CN114509318A - 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法 - Google Patents

一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法 Download PDF

Info

Publication number
CN114509318A
CN114509318A CN202210067444.1A CN202210067444A CN114509318A CN 114509318 A CN114509318 A CN 114509318A CN 202210067444 A CN202210067444 A CN 202210067444A CN 114509318 A CN114509318 A CN 114509318A
Authority
CN
China
Prior art keywords
welding
restraint
crack
cracking
cold crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210067444.1A
Other languages
English (en)
Other versions
CN114509318B (zh
Inventor
韩永典
钟史放
徐连勇
荆洪阳
赵雷
郝康达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202210067444.1A priority Critical patent/CN114509318B/zh
Publication of CN114509318A publication Critical patent/CN114509318A/zh
Application granted granted Critical
Publication of CN114509318B publication Critical patent/CN114509318B/zh
Priority to US17/954,682 priority patent/US11703497B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/207Welded or soldered joints; Solderability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0064Initiation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,包括以下步骤:S1、通过对失效件的裂纹进行宏观分析、金相分析、断口分析及硬度分析,以获得产生冷裂纹失效的主要原因;S2、设计并加工专用试样,对专用试样进行不同预热温度下的刚性拘束裂纹试验,获得试样开裂/不开裂的临界拘束应力σ1cr。本发明通过将刚性拘束裂纹试验用于焊接横向裂纹的敏感性评价中,可准确模拟焊接接头承受的外部拘束条件,并能够真实地反映焊接接头在实际工况中的受力状态,大幅提高整体的评价精度,为精准评价管节点的焊接冷裂性,进而设计焊接技术(母材、焊材、焊接工艺及拘束水平)以抑制冷裂纹开裂具有重要的理论意义和工程价值。

Description

一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法
技术领域
本发明属于焊接裂纹技术领域,具体涉及一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法。
背景技术
虽然高强钢在海洋工程导管架结构中被广泛应用,但其在焊接施工中的冷裂纹问题较为突出,且因管节点冷裂纹滞后性导致的危害也甚为严重。目前用于评价焊缝及热影响区的纵向冷裂纹敏感性的方法较多,且相对完善;而针对焊接横向裂纹的评价方法却相对较少,且存在其自身的局限性,即拘束度固定不可调节,对于焊后同时出现开裂的焊材或焊接工艺无法比较其优劣性。
另外,由于现有焊接横向裂纹的评价方法拘束度大小固定且偏严格,焊后应力状态无法与实际工程结构达到同一水平,这就使其不能真实地评价实际工程中横向裂纹的敏感性,进而容易造成当海洋平台结构导管架K/T/Y管节点相贯线焊缝出现大量横向裂纹后,无合适的方法进行准确评价的问题。
因此,针对上述技术问题,有必要提供一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法。
发明内容
为精确评价管节点的焊接冷裂性,进而设计焊接技术抑制横向冷裂纹开裂,本发明提出了一种基于失效件冷裂原因分析、焊接冷裂试验(刚性拘束裂纹试验)及有限元数值模拟分析的导管架典型节点焊接冷裂性的定量评价方法,并基于该方法得到横向冷裂纹敏感性与开裂机理的关系提出有效抑制冷裂纹的措施。
为了实现上述目的,本发明一实施例提供的技术方案如下:
一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,包括以下步骤:
S1、通过对失效件的裂纹进行宏观分析、金相分析、断口分析及硬度分析,以获得产生冷裂纹失效的主要原因;
S2、设计并加工专用试样,对专用试样进行不同预热温度下的刚性拘束裂纹试验,获得试样开裂/不开裂的临界拘束应力σ1cr
S3、测量不同预热温度下的刚性拘束裂纹试验的试样的扩散氢含量;
S4、将S2中获取的临界拘束应力σ1cr和S3中测量的扩散氢含量进行拟合,得到焊缝横向冷裂纹的临界开裂方程;
S5、对导管架典型节点焊接拘束应力的数值模拟计算,分析管节点危险点拘束应力和扩散氢含量;
S6、结合数值模拟得到的危险点拘束应力、扩散氢含量和刚性拘束裂纹试验得到的临界开裂方程,对导管架典型节点焊接冷裂性进行定量评价;
S7、基于失效分析、刚性拘束裂纹试验得到的临界开裂方程及数值模拟分析结果,提出抑制焊接横向冷裂纹的有效措施,为导管架典型节点焊接设计提供相关依据。
进一步地,所述S2中的专用试样需经焊前处理,所述焊前处理包括:清理坡口毛刺和通过酒精或丙酮去除坡口表面油污。
进一步地,所述专用试样的坡口为30°,钝边1mm,焊接时根部间隙2mm。
进一步地,所述坡口毛刺通过挫刀或砂轮清理,并采用砂轮机打磨直至露出金属光泽,所述坡口表面去油污的时长为2-3h。
进一步地,所述S2中专用试样形式的焊缝方向与受力方向一致且能够产生焊接横向裂纹,同时适用于刚性拘束裂纹试验。
进一步地,所述S2中刚性拘束裂纹试验是通过刚性可调拘束试验机实现的,即专用试样固定于刚性可调拘束试验机上,在有拘束的情况下进行焊接,使得拘束应力保持载荷48h,重复进行多组试验,并不断调整试样的拘束度,获得开裂/不开裂的临界拘束应力。
进一步地,所述S3中的扩散氢含量是通过气相色谱法进行测量的,且每组试验需进行多次测量,取多次测量结果的平均值。
进一步地,所述S4中的焊缝横向冷裂纹的临界开裂方程用于计算在一定应力下避免冷裂纹的临界扩散氢含量与在一定焊缝扩散氢含量下避免焊缝冷裂纹的临界应力。
进一步地,所述S5中的数值模拟需根据真实焊接工艺模拟实际焊接过程,计算焊后的应力场和扩散氢含量,分析比较得到危险点的拘束应力与扩散氢含量。
进一步地,所述S7中的抑制焊接横向冷裂纹的有效措施包括调控实际工程结构的拘束水平、母材和焊材的扩散氢含量、优化焊接工艺。
与现有技术相比,本发明具有以下优点:
本发明通过将刚性拘束裂纹试验用于焊接横向裂纹的敏感性评价中,可准确模拟焊接接头承受的外部拘束条件,并能够真实地反映焊接接头在实际工况中的受力状态,大幅提高整体的评价精度,为精准评价管节点的焊接冷裂性,进而设计焊接技术(母材、焊材、焊接工艺及拘束水平)以抑制冷裂纹开裂具有重要的理论意义和工程价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中产生横向裂纹专用试样示意图。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述。但该等实施方式并不限制本发明,本领域的普通技术人员根据该等实施方式所做出的结构、方法或功能上的变换均包含在本发明的保护范围内。
本发明公开了一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,参考图1所示,包括以下步骤:
S1、通过对失效件的裂纹进行宏观分析、金相分析、断口分析及硬度分析,以获得产生冷裂纹失效的主要原因;
S2、设计并加工专用试样,对专用试样进行不同预热温度下的刚性拘束裂纹试验,获得试样开裂/不开裂的临界拘束应力σ1cr
S3、测量不同预热温度下的刚性拘束裂纹试验的试样的扩散氢含量;
S4、将S2中获取的临界拘束应力σ1cr和S3中测量的扩散氢含量进行拟合,得到焊缝横向冷裂纹的临界开裂方程;
S5、对导管架典型节点焊接拘束应力的数值模拟计算,分析管节点危险点拘束应力和扩散氢含量;
S6、结合数值模拟得到的危险点拘束应力、扩散氢含量和刚性拘束裂纹试验得到的临界开裂方程,对导管架典型节点焊接冷裂性进行定量评价;
S7、基于失效分析、刚性拘束裂纹试验得到的临界开裂方程及数值模拟分析结果,提出抑制焊接横向冷裂纹的有效措施,为导管架典型节点焊接设计提供相关依据。
在本实施例中,S1中的宏观分析用于检查失效件中是否存在裂纹,除通过肉眼直接外观检查和敲击测音外,还可用无损探伤法检测裂纹,当裂纹极为细小时,也可借助光学显微镜和电子显微镜来微裂纹的存在。
其中,S2中的专用试样需经焊前处理,焊前处理包括:清理坡口毛刺和通过酒精或丙酮去除坡口表面油污。
另外,专用试样的坡口为30°,钝边1mm,焊接时根部间隙2mm,且坡口毛刺通过挫刀或砂轮清理,并采用砂轮机打磨直至露出金属光泽,坡口表面去油污的时长为2-3h。
具体地,S2中专用试样形式的焊缝方向与受力方向一致且能够产生焊接横向裂纹,同时适用于刚性拘束裂纹试验。
此外,S2中刚性拘束裂纹试验是通过刚性可调拘束试验机实现的,即专用试样固定于刚性可调拘束试验机上,在有拘束的情况下进行焊接,使得拘束应力保持载荷48h,重复进行多组试验,并不断调整试样的拘束度,获得开裂/不开裂的临界拘束应力。
在本实施例中,S3中的扩散氢含量是通过气相色谱法进行测量的,且每组试验需进行多次测量,为减小试验误差,在保证试验数据无误的情况下取平均值。
其中,在采用气相色谱法测量扩散氢含量时,需要进行积氢处理,即需要将装有试样的收集器置于(45土1)℃恒温箱内,存放72h,待扩散氢完全收集结束;
另外,气相色谱法还需要进行活化处理,且固定相需填充30-40目分子筛固体吸附剂,主要用于惰性气体、H2、02、N2、CO2、CH4等-般气体及低沸点有机物的分析。
具体地,活化处理方法为粉碎过筛在550-600℃下烘烤4小时。
在本实施例中,S4中的焊缝横向冷裂纹的临界开裂方程用于计算在一定应力下避免冷裂纹的临界扩散氢含量与在一定焊缝扩散氢含量下避免焊缝冷裂纹的临界应力。
其中,焊缝横向冷裂纹的临界开裂方程为:σ1cr+120×lnH=546.8,即在G-BOP试验的基础上,通过调整保护气体露点,改变焊缝扩散氢含量,并测得焊缝不同临界预热温度,通过回归分析得到的焊缝横向冷裂纹临界开裂方程。
具体地,焊缝横向冷裂纹的临界开裂方程的获取方法和步骤为现有技术,这里不做过多的赘述。
在本实施例中,S5中的数值模拟需根据真实焊接工艺模拟实际焊接过程,计算焊后的应力场和扩散氢含量,分析比较得到危险点的拘束应力与扩散氢含量。
其中,焊接工艺包括以下步骤:
S501、采用机械加工的方式加工刚性拘束冷裂机专用试样;
S502、将试板安装在刚性拘束冷裂机上,两两组装对接,采用砂轮和钢丝刷将待焊接中间部位的表面铁锈、油污、氧化皮等清理干净,并用酒精擦洗,安装引伸计,确定拘束距离,同时保证水平;
S503、焊前准备好感应预热装置并设置预热温度(66℃),在试板背面安装测温的热电偶,安装位置在坡口两侧25mm处;
S504、选择合适的焊接工艺,确定焊接热输入、焊丝、保护气体。选用DW-A55L焊丝和保护气体为20%Ar+80%CO2混合气体进行焊接;
S505、焊接完成后在室温下放置48h,观察48h内,试板是否会断裂或产生裂纹,并记录相应拘束度。
在本实施例中,S7中的抑制焊接横向冷裂纹的有效措施包括调控实际工程结构的拘束水平、母材和焊材的扩散氢含量、优化焊接工艺。
其中,优化焊接工艺可以通过改变预热条件和焊接热输入等方式实现。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施例加以描述,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

1.一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,包括以下步骤:
S1、通过对失效件的裂纹进行宏观分析、金相分析、断口分析及硬度分析,以获得产生冷裂纹失效的主要原因;
S2、设计并加工专用试样,对专用试样进行不同预热温度下的刚性拘束裂纹试验,获得试样开裂/不开裂的临界拘束应力σ1cr
S3、测量不同预热温度下的刚性拘束裂纹试验的试样的扩散氢含量;
S4、将S2中获取的临界拘束应力σ1cr和S3中测量的扩散氢含量进行拟合,得到焊缝横向冷裂纹的临界开裂方程;
S5、对导管架典型节点焊接拘束应力的数值模拟计算,分析管节点危险点拘束应力和扩散氢含量;
S6、结合数值模拟得到的危险点拘束应力、扩散氢含量和刚性拘束裂纹试验得到的临界开裂方程,对导管架典型节点焊接冷裂性进行定量评价;
S7、基于失效分析、刚性拘束裂纹试验得到的临界开裂方程及数值模拟分析结果,提出抑制焊接横向冷裂纹的有效措施,为导管架典型节点焊接设计提供相关依据。
2.根据权利要求1所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述S2中的专用试样需经焊前处理,所述焊前处理包括:清理坡口毛刺和通过酒精或丙酮去除坡口表面油污。
3.根据权利要求2所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述专用试样的坡口为30°,钝边1mm,焊接时根部间隙2mm。
4.根据权利要求2所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述坡口毛刺通过挫刀或砂轮清理,并采用砂轮机打磨直至露出金属光泽,所述坡口表面去油污的时长为2-3h。
5.根据权利要求1所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述S2中专用试样形式的焊缝方向与受力方向一致且能够产生焊接横向裂纹,同时适用于刚性拘束裂纹试验。
6.根据权利要求1所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述S2中刚性拘束裂纹试验是通过刚性可调拘束试验机实现的,即专用试样固定于刚性可调拘束试验机上,在有拘束的情况下进行焊接,使得拘束应力保持载荷48h,重复进行多组试验,并不断调整试样的拘束度,获得开裂/不开裂的临界拘束应力。
7.根据权利要求1所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述S3中的扩散氢含量是通过气相色谱法进行测量的,且每组试验需进行多次测量,取多次测量结果的平均值。
8.根据权利要求1所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述S4中的焊缝横向冷裂纹的临界开裂方程用于计算在一定应力下避免冷裂纹的临界扩散氢含量与在一定焊缝扩散氢含量下避免焊缝冷裂纹的临界应力。
9.根据权利要求1所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述S5中的数值模拟需根据真实焊接工艺模拟实际焊接过程,计算焊后的应力场和扩散氢含量,分析比较得到危险点的拘束应力与扩散氢含量。
10.根据权利要求1所述的一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法,其特征在于,所述S7中的抑制焊接横向冷裂纹的有效措施包括调控实际工程结构的拘束水平、母材和焊材的扩散氢含量、优化焊接工艺。
CN202210067444.1A 2022-01-20 2022-01-20 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法 Active CN114509318B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210067444.1A CN114509318B (zh) 2022-01-20 2022-01-20 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法
US17/954,682 US11703497B1 (en) 2022-01-20 2022-09-28 Quantitative evaluation method for sensitivity of welding transverse cold cracks in typical joint of jacket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210067444.1A CN114509318B (zh) 2022-01-20 2022-01-20 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法

Publications (2)

Publication Number Publication Date
CN114509318A true CN114509318A (zh) 2022-05-17
CN114509318B CN114509318B (zh) 2022-09-13

Family

ID=81548927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210067444.1A Active CN114509318B (zh) 2022-01-20 2022-01-20 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法

Country Status (2)

Country Link
US (1) US11703497B1 (zh)
CN (1) CN114509318B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517002A (zh) * 2014-09-02 2015-04-15 中国石油天然气集团公司 一种管道环焊缝冷裂敏感性试验方法
CN104713760A (zh) * 2015-02-16 2015-06-17 天津大学 焊接横向裂纹敏感性评价用带横向通槽试件及评价方法
CN106053477A (zh) * 2016-06-27 2016-10-26 山东大学 一种高强度钢搭接接头焊接裂纹敏感性的评定方法
CN107764721A (zh) * 2016-08-23 2018-03-06 张宇 金属材料延迟裂纹敏感性评价方法
CN112432862A (zh) * 2020-11-05 2021-03-02 上海交通大学 一种焊接热裂纹敏感性的综合评价方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110077051A (ko) * 2009-12-30 2011-07-07 주식회사 포스코 용접금속의 확산성 수소 측정용 시편 제조장치
CN105945443A (zh) * 2016-05-19 2016-09-21 上海振华重工(集团)股份有限公司 大厚板返修焊横向裂纹控制方法
CN106735996A (zh) * 2016-12-27 2017-05-31 渤海造船厂集团有限公司 一种无损检测培训用焊缝横向裂纹制备方法
CN112067781B (zh) * 2020-08-21 2023-09-19 平顶山平煤机煤矿机械装备有限公司 用于液压支架结构件焊接冷裂纹敏感性的试验方法
CN112775579B (zh) * 2021-01-11 2022-04-26 中车青岛四方机车车辆股份有限公司 一种焊接热裂纹敏感性测试装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517002A (zh) * 2014-09-02 2015-04-15 中国石油天然气集团公司 一种管道环焊缝冷裂敏感性试验方法
CN104713760A (zh) * 2015-02-16 2015-06-17 天津大学 焊接横向裂纹敏感性评价用带横向通槽试件及评价方法
CN106053477A (zh) * 2016-06-27 2016-10-26 山东大学 一种高强度钢搭接接头焊接裂纹敏感性的评定方法
CN107764721A (zh) * 2016-08-23 2018-03-06 张宇 金属材料延迟裂纹敏感性评价方法
CN112432862A (zh) * 2020-11-05 2021-03-02 上海交通大学 一种焊接热裂纹敏感性的综合评价方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王海波: ""厚板承载结构中的焊接横向裂纹产生机理研究"", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》 *
荆洪阳 等: ""高强钢焊接冷裂纹倾向试验装置开发及试验研究"", 《机械工程学报》 *
郭慧娟: ""导管架Y型节点焊接冷裂性定量评价研究"", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
US20230228728A1 (en) 2023-07-20
CN114509318B (zh) 2022-09-13
US11703497B1 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
EP2163881B1 (en) Method for determining reheat cracking susceptibility
Jang et al. Assessing welding residual stress in A335 P12 steel welds before and after stress-relaxation annealing through instrumented indentation technique
Siefert et al. Evaluation of the creep cavitation behavior in Grade 91 steels
US6789428B2 (en) Method and apparatus for evaluating damage of metal material
Haggag et al. Structural integrity evaluation based on an innovative field indentation microprobe
CN114509318B (zh) 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法
Lee et al. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals
JP5410395B2 (ja) 金属材料のき裂進展速度評価方法および装置
Larsson Evaluation of current methods for creep analysis and impression creep testing of power plant steels
JPH1123776A (ja) 原子炉炉内機器の複合診断システム
Viswanathan Residual life techniques for plant life extension
JPH04240552A (ja) 高温応力下における金属溶接部材の余寿命評価方法
Bate et al. UK research programme on residual stresses: progress to date
Kalyanam et al. Mode mixity in the fracture toughness characterization of HAZ material using SEN (T) testing
Faidy Structural Integrity of dissimilar welds: ADIMEW project overview
Cathcart et al. The variability in weld residual stress
Lee et al. Finite element analysis and measurement for residual stress of dissimilar metal weld in pressurizer safety nozzle mockup
Dogan et al. Code of practice for high-temperature testing of weldments
JP2019090704A (ja) 再熱割れ感受性評価方法
Haggag et al. Nondestructive detection and assessment of damage in aging aircraft using a novel stress-strain microprobe system
Zappavigna Quality control of cladding in hydrocracking reactors: applicable procedures and acceptance criteria.
Zhang et al. A novel method for predicting local plastic mechanical properties of metal structures by integrating microstructure and instrumented indentation technique
Ceyhan High temperature deformation and fracture assessment of similar steel welds
Raj et al. Science and technology of non-destructive testing, evaluation and characterisation
Tarnowski et al. Experimental Determination of Elastic and Plastic LLD Rates During Creep Crack Growth Testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant