品注射加入到生物电化学系统中,或将待测样品直接替换生物电化学系统的DM电解液,通过测量洛伊希瓦氏菌(Shewanella loihica)PV-4产生的生物电信号以实现对氧化三甲胺或富马酸或水质生物毒性或生化需氧量的即时检测。
有益效果
本发明创造性地使用了吸附态的洛伊希瓦氏菌(Shewanella loihica)PV-4,即洛伊希瓦氏菌(Shewanella loihica)PV-4早期生物膜,作为微生物电化学传感器的传感元件和换能元件,能够避免传统基于成熟生物膜的微生物电化学传感器无法即时检测的问题,通过实施本发明的方法,能够在现有微生物电化学传感器研究和应用基础上,进一步地拓宽微生物电化学传感器的应用场景,满足实际环境检测需求。
例如,现有研究已经报道了微生物电化学传感器能够对水质生物毒性、生化需氧量实现高灵敏度、低成本的快速检测。但是,现有研究在检测这两个指标前,均需要长达1周至数周的传感器启动过程,启动过程用于孵育成熟的生物膜,这显然不能满足真实场景下对于这两个指标机动检测和应急检测的需求。而基于本方法,可以快速制备微生物电化学传感器,弥补了现有技术所存在的不足。
再比如,微生物电化学传感器已经被报道可以用于检测水体硝态氮,但是检测过程依赖成熟的具有反向胞外电子传递能力的生物膜。而这种生物膜一般需要先培养成熟的具有正向胞外电子传递能力的生物膜,再通过反极化进一步驯化其反向胞外电子传递能力得到。而通过本方法,可以快速、直接、即时地启动具有反向胞外电子传递能力的微生物电化学传感器,基于这种特性可以实现对硝态氮、富马酸、氧化三甲胺的即时检测。
此外,虽然现有研究也报道了利用悬浮态电化学活性微生物快速检测富马酸、氧化三甲胺的方法,但是这些方法均依赖于悬浮态电化学活性微生物,即使用高浓度的菌悬液作为电解液,检测过程中是将待测样品加入电解液进而被菌悬液高倍数稀释,这显然无法满足真实场景下应用。而基于本方法,制备了吸附于电极的洛伊希瓦氏菌(Shewanellaloihica)PV-4早期生物膜,将该电极作为工作电极,可以直接用于对待测样品的测试。
因此,通过与微生物电化学传感器已报道的研究相比,本研究能够克服已有研究中的不足,解决实际问题,具有良好的应用前景。
附图说明
图1为一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现MEB 即时检测的方法示意图;
图2为碳纤维布电极吸附洛伊希瓦氏菌(Shewanella loihica)PV-4前后的扫描电子显微镜图片和激光共聚焦图片;
图3为吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4在DM电解液的基线电流;
图4为基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4检测氧化三甲胺的电流-浓度曲线;
图5为基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4检测富马酸的电流-浓度曲线。
具体实施方式
实施例一:
本发明提出的一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现MEB即时检测的方法如图1所示,利用该方法能够实现基于MEB的氧化三甲胺(TMAO)即时检测。
首先培养洛伊希瓦氏菌(Shewanella loihica)PV-4。洛伊希瓦氏菌(Shewanellaloihica)PV-4(ATCC BAA-1088)购置于美国模式菌种收集中心并置于-80℃保存。使用前,将洛伊希瓦氏菌(Shewanella loihica)PV-4从-80℃冰箱取出后,梯度升温后按0.2%的比例接种于Luria-Bertani培养基中。接种后,在20℃环境中以150RPM转速过夜培养。当洛伊希瓦氏菌(Shewanella loihica)PV-4生长达到平台期后(OD600≈2),离心并用HEPES缓冲液重悬至OD600为2.0。最后,将洛伊希瓦氏菌(Shewanella loihica)PV-4菌悬液置于4℃保存,并用于构建基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4的MES。
然后,构建基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4的MES。组装3个完全相同的三电极电化学系统,各个电化学系统工作体积为40mL,均包括1cm*1cm碳纤维布作为工作电极,直径1mm的铂丝作为对电极,Ag/AgCl电极(0.205V vs.标准氢电极)作为参比电极。电化学系统组装前各组件均经过灭菌处理,其中Ag/AgCl电极经紫外照射和75%乙醇浸泡灭菌,其余组件经高温灭菌处理。各个电化学系统组装完成后,在洁净工作台中分别加入40mL的洛伊希瓦氏菌(Shewanella loihica)PV-4重悬菌液,当工作电极浸泡于重悬菌液1h 后,倒掉重悬菌液,此时基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4的 MES制备完成。
利用电子扫描显微镜(Scanning Electron Microscope,SEM)和激光共聚焦显微镜(Confocal Laser Scanning Microscopy,CLSM)技术探究吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4的微生物形态和活性。当工作电极浸泡于重悬菌液 1h后,经过取样、固定、脱水、风干和喷金处理后,利用SEM(JSM-5800,JEOL, Japan)观察电极表面微生物形态。同时,利用活死菌染色试剂盒对工作电极染色后,利用CLSM(TCS SP8,Leica,Germany)观察电极表面微生物活性。
通过对比工作电极在吸附洛伊希瓦氏菌(Shewanella loihica)PV-4前后的 SEM图片(图2a-d)可以发现,洛伊希瓦氏菌(Shewanella loihica)PV-4散落地分布在电极表面,与已报道的生物膜SEM图片相比,并未出现微生物群体聚集现象。通过CLSM也可以直观地观察到吸附过程中电极表面微生物的变化。对比图2e和图2f可以看到,经过1h吸附后,电极表面出现了大量的有活性洛伊希瓦氏菌(Shewanella loihica)PV-4。与此前已经报道的EAB三维代谢结构相比,经过1h吸附后,洛伊希瓦氏菌(Shewanella loihica)PV-4仅形成了单层结构,且并未充分覆盖电极表面。同时,考虑到大部分的洛伊希瓦氏菌(Shewanellaloihica)PV-4均能够直接与电极表面接触,这表明洛伊希瓦氏菌(Shewanella loihica)PV-4可以通过直接电子转移将电极上的电子转移至胞内。
通过制备3组基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4的MES (MES1-3)以即时检测TMAO。各组MES加入DM电解液,经除氧处理后,施加0V的恒电势和3mL/min的自循环,持续记录各组MES的输入电流。待输入电流稳定后,将相同体积但不同浓度的缺氧TMAO浓缩液依次加入到MES 中,记录MES检测不同浓度TMAO的输入电流。所检测的TMAO浓度从0μM 逐渐升高至250μM。各组MES检测TMAO完成后,利用Prism建立TMAO浓度与MES最大输入电流的标准曲线模型,并计算传感器的灵敏度和检测限。
如图3所示,当DM电解液中不含有TMAO时,MES表现出极低的背景电流(约为-0.50±0.07μA)。同时,背景电流几乎没有波动,这表明空白样品下MES 具有稳定的信号基线。通过注射的方式将高浓度TMAO浓缩液加入MES中,随着溶液中TMAO终浓度从0μM升高至25μM,MES的输入电流出现了明显的下降(峰值电流为-1.60±0.19μA)。当TMAO浓度从0μM逐渐升高至250μM,MES 的峰值电流也相应地明显升高。相比于约-0.5μA的基线信号,MES检测250μM 的TMAO时输入电流峰值达到了-6.66±0.38μA(图4a-b)。此前大量研究先后报道了MES的峰值电流面积和电流增加值与电子受体浓度间具有良好的线性关系,考虑到即时检测要求更短的检测时间和更高的信噪比,我们选择了利用MES 的电流增加值建立EAB生物电信号与TMAO浓度的关系(图4c)。利用Prism 的线性拟合功能建立TMAO浓度与MES电流增加值的关系模型,如公式(1) 所示:
y=0.02392x+0.2625                  (1)
其中y为TMAO浓度(μM),x为MES电流增加值(μA)。该模型的决定系数达到了0.989,这表明MES的电流增加值与TMAO浓度具有良好的线性关系,利用吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4可以准确地检测TMAO浓度。基于该标准模型,利用拟合直线斜率得到传感器检测TMAO的灵敏度为 23.92μA/μM,这与此前研究中基于固定化TMAO还原酶和分子印迹技术的电化学传感器相比,MES的检测结果具有超过10倍的灵敏度。同时,本研究基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4,不需要酶纯化、酶固定化或分子印迹膜制备等过程,满足即时检测的需求。
实施例二:
采用与实施例1相同的方法检测富马酸。如图5a所示,当DM电解液中不含有富马酸时,MES展现出稳定且较低的基线电流,基线电流水平约为-0.37μA。通过注射的方式分别检测了500μM、750μM、1000μM、1500μM的富马酸。如图 5b所示,当电解液中出现富马酸时,MES的输入电流产生了明显的峰值,同时峰值电流随着富马酸浓度增加而增加。具体而言,当检测500μM、750μM、 1000μM、1500μM的富马酸时,MES的输入电流峰值达到了-2.12μA、-2.91μA、 -3.59μA、-4.3μA。与检测TMAO相似,我们同样地利用了MES的电流增加值建立EAB生物电信号与富马酸浓度的关系(图5c)。利用Prism的线性拟合功能建立富马酸浓度与MES电流增加值的关系模型,如公式(2)所示:
y=0.002564x+0.2998                 (2)
其中y为富马酸浓度(μM),x为MES电流增加值(μA)。该模型的决定系数达到了0.964,这表明MES的电流增加值与富马酸浓度具有良好的线性关系,利用吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4可以准确地检测富马酸浓度。基于该标准模型,利用拟合直线斜率得到传感器检测富马酸的灵敏度为 2.564μA/μM。与此前研究中基于高效液相色谱的检测技术相比,本研究中基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4的MES,不需要昂贵的检测仪器和复杂的样品预处理过程,满足即时检测的需求;与此前研究中基于绿色荧光蛋白的检测技术相比,本方法能够直接将富马酸浓度转导为电信号,不需要昂贵的光电信号转导元件,具有操作简单、成本低的优点。

Claims (5)

1.一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现微生物电化学传感器即时检测的方法,其特征在于:以具有正向和反向胞外电子传递能力的电化学活性微生物洛伊希瓦氏菌(Shewanella loihica)PV-4为核心,将洛伊希瓦氏菌(Shewanellaloihica)PV-4菌体快速吸附在多孔电极表面,在不需要孵育成熟生物膜的条件下,构建微生物电化学传感器,其中,所述洛伊希瓦氏菌(Shewanella loihica)PV-4菌体,其处于对数生长期或稳定期,当洛伊希瓦氏菌(Shewanella loihica)PV-4吸附在电极表面后,洛伊希瓦氏菌(Shewanella loihica)PV-4处于生物膜早期阶段,具有明显的电化学活性和产生生物电信号的能力;将吸附态的所述洛伊希瓦氏菌(Shewanella loihica)PV-4构建的所述微生物电化学传感器中加入样本,所述洛伊希瓦氏菌(Shewanella loihica)PV-4产生生物电信号,随后检测生物电信号强度变化,进而实现微生物电化学传感器对样本的指定指标的即时检测;所述样本的指定指标包括氧化三甲胺或富马酸或水质生物毒性或生化需氧量。
2.如权利要求1所述的一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现微生物电化学传感器即时检测的方法,其特征在于:所述多孔电极包括碳纤维布、碳纤维纸、碳纤维毡、石墨毡、活性炭、玻璃纤维,利用多孔电极比表面积大、强吸附性的特性,实现将洛伊希瓦氏菌(Shewanella loihica)PV-4菌体快速吸附在多孔电极表面。
3.如权利要求1所述的一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现微生物电化学传感器即时检测的方法,其特征在于:所述洛伊希瓦氏菌(Shewanellaloihica)PV-4菌体,其处于对数生长期或稳定期,菌悬液在600nm处吸光度在0.5-2.0范围内。
4.如权利要求1所述的一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现微生物电化学传感器即时检测的方法,其特征在于:所述的微生物电化学传感器,包括工作电极、对电极和参比电极,其中工作电极为吸附有洛伊希瓦氏菌(Shewanella loihica)PV-4的碳纤维布,碳纤维布尺寸为1cm*1cm,对电极为1mm*37mm的铂丝电极,参比电极为Ag/AgCl电极,传感器的工作体积为40mL。
5.如权利要求1所述的一种基于吸附态洛伊希瓦氏菌(Shewanella loihica)PV-4实现微生物电化学传感器即时检测的方法,其特征在于:具体操作流程为:
(1)利用Luria-Bertani培养基扩大化培养洛伊希瓦氏菌(Shewanella loihica)PV-4,培养方式为好氧培养,环境温度设置为20.0±0.5℃,转速为150RPM,接种量为0.2%的体积比;
(2)培养12-18h后,洛伊希瓦氏菌(Shewanella loihica)PV-4已处于对数生长期或稳定期,菌悬液在600nm处吸光度为1.0-2.0,菌悬液保存备用;
(3)将菌悬液10000RPM离心10min,然后用浓度为10mM的4-羟乙基哌嗪乙磺酸缓冲液重悬,重悬后的重悬菌液在600nm处吸光度为2.0;
(4)将1cm*1cm的碳纤维布插入重悬菌液中1h,制备快速吸附了洛伊希瓦氏菌(Shewanella loihica)PV-4菌体的电极;
(5)在洁净工作台中组装电化学系统,电化学系统工作体积为40mL,包含工作电极、对电极和参比电极,其中工作电极为快速吸附了洛伊希瓦氏菌(Shewanella loihica)PV-4菌体的电极,对电极为1mm*37mm的铂丝电极,参比电极为Ag/AgCl电极,电化学系统池体为圆柱形玻璃杯,池盖为聚四氟乙烯材质,电化学系统可密封运行;
(6)将三电极连接电化学工作站或恒电位仪;
(7)将DM电解液加入到生物电化学系统中,每升DM电解液中包含1g NaHCO3、0.13g KCl、0.027g CaCl2·2H2O、0.2g MgCl2·6H2O、5.85g NaCl和7.2g HEPES,将工作电极电势设置为0V,电解液以3.0mL/min自循环,待生物电信号稳定后,即可用于检测;
(8)根据待测样品调整工作电极电势设置方式,将待测样品注射加入到生物电化学系统中,或将待测样品直接替换生物电化学系统的DM电解液,通过测量洛伊希瓦氏菌(Shewanella loihica)PV-4产生的生物电信号以实现对氧化三甲胺或富马酸或水质生物毒性或生化需氧量的即时检测。
CN202111477245.XA 2021-12-06 2021-12-06 一种基于吸附态洛伊希瓦氏菌pv-4实现微生物电化学传感器即时检测的方法 Active CN114518395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111477245.XA CN114518395B (zh) 2021-12-06 2021-12-06 一种基于吸附态洛伊希瓦氏菌pv-4实现微生物电化学传感器即时检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111477245.XA CN114518395B (zh) 2021-12-06 2021-12-06 一种基于吸附态洛伊希瓦氏菌pv-4实现微生物电化学传感器即时检测的方法

Publications (2)

Publication Number Publication Date
CN114518395A CN114518395A (zh) 2022-05-20
CN114518395B true CN114518395B (zh) 2023-05-05

Family

ID=81596206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111477245.XA Active CN114518395B (zh) 2021-12-06 2021-12-06 一种基于吸附态洛伊希瓦氏菌pv-4实现微生物电化学传感器即时检测的方法

Country Status (1)

Country Link
CN (1) CN114518395B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858891B (zh) * 2022-06-07 2023-06-27 北京航空航天大学 一种基于磁性力构建电化学传感器生物传感元件的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270915B1 (en) * 2008-03-28 2017-05-03 Japan Science and Technology Agency Microbial fuel cell
CN106770563B (zh) * 2015-11-24 2019-04-26 中国科学院理化技术研究所 一种双电子介体电化学生物传感器及其应用
CN106226372B (zh) * 2016-07-08 2019-07-26 东南大学 一种可以提高产电菌产电效率的修饰ito电极及其制备方法
US20210061687A1 (en) * 2019-08-26 2021-03-04 Board Of Trustees Of Michigan State University Functionalization of electrodes with electricigenic microorganisms and uses thereof
CN111175356B (zh) * 2020-01-16 2021-03-16 北京航空航天大学 一种基于电化学活性微生物同步检测bod和硝态氮的方法
CN111948272B (zh) * 2020-07-30 2022-07-12 北京航空航天大学 一种基于人工神经网络的水质生物毒性预测方法
CN113358722B (zh) * 2021-04-12 2022-08-02 北京航空航天大学 一种基于悬浮态电化学活性微生物实现水质毒性快速检测的方法
CN113376226B (zh) * 2021-06-08 2022-07-12 北京航空航天大学 一种通过反转产电菌的胞外电子传递方向强化其检测水质毒性的方法
CN113607793B (zh) * 2021-07-28 2023-11-17 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种构建具有高活性的生物膜催化电极的方法

Also Published As

Publication number Publication date
CN114518395A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
Chen et al. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell
Cheng et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms
Xu et al. Microbial biosensors for environmental monitoring and food analysis
Yong et al. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin
Matsunaga et al. Detection of microbial cells by cyclic voltammetry
Matsunaga et al. Electrode system for the determination of microbial populations
Arlyapov et al. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly (vinyl alcohol) modified by N-vinylpyrrolidone
Yudina et al. A yeast co-culture-based biosensor for determination of waste water contamination levels
CN113358722B (zh) 一种基于悬浮态电化学活性微生物实现水质毒性快速检测的方法
Pola-López et al. Novel arsenic biosensor “POLA” obtained by a genetically modified E. coli bioreporter cell
CN114518395B (zh) 一种基于吸附态洛伊希瓦氏菌pv-4实现微生物电化学传感器即时检测的方法
CN106525943A (zh) 一种表面蛋白压印自供能生物燃料电池传感器的构建方法及其应用
Cheng et al. Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode
Li et al. A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection
Niwa et al. Continuous monitoring of L-glutamate released from cultured nerve cells by an online sensor coupled with micro-capillary sampling
Matsunaga et al. Electrochemical determination of cell populations
Zhang et al. A novel immunosensor for Enterobacter sakazakii based on multiwalled carbon nanotube/ionic liquid/thionine modified electrode
Dixon et al. The control and measurement of ‘CO2’during fermentations
Jeon et al. Development of a photoelectrochemical sensor for monitoring algal biomass (Chlorella vulgaris)
Zhuang et al. A brief review on recent development of multidisciplinary engineering in fermentation of Saccharomyces cerevisiae
CN102392069A (zh) 基于功能化纳米金电极的快速检测菌落总数的方法
Dai et al. A highly performing electrochemiluminescent biosensor for glucose based on a polyelectrolyte-chitosan modified electrode
Congdon et al. Early detection of Candida albicans biofilms at porous electrodes
CN106979961A (zh) 作为过氧化氢传感器的修饰玻碳电极的制备方法及其应用
CN111537584A (zh) 一种亚甲基蓝-纳米花、电化学适配体生物传感器体系及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant