CN112432862A - 一种焊接热裂纹敏感性的综合评价方法 - Google Patents

一种焊接热裂纹敏感性的综合评价方法 Download PDF

Info

Publication number
CN112432862A
CN112432862A CN202011225389.1A CN202011225389A CN112432862A CN 112432862 A CN112432862 A CN 112432862A CN 202011225389 A CN202011225389 A CN 202011225389A CN 112432862 A CN112432862 A CN 112432862A
Authority
CN
China
Prior art keywords
cracks
crack
welding
sample
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011225389.1A
Other languages
English (en)
Other versions
CN112432862B (zh
Inventor
余春
陆皓
王军寒
余志远
徐济进
陈俊梅
谷雨
张俊宝
黄逸峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Original Assignee
Shanghai Jiaotong University
Shanghai Nuclear Engineering Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Shanghai Nuclear Engineering Research and Design Institute Co Ltd filed Critical Shanghai Jiaotong University
Priority to CN202011225389.1A priority Critical patent/CN112432862B/zh
Publication of CN112432862A publication Critical patent/CN112432862A/zh
Application granted granted Critical
Publication of CN112432862B publication Critical patent/CN112432862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0216Finite elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0258Non axial, i.e. the forces not being applied along an axis of symmetry of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种焊接热裂纹敏感性的综合评价方法,可同时评价焊接过程中出现的凝固裂纹、液化裂纹和高温失延裂纹等热裂纹,适用于奥氏体不锈钢和镍基材料。本发明通过在试样中心进行定点焊,收弧后紧接着进行弯曲,采用光学显微镜观察焊缝、熔合线附近区域,并区分热裂纹类型,统计不同类型裂纹数量、裂纹总长度、裂纹最大长度、裂纹分布范围等,并与应变建立对应关系,从而评价不同类型热裂纹的敏感性。本发明方法简单,容易判别热裂纹类型,成本低,测试结果真实可靠,对于评价焊接热裂纹敏感性有重要意义。

Description

一种焊接热裂纹敏感性的综合评价方法
技术领域
本发明涉及金属材料焊接热裂纹敏感性的测试领域,具体涉及一种焊接热裂纹敏感性的综合评价方法。
背景技术
焊接热裂纹,如凝固裂纹、液化裂纹和高温失延裂纹,多产生在接近固相线的高温下。其中,凝固裂纹发生在焊缝熔池的凝固过程中,由于快速冷却导致枝晶间残留偏析液相层,同时该处承受变形时,没有充足液相补充而形成的热裂纹,位于凝固晶界上;液化裂纹发生在熔合线附近,由于经历焊接热循环,导致晶界处的低熔点物质熔化,在外力作用下形成裂纹;失延裂纹发生在热影响区或多层焊前一道焊缝上,因焊接热循环致使延性陡降,在拉伸应力应变下形成沿晶裂纹。不锈钢和镍基合金等材料在核电、船舶等重要装备制造领域中广泛应用,是关键的材料。然而,在奥氏体不锈钢、镍基合金等材料的焊接过程中,常常会出现热裂纹。因此,对这类材料开展焊接热裂纹敏感性评价,一方面能够指导焊接工艺的制定,另一方面,对于开发同类国产化材料也具有重要的参考价值。
可变拘束方法是目前焊接热裂纹敏感性评价的主要试验方法,该方法通过在直缝焊接过程中施加弯曲应变,造成焊缝、熔合线附近区域产生热裂纹,从而评价焊接裂纹敏感性。然而,这种方法很难区分焊缝中的裂纹到底是凝固裂纹还是液化裂纹,亦或是失延裂纹,并且由于应变量是平均值,很难准确的量化表面热裂纹形成的临界应变。
专利CN108526658A公开一种热丝TIG焊接的热裂纹敏感性评价方法,先将试样弯曲至一定的应变量,然后实施焊接,截取焊接试样起焊、中间和结束位置的横截面金相,统计裂纹数量、总长度和最大裂纹长度三个指标,来定量评价焊接热裂纹敏感性,但由于应变沿板厚方向的分布是不一样的,该方法不能准确建立应变与热裂纹的关系,且未区分热裂纹类型。专利CN109746586A公开一种评价焊接热影响区粗晶区在热裂纹敏感性的方法,该方法对焊接试样预加应力后,模拟炉中热处理,然而其评价的是再热裂纹。综上所述,现有技术没有同时定量的评价凝固裂纹、液化裂纹和失延裂纹的评价方法。
发明内容
本发明的目的就是为了解决目前焊接热裂纹敏感性评价方法无法较好的同时评价凝固裂纹、液化裂纹和失延裂纹的问题,而提供一种焊接热裂纹敏感性的综合评价方法,能够同时评价凝固裂纹、液化裂纹和高温失延裂纹敏感性。
本发明的目的通过以下技术方案实现:
一种焊接热裂纹敏感性的综合评价方法,该方法包括如下步骤:
(1)线切割切取板状试样,将试样表面用砂纸打磨、电解抛光;
(2)将试样放置在可调拘束试验机的样品台上,进行电弧定点焊;
(3)电弧收弧后,立即下压试样;
(4)对以上试样进行光学显微镜观察并拍照,确定热裂纹类型,分析不同类型热裂纹的特征参数;
(5)根据可调拘束试验机支撑靠模参数和下压量数据,计算试样上表面的应变;
(6)针对不同类型热裂纹,绘制相应的应变与裂纹特征参数之间的关系图,并拟合处理,获得不同应变条件下的裂纹演变规律,即完成对不同热裂纹类型的敏感性量化评价。
优选地,步骤(1)中,所述板状试样为方形,长度为100~150mm,宽度为30~50mm,厚度为4~10mm。
优选地,步骤(1)中,所述试样电解抛光后,对中心区域长宽均为10~25mm的区域进行电解腐蚀,使所述试样呈现出微观组织结构,且表面无微裂纹。
优选地,步骤(2)中,所述电弧定点焊采用钨极氩弧焊,电流为60~100A,点焊电压为8~15V,点焊时长为5~20s,保护气体为纯氩,前、后送气各5-15S。
优选地,步骤(3)中,熄弧后,下压试样的下压速率为50~300mm/s,并保持5~20s后卸载。
优选地,步骤(4)中,通过光学显微镜对试样表面焊点及临近区域进行金相观察,并统计裂纹相关特征参数。
优选地,步骤(4)中,所述裂纹相关特征参数包括裂纹的数量、总长度、最大长度及裂纹分布范围。
优选地,步骤(5)中,所述试样上表面的应变通过理论公式或有限元模拟获得。
优选地,步骤(6)中,所述应变与裂纹特征参数之间的关系图包括应变-裂纹数量图、应变-裂纹总长度图、裂纹-最大长度图和裂纹-分布角度图。
本方法适用于奥氏体不锈钢和镍基合金等的焊接热裂纹敏感性评价。
本发明可同时评价焊接过程中出现的凝固裂纹、液化裂纹和高温失延裂纹等热裂纹,通过在试样中心进行定点焊,收弧后紧接着进行弯曲,采用光学显微镜观察焊缝、熔合线附近区域,并区分热裂纹类型,统计不同类型裂纹数量、裂纹总长度、裂纹最大长度、裂纹分布范围等,并与应变建立对应关系,从而评价不同类型热裂纹的敏感性。本发明方法简单,容易判别热裂纹类型,成本低,测试结果真实可靠,对于评价焊接热裂纹敏感性有重要意义。
与现有技术相比,本发明的优点及有益效果具体为:
1、本发明采用定点焊方式,在试样上仅形成一个固定的熔池,可同时在不同确定的区域分别形成凝固裂纹、液化裂纹和高温失延裂纹,避免现有技术难以判断裂纹类型或需要采用不同方法评价不同类型的热裂纹敏感性。
2、本发明在下压试样时,只需一种支撑靠模,上表面焊点附近的拉应变精确分布采用有限元方法计算,避免现有技术为准确获得应变频繁更换支撑靠模。
附图说明
图1为本发明实施例试样的示意图;
图2为本发明热裂纹分布区域及特征示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
本实施例以镍基合金材料为例,评价其焊接热裂纹敏感性,具体方法包括以下步骤:
(1)以镍基合金为例,线切割加工尺寸为120×40×6mm的试样,数量为8~10块,图1为试样的示意图。
(2)试样表面采用80~2000目砂纸逐级研磨,之后对中心区域长宽均为15mm的区域进行抛光,并用腐蚀液轻微腐蚀出微观组织形貌,在500倍显微镜下观察该区域无裂纹,且无明显划痕。
(3)将试样放置在可变拘束试验机上,该试验机配备氩弧焊电源,调整试样,使得钨极正对试样中心。
(4)采用氩弧焊机对试样中心进行电弧定点焊重熔,点焊电流80A,点焊电压13V,点焊时长10s,保护气体为纯氩,焊前和焊后送气各10s。点焊过程中,保持钨极和试样位置不变。熄弧后,立即下压试样,下压速率为100mm/s,下压量分别为2、3、4、5、6、7、8、9、10mm,保持弯曲状态10s后卸载。
(5)取出试样,采用光学显微镜,在25~200倍放大倍数下,观察点焊区及附近2mm范围,分区域可观察到不同的裂纹,如图2所示,拍照待分析。
(6)通过光学显微镜照片,统计点焊区的裂纹数量、裂纹总长度和最大裂纹长度,即为凝固裂纹的特征参数。
(7)统计熔合线附近的裂纹数量、裂纹总长度、最大裂纹长度和裂纹分布角度,即为液化裂纹的特征参数。
(8)统计热影响区距离熔合线约0.2-1mm范围内的裂纹数量、裂纹总长度、最大裂纹长度和裂纹分布角度,即为高温失延裂纹的特征参数。
(9)采用有限元方法计算不同下压量条件下,试样上表面的应变分布规律,获得应变最大值。
(10)将裂纹特征参数与对应的应变绘制成图形,并拟合处理,即可获得不同应变条件下的裂纹演变规律,完成对凝固裂纹、液化裂纹和高温失延裂纹的敏感性量化评价。
实施例2
本实施例以奥氏体不锈钢材料为例,评价其焊接热裂纹敏感性,具体方法包括以下步骤:
(1)线切割加工尺寸为150×50×8mm的试样,数量为8~10块。
(2)试样表面采用80~2000目砂纸逐级研磨,之后对中心区域长宽均为25mm的区域进行抛光,并用腐蚀液轻微腐蚀出微观组织形貌,在500倍显微镜下观察该区域无裂纹,且无明显划痕。
(3)将试样放置在可变拘束试验机上,该试验机配备氩弧焊电源,调整试样,使得钨极正对试样中心。
(4)采用氩弧焊机对试样中心进行电弧定点焊重熔,点焊电流100A,点焊电压15V,点焊时长5s,保护气体为纯氩,焊前和焊后送气各10s。点焊过程中,保持钨极和试样位置不变。熄弧后,立即下压试样,下压速率为50mm/s,下压量分别为2、3、4、5、6、7、8、9、10mm,保持弯曲状态20s后卸载。
(5)取出试样,采用光学显微镜,在25~200倍放大倍数下,观察点焊区及附近2mm范围,分区域可观察到不同的裂纹,拍照待分析。
(6)通过光学显微镜照片,统计点焊区的裂纹数量、裂纹总长度和最大裂纹长度,即为凝固裂纹的特征参数。
(7)统计熔合线附近的裂纹数量、裂纹总长度、最大裂纹长度和裂纹分布角度,即为液化裂纹的特征参数。
(8)统计热影响区距离熔合线约0.2-1mm范围内的裂纹数量、裂纹总长度、最大裂纹长度和裂纹分布角度,即为高温失延裂纹的特征参数。
(9)采用有限元方法计算不同下压量条件下,试样上表面的应变分布规律,获得应变最大值。
(10)将裂纹特征参数与对应的应变绘制成图形,并拟合处理,即可获得不同应变条件下的裂纹演变规律,完成对凝固裂纹、液化裂纹和高温失延裂纹的敏感性量化评价。
实施例3
本实施例以奥氏体不锈钢材料为例,评价其焊接热裂纹敏感性,具体方法包括以下步骤:
(1)线切割加工尺寸为100×30×4mm的试样,数量为8~10块。
(2)试样表面采用80~2000目砂纸逐级研磨,之后对中心区域长宽均为10mm的区域进行抛光,并用腐蚀液轻微腐蚀出微观组织形貌,在500倍显微镜下观察该区域无裂纹,且无明显划痕。
(3)将试样放置在可变拘束试验机上,该试验机配备氩弧焊电源,调整试样,使得钨极正对试样中心。
(4)采用氩弧焊机对试样中心进行电弧定点焊重熔,点焊电流60A,点焊电压8V,点焊时长20s,保护气体为纯氩,焊前和焊后送气各15s。点焊过程中,保持钨极和试样位置不变。熄弧后,立即下压试样,下压速率为300mm/s,下压量分别为2、3、4、5、6、7、8、9、10mm,保持弯曲状态5s后卸载。
(5)取出试样,采用光学显微镜,在25~200倍放大倍数下,观察点焊区及附近2mm范围,分区域可观察到不同的裂纹,拍照待分析。
(6)通过光学显微镜照片,统计点焊区的裂纹数量、裂纹总长度和最大裂纹长度,即为凝固裂纹的特征参数。
(7)统计熔合线附近的裂纹数量、裂纹总长度、最大裂纹长度和裂纹分布角度,即为液化裂纹的特征参数。
(8)统计热影响区距离熔合线约0.2-1mm范围内的裂纹数量、裂纹总长度、最大裂纹长度和裂纹分布角度,即为高温失延裂纹的特征参数。
(9)采用有限元方法计算不同下压量条件下,试样上表面的应变分布规律,获得应变最大值。
(10)将裂纹特征参数与对应的应变绘制成图形,并拟合处理,即可获得不同应变条件下的裂纹演变规律,完成对凝固裂纹、液化裂纹和高温失延裂纹的敏感性量化评价。
本发明上述实施例通过在可变拘束试验机上对试样实施氩弧定点重熔,并在熄弧后凝固阶段立即施加弯曲变形,从而可同时在焊点及附近区域产生凝固裂纹、液化裂纹和高温失延裂纹,采用光学显微镜分别对三类裂纹的特征分析和统计,获得裂纹数量、裂纹最大长度、裂纹总长度和裂纹分布区域等特征参数;通过经验公式或有限元模拟方法,获得不同下压条件下的试样表面应变分布,进一步可建立应变和特征参数间的量化关系图,从而获得三类裂纹的敏感性参数,即开裂临界应变。本发明方法简单,成本低,测量结果真实可靠,对于评价镍基合金材料和奥氏体不锈钢的热裂纹敏感性具有重要意义。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种焊接热裂纹敏感性的综合评价方法,其特征在于,该方法包括如下步骤:
(1)线切割切取板状试样,将试样表面用砂纸打磨、电解抛光;
(2)将试样放置在可调拘束试验机的样品台上,进行电弧定点焊;
(3)电弧收弧后,立即下压试样;
(4)对以上试样进行光学显微镜观察并拍照,确定热裂纹类型,分析不同类型热裂纹的特征参数;
(5)根据可调拘束试验机靠模参数和下压量数据,计算试样上表面的应变;
(6)针对不同类型热裂纹,绘制相应的应变与裂纹特征参数之间的关系图,并拟合处理,获得不同应变条件下的裂纹演变规律,即完成对不同热裂纹类型的敏感性量化评价。
2.根据权利要求1所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(1)中,所述板状试样为方形,长度为100~150mm,宽度为30~50mm,厚度为4~10mm。
3.根据权利要求1所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(1)中,所述试样电解抛光后,对中心区域长宽均为10~25mm的区域进行电解腐蚀,使所述试样呈现出微观组织结构,且表面无微裂纹。
4.根据权利要求1所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(2)中,所述电弧定点焊采用钨极氩弧焊,电流为60~100A,点焊电压为8~15V,点焊时长为5~20s,保护气体为纯氩,前、后送气各5-15S。
5.根据权利要求1所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(3)中,熄弧后,下压试样的下压速率为50~300mm/s,并保持5~20s后卸载。
6.根据权利要求1所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(4)中,通过光学显微镜对试样表面焊点及临近区域进行金相观察,并统计裂纹相关特征参数。
7.根据权利要求6所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(4)中,所述裂纹相关特征参数包括裂纹的数量、总长度、最大长度及裂纹分布范围。
8.根据权利要求1所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(5)中,所述试样上表面的应变通过理论公式或有限元模拟获得。
9.根据权利要求1所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,步骤(6)中,所述应变与裂纹特征参数之间的关系图包括应变-裂纹数量图、应变-裂纹总长度图、裂纹-最大长度图和裂纹-分布角度图。
10.根据权利要求1-9任一项所述的一种焊接热裂纹敏感性的综合评价方法,其特征在于,所述试样为奥氏体不锈钢或镍基合金材质。
CN202011225389.1A 2020-11-05 2020-11-05 一种焊接热裂纹敏感性的综合评价方法 Active CN112432862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011225389.1A CN112432862B (zh) 2020-11-05 2020-11-05 一种焊接热裂纹敏感性的综合评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011225389.1A CN112432862B (zh) 2020-11-05 2020-11-05 一种焊接热裂纹敏感性的综合评价方法

Publications (2)

Publication Number Publication Date
CN112432862A true CN112432862A (zh) 2021-03-02
CN112432862B CN112432862B (zh) 2021-11-16

Family

ID=74694651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011225389.1A Active CN112432862B (zh) 2020-11-05 2020-11-05 一种焊接热裂纹敏感性的综合评价方法

Country Status (1)

Country Link
CN (1) CN112432862B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237908A (zh) * 2021-04-30 2021-08-10 北京科技大学 一种评定亚包晶钢裂纹敏感性的方法
CN114509318A (zh) * 2022-01-20 2022-05-17 天津大学 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法
JP7304476B1 (ja) 2021-12-27 2023-07-06 Jfeテクノリサーチ株式会社 鋼板の抵抗スポット溶接部における液体金属脆性割れ感受性の評価方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU407687A1 (ru) * 1972-08-25 1973-12-10 Всесоюзный институт проектированию организации энергетического строительства Способ оценки сопротивляемости сталей образованию трещин при сварке
JPH06180278A (ja) * 1992-12-15 1994-06-28 Mitsubishi Heavy Ind Ltd 溶接割れ試験方法および試験片
AU2005278316A1 (en) * 2004-09-01 2006-03-09 Jfe Steel Corporation Evaluation method and device for spot welded portion by ultrasonic wave
CN103921009A (zh) * 2013-01-16 2014-07-16 宝山钢铁股份有限公司 一种直焊缝裂纹敏感性评价方法及其评价用多元拘束板具
CN105269170A (zh) * 2015-07-23 2016-01-27 东方电气集团东方锅炉股份有限公司 小口径管热裂纹敏感性的评定方法
CN107764721A (zh) * 2016-08-23 2018-03-06 张宇 金属材料延迟裂纹敏感性评价方法
CN110595908A (zh) * 2019-09-27 2019-12-20 上海交通大学 一种镍基合金焊接材料的高温失延开裂准原位测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU407687A1 (ru) * 1972-08-25 1973-12-10 Всесоюзный институт проектированию организации энергетического строительства Способ оценки сопротивляемости сталей образованию трещин при сварке
JPH06180278A (ja) * 1992-12-15 1994-06-28 Mitsubishi Heavy Ind Ltd 溶接割れ試験方法および試験片
AU2005278316A1 (en) * 2004-09-01 2006-03-09 Jfe Steel Corporation Evaluation method and device for spot welded portion by ultrasonic wave
CN103921009A (zh) * 2013-01-16 2014-07-16 宝山钢铁股份有限公司 一种直焊缝裂纹敏感性评价方法及其评价用多元拘束板具
CN105269170A (zh) * 2015-07-23 2016-01-27 东方电气集团东方锅炉股份有限公司 小口径管热裂纹敏感性的评定方法
CN107764721A (zh) * 2016-08-23 2018-03-06 张宇 金属材料延迟裂纹敏感性评价方法
CN110595908A (zh) * 2019-09-27 2019-12-20 上海交通大学 一种镍基合金焊接材料的高温失延开裂准原位测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卜华全等: "Gleeble试验中再热裂纹敏感性评价方法探讨", 《压力容器》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237908A (zh) * 2021-04-30 2021-08-10 北京科技大学 一种评定亚包晶钢裂纹敏感性的方法
JP7304476B1 (ja) 2021-12-27 2023-07-06 Jfeテクノリサーチ株式会社 鋼板の抵抗スポット溶接部における液体金属脆性割れ感受性の評価方法
WO2023127405A1 (ja) * 2021-12-27 2023-07-06 Jfeスチール株式会社 鋼板の抵抗スポット溶接部における液体金属脆性割れ感受性の評価方法
JP2023099994A (ja) * 2021-12-27 2023-07-14 Jfeテクノリサーチ株式会社 鋼板の抵抗スポット溶接部における液体金属脆性割れ感受性の評価方法
CN114509318A (zh) * 2022-01-20 2022-05-17 天津大学 一种导管架典型节点焊接横向冷裂纹敏感性定量评价方法

Also Published As

Publication number Publication date
CN112432862B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN112432862B (zh) 一种焊接热裂纹敏感性的综合评价方法
Ganesh et al. Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel
Lu et al. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water
CN101704154B (zh) 一种镍基变形高温合金大修机机加火焰筒补焊修理方法
Lu et al. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water
Jasman et al. Effect of strong welding flow on the violence of low carbon steel results of SMAW welding with electrodes 7018
Pathak et al. Three-dimensional finite element analysis to predict the different zones of microstructure in submerged arc welding
Sridhar et al. Effect of process parameters on bead geometry, tensile and microstructural properties of double-sided butt submerged arc welding of SS 304 austenitic stainless steel
Vahiddastjerdi et al. Optimizing pulsed Nd: YAG laser welding of high-Mn TWIP steel using response surface methodology technique
Ardakani et al. The effect of pulsed Nd: YAG laser welding parameters on defects of Kovar to AISI 304L dissimilar joint
Kannengiesser et al. Effects of heat control on the stress build-up during high-strength steel welding under defined restraint conditions
Luu et al. Diffusion enhancement during electrically assisted brazing of ferritic stainless steel alloys
US4475963A (en) Method for postweld heat treatment
Sowards et al. A new chromium-free welding consumable for joining austenitic stainless steels
CN105014201A (zh) 压水堆核级铸件异种材料补焊方法
Al-Mukhtar et al. Cracking phenomenon in spot welded joints of austenitic stainless steel
Koga et al. Air carbon arc gouging of austenitic stainless steels prior to arc welding–opportunities and risks
Chakraborty et al. Evaluation of hydrogen-assisted cracking susceptibility in modified 9cr-1mo steel welds
Karkhin et al. Computer—aided determination of diffusible hydrogen in deposited weld metal
Farrar Hot cracking tests—The route to International Standardization
Magalhaes et al. Effect of PWHT on laser-welded duplex stainless steel
Quackatz et al. Rapid solidification during welding of duplex stainless steels–in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS)
CN103934646B (zh) 一种核电机组蒸汽发生器的抗振条组件的制备方法
Agarwal Characterization of weld zone in ex-service component of power plant: multi-pass weld joint of steam header to drain pocket
Ahmed et al. How multiple weld repairs impact maraging steel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee after: SHANGHAI JIAO TONG University

Patentee after: Shanghai Nuclear Engineering Research and Design Institute Co.,Ltd.

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee before: SHANGHAI JIAO TONG University

Patentee before: SHANGHAI NUCLEAR ENGINEERING RESEARCH & DESIGN INSTITUTE Co.,Ltd.