CN114507858A - 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法 - Google Patents

一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法 Download PDF

Info

Publication number
CN114507858A
CN114507858A CN202210094826.3A CN202210094826A CN114507858A CN 114507858 A CN114507858 A CN 114507858A CN 202210094826 A CN202210094826 A CN 202210094826A CN 114507858 A CN114507858 A CN 114507858A
Authority
CN
China
Prior art keywords
cutter
substrate
ultra
nano diamond
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210094826.3A
Other languages
English (en)
Other versions
CN114507858B (zh
Inventor
刘金龙
屠菊萍
李成明
赵云
郑宇亭
魏俊俊
陈良贤
张建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210094826.3A priority Critical patent/CN114507858B/zh
Publication of CN114507858A publication Critical patent/CN114507858A/zh
Application granted granted Critical
Publication of CN114507858B publication Critical patent/CN114507858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法,属于涂层刀具的制造技术领域。该多层化刀具涂层主要包括基体、过渡层及周期性低掺氮和高掺氮超纳米金刚石多层膜。基体的材质主要是硬质合金类,过渡层厚度为100nm‑800nm,多层膜的单层厚度均小于10nm。制备方法主要包括:基体表面预处理,选择合适的喷砂速度和喷砂粒径,对基体表面进行喷砂处理,经稀硫酸溶液清洗后,获得具有合适粗糙度的基体;然后在刀具表面镀Ti/Mo复合过渡层,提高界面结合力,降低界面内应力;之后在纳米级粉体悬浊液中超声以增加形核密度;最后通过周期性调整掺氮浓度制备含氮量不同的超纳米金刚石多层涂层。本发明刀具具有硬度高、韧性好、表面光滑、精度高、寿命长等优点。

Description

一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法
本案是申请号201910667303.1、申请日20190723、发明名称《一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法》的分案申请。
技术领域
本发明属于涂层刀具的制造技术领域,具体地涉及一种基于加工刀具的超纳米金刚石周期性多层涂层刀具,特别是提供了一种具有高硬度和高强韧性的长寿命超纳米金刚石周期性多层涂层及其制备方法,特点是在保证单层刀具高硬度同时,通过多层化提高超纳米金刚石涂层刀具的韧性。
背景技术
金刚石是已知最硬的天然材料,具有极高的硬度,广泛应用于机械、生物医药、电子和光子等领域。随着技术的发展,对工业刀具的要求越来越高,如加工碳纤维和高硅铝材料,需要刀具具有极高的耐磨性(许立,马宁,李丙文.一种金刚石复合涂层刀具及其制备方法[P].中国专利:CN 108149219 A,2018,06,12.),加工硬度较高的材料需要刀具具有较好的韧性。由于金刚石高的脆性,导致金刚石刀具容易崩刃,显著降低其寿命。而且现有的金刚石涂层刀具中金刚石涂层和硬质合金的结合力较弱,在使用过程中金刚石涂层容易发生脱落(R·M·佩尼奇,P·L·赫格德,A·因斯佩克托.纳米涂层刀具及其制造方法[P].中国专利:CN 1643183A,2005,07,20.)。这些问题都严重影响金刚石涂层刀具的使用寿命。
超纳米金刚石(UNCD)晶粒尺寸小于10nm,表面光滑平整,具有良好的表面质量。超纳米金刚石涂层是以SP3杂化的碳原子占绝大多数的、具有某种网状结构的膜层中晶粒尺寸小于40nm的碳薄膜(姚勇.一种基于加工刀具的复合涂层制备工艺[P].中国专利:CNIO8315716A,2018.07.24.)。UNCD涂层不仅具有良好的膜 -基附着强度,而且能够有效降低金刚石涂层的表面粗糙度,可提高刀具的切削性能。由于UNCD晶粒小、晶界比例高,在量子尺寸效应,小尺寸效应,表面效应,界面效应等更加明显,在力学,声学,光学,电学等方面的一些性能更加优越,使之越来越接近和满足工业生产和实际应用要求(吕琳,汪建华,翁俊,等. 超纳米金刚石薄膜的性能和制备及应用[J].真空与低温,2014,20(3):125-131.)。但单层涂层刀具由于在高温下沉积,会造成涂层与基体间存在应力,容易导致脱膜现象,从而严重影响刀具的使用寿命。
发明内容
本发明的目的在于设计一种长寿命超纳米金刚石多层刀具涂层及其制备方法。增加过渡层提高膜基结合力,降低应力,具有多层化的涂层刀具在使用过程中会使刀具的韧性大幅度提升,提高UNCD多层涂层刀具的使用寿命。周期性掺氮生长的多层涂层刀具,多层的存在会使切削力沿着层与层之间分散,从而使超纳米金刚石周期性多层涂层刀具的韧性提高,不易断裂。
该多层化刀具涂层主要包括刀具基体、Ti/Mo复合过渡层,之后是少掺氮超纳米金刚石层和多掺氮超纳米金刚石层交替生长形成UNCD多层膜交替生长的涂层材料。所述衬底的材质主要是硬质合金类,所述Ti/Mo复合过渡层的厚度为 100nm-600nm,所述少掺氮超纳米金刚石层的厚度小于10nm,所述多掺氮超纳米金刚石层的厚度小于10nm,直至达到所要求的涂层厚度。首先对刀具表面进行预处理,随后在基体表面采用磁控溅射镀一层Ti/Mo复合以降低内应力,再放入纳米金刚石悬浊液中超声震荡,干燥后依次通入甲烷、氮气、氧气、氩气等两种或多种混合气体。在生长过程中,通过编程自动化控制生长参数,实现层与层不同的生长工艺参数,从而得到超纳米金刚石周期性多层涂层。每层超纳米金刚石的厚度小于10nm,层与层之间的区别在于气体通入量不同。最后超声清洗干净即得到超纳米金刚石周期性多层涂层材料。
一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于刀具基体表面周期性生长超纳米金刚石多层涂层,显著提高刀具寿命,具体包括以下步骤:
步骤1:基体表面预处理:
1.1首先对基体表面进行喷砂处理,以去除表面油污、氧化层与底材金属;
1.2喷砂后的基体经稀硫酸溶液清洗,提高涂层与基体之间的结合强度,减小应力;
1.3依次使用丙酮、无水乙醇、去离子水对预处理的基体进行超声清洗,去除表面杂质及残留的酸溶液;
步骤2:在刀具表面镀Ti/Mo复合过渡层:
采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空,分别溅射纯钛靶和钼靶,沉积结束后,等待腔室温度冷却到室温时,取出刀具;
步骤3:在纳米级粉体悬浊液中进行超声震荡以增加形核密度:
将上述镀有Ti/Mo复合过渡层的刀具置于纳米金刚石悬浊液中进行超声震荡,后在烘箱中干燥;
步骤4:超纳米金刚石周期性多层涂层刀具的制备:
将处理好的刀具基体置于微波真空腔室中,通过周期性调整氮含量进行多层沉积,根据设计涂层的厚度,沉积不同的时间和周期。
进一步地,所述基体表面预处理的具体流程为:对基体表面进行喷砂处理,喷砂粒径为0.125-0.35μm,喷砂压力为0.2-1.0MPa,样品与喷嘴的距离为3-6cm,以去除表面油污、氧化层与底材金属并能提高涂层与基体之间的结合强度。
进一步地,所述在刀具表面镀Ti/Mo复合过渡层:采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空;用氩等离子体清洗基体10-40min;随后控制氩气流量为10-80sccm,分别溅射纯钛靶和钼靶,靶材与基片的距离为8-20cm,制得厚度为100-800nm的Ti/Mo复合膜,沉积时间为10-60min,温度120-180℃。
进一步地,所述将镀完过渡层的刀具在纳米级粉体悬浊液中进行超声震荡:纳米金刚石颗粒的粒径范围为1-100nm,超声震荡的时间为20-120min,超声功率50-200瓦,最后在烘箱中干燥5-40min;经超声分散后,纳米金刚石粉变成粒径更小的纳米金刚石颗粒,吸附在刀具基体表面,从而增加形核密度。
进一步地,所述超纳米金刚石周期性多层涂层材料的制备:基体预处理之后置于微波真空腔室中,抽本底真空小于0.1Pa后,通入超纯氢气(纯度99.9999%以上)50-500sccm,后升微波功率和腔压使温度达到生长温度600-800℃,再依次通入1-100sccm的甲烷,0.1-20sccm的氧气,0.1-30sccm的氮气,功率范围在 1000-3000W,腔压6.0-12.0KPa,使样品温度保持在600-800℃;通过周期掺入少量与多量氮气,实现多层超纳米金刚石膜生长,每层生长厚度小于10nm,两层为一个周期,根据设计涂层的厚度,沉积不同的时间和周期。一般刀具涂层 4-10μm,故沉积200-500个周期即可。
进一步地,所述掺入氮气的含量:少掺氮生长层的氮含量在0.1-7sccm范围内,多掺氮生长层的氮含量在7-30sccm范围内,通过高低掺氮量的调控,可以形成多层界面与界面应力场,造成界面和应力场阻碍位错运动,从而实现增强增韧。
进一步地,该生长超纳米金刚石的温度必须在600-800℃,温度过高易生成多晶金刚石,温度太低会降低生成超纳米金刚石的质量,影响其切削性能。
至此实现了超纳米金刚石的生长,制备了超纳米金刚石周期性多层涂层材料。该涂层材料不但硬度和弹性模量高,还具有极好的平滑度和较小的摩擦系数,而且抗磨损、导热性好、内应力小、黏附性极好,与硬质合金基体附着力强,特别适合用来作为刀具、钻头、流体动力轴承等机械设备的耐磨层。
本发明实施过程的关键在于:
1.基体表面预处理,为了增加基体与涂层的结合力,以及增加形核密度,首先选择合适的喷砂速度和喷砂粒径,对基体表面进行喷砂处理,去除表面油污、氧化层与底材金属。喷砂后的基体经稀硫酸溶液清洗,可得到具有合适粗糙度的基体,提高涂层与基体之间的结合强度。最后欲将基体与涂层结合的牢固,需要保证基体表面的清洁,依次使用丙酮、无水乙醇、去离子水对预处理的基体进行超声清洗,去除表面杂质及残留的酸溶液,超声波功率为30-200瓦,每次清洗 10-30min,至吹干后无水痕。
2.为了降低涂层的内应力,选择镀一层Ti/Mo复合过渡层作为过渡层,采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空;后通入氩气,用氩等离子体清洗基体10-40min;随后控制氩气流量为10-80sccm,分别溅射纯钛靶和钼靶,靶材与基片的距离为8-20cm,制得厚度为100-800nm的Ti/Mo复合膜,沉积时间为10-60min,温度120-180℃;沉积结束后,等待腔室温度冷却到室温时,取出刀具,过渡层的存在,不仅能够提高基体与涂层的结合强度,而且能够降低基体与涂层之间的内应力。
3.将上述镀有Ti/Mo复合过渡层的刀具置于纳米金刚石悬浊液中进行超声震荡,其中,纳米金刚石颗粒的粒径范围为1-100nm,超声震荡的时间为20-120min,超声功率50-200瓦,最后在烘箱中干燥5-40min。经超声分散后,纳米金刚石粉变成粒径更小的纳米金刚石颗粒,会吸附在刀具基体表面,从而增加形核密度。
4.传统的生长超纳米金刚石是在富氩无氢或富氩少氢的气氛中再通入甲烷气体,而本发明是在富氢无氩气氛下,再通入氧气、氮气和甲烷气体环境中进行 UNCD的沉积。
5.该生长超纳米金刚石的温度在600-800℃,温度过高易生成多晶金刚石,温度太低生成的超纳米金刚石质量不好。
6.多层生长:通过实验得到多掺氮和少掺氮的生长速率,采用编程控制周期性多层的生长工艺参数,使每层厚度小于10nm,通过设置循环次数实现总生长厚度。
7.多层中周期性掺氮的氮含量在一定的范围内,通过高低掺氮量的调控,可以形成多层界面与界面应力场,会造成界面和应力场阻碍位错运动,从而实现增强增韧。
8.周期性生长多层涂层的过程中,少量氧气的通入有利于超纳米金刚石颗粒的质量和表面光滑度,降低刀具表面粗糙度,提高其使用寿命。
9.制备超纳米金刚石周期性多层涂层材料的方法广泛,比如,微波等离子体化学气相沉积法(MPCVD)、气体循环直流旋转电弧等离子体法(DC Arc Plasma Jet)、射频等离子体气相沉积法(RFPCVD)等。
本发明的优点是:
1.该超纳米金刚石周期性多层涂层刀具,具有400-1000层的涂层,且每层厚度小于10nm,切削时会使切削力沿着层与层扩散,具有一定的弹性,刀具使用过程中不易发生脆性断裂,故韧性得到了提高,从而显著提高了刀具的寿命。
2.由于超纳米金刚石多层交替生长,保证硬度和韧性的同时,表面为超纳米金刚石膜,平整光滑,表面质量较高,不易引起应力集中。光滑的表面会减小刀具与工件材料接触时产生的磨损和切削力,从而延长涂层刀具的工作寿命。
3.该制备超纳米金刚石周期性多层涂层刀具的工艺,只需周期性调整气体中的氮含量,且可编程控制调整量与气体通入与抽出时间,对设备与工艺要求简单,便于实现与工业化应用。
附图说明
图1为一种长寿命超纳米金刚石周期性多层涂层刀具结构示意图;其中1 为刀具基体,2为Ti/Mo过渡层,3为少掺氮超纳米金刚石层,4为多掺氮超纳米金刚石层;
图2为本发明方法中超纳米金刚石周期性多层涂层材料的制备流程图;
图3(a)为超纳米金刚石周期性多层涂层表面形貌图;
图3(b)为超纳米金刚石周期性多层涂层拉曼光谱图。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步说明。
经表面预处理后的基体放入真空腔室中,采用磁控溅射在刀具表面镀一层过渡层,随后在超声波悬浮液中震荡,干燥后放入真空腔室中,在生长温度下通入生长所需要的各种原料气体,通过编程控制每层的工艺参数和时间,使少掺氮层与多掺氮层交替生长,从而进行周期性多层生长,其具体流程见图2。
实施例1
将所选用的厚度2mm,尺寸3cm×3cm硬质合金基体进行表面预处理,具体流程为:首先选择合适的喷砂速度和喷砂粒径,对基体表面进行喷砂处理,去除表面油污、氧化层与底材金属。喷砂后的基体经稀硫酸溶液清洗,可得到粗糙度为19.7nm的基体,提高涂层与基体之间的结合强度。最后依次使用丙酮、无水乙醇、去离子水对预处理的基体进行超声清洗,去除表面杂质及残留的酸溶液,超声波功率为80瓦,每次清洗10min,至吹干后无水痕。采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空;后通入氩气,用氩等离子体清洗基体30min;随后控制氩气流量为20sccm,分别溅射纯钛靶和钼靶,靶材与基片的距离为10cm,制得厚度为500nm的Ti/Mo 复合膜,沉积时间为40min,温度150℃;沉积结束后,等待腔室温度冷却到室温时,取出刀具。将上述镀有Ti/Mo复合过渡层的刀具置于纳米金刚石悬浊液中进行超声震荡,悬浊液中纳米金刚石颗粒的粒径范围为30/50nm,超声震荡的时间为30min,超声功率80瓦,最后在烘箱中干燥20-30min。之后将刀具置于微波真空腔室中,开机械泵抽本底真空小于0.1Pa后,通入超纯氢气(纯度99.9999%以上)300sccm,升功率至2300W,腔室压力达到9.5kPa,使刻蚀温度达到750℃,后设置第一层少掺氮层生长工艺参数:功率2290W,腔压至7.4kPa,甲烷15sccm,氧气0.5sccm,氮气1sccm,样品温度750℃,时间1min。第二层多掺氮层工艺参数:功率2180W,腔压至7.9kPa,甲烷15sccm,氧气0.5sccm,氮气8sccm,样品温度750℃,时间55S。设定循环周期次数200次。循环结束之后即可在硬质合金基体上得到200个周期共400层少掺氮与多掺氮交替生长4μm厚的多层涂层刀具。其表面形貌与表面拉曼图谱示于图3。由图3(a)可见生长的多层涂层表面非常光滑和平整。从图3(b)拉曼图谱看见,除去金刚石1332cm-1处强的本征峰,在1190cm-1和1490cm-1存在峰位,证明成功生成了超纳米金刚石涂层材料。
实施例2
将所选用的厚度0.8mm,尺寸4mm×4mm多晶金刚石衬底进行预处理,具体流程为:首先选择合适的喷砂速度和喷砂粒径,对基体表面进行喷砂处理,去除表面油污、氧化层与底材金属。喷砂后的基体经稀硫酸溶液清洗,可得到粗糙度为19.9nm的基体,提高涂层与基体之间的结合强度。最后依次使用丙酮、无水乙醇、去离子水对预处理的基体进行超声清洗,去除表面杂质及残留的酸溶液,超声波功率为80瓦,每次清洗10min,至吹干后无水痕。采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空;后通入氩气,用氩等离子体清洗基体20min;随后控制氩气流量为20sccm,分别溅射纯钛靶和钼靶,靶材与基片的距离为10cm,制得厚度为300nm的Ti/Mo 复合膜,沉积时间为25min,温度150℃;沉积结束后,等待腔室温度冷却到室温时,取出刀具。将上述镀有Ti/Mo复合过渡层的刀具置于纳米金刚石悬浊液中进行超声震荡,悬浊液中纳米金刚石颗粒的粒径范围为30/50nm,超声震荡的时间为30min,超声功率80瓦,最后在烘箱中干燥20-30min。之后将刀具置于微波真空腔室中,开机械泵抽本底真空小于0.1Pa后,通入超纯氢气(纯度99.9999%以上)300sccm,升功率至2300W,腔室压力达到9.5kPa,使刻蚀温度达到750℃,后设置第一层生长工艺参数:功率2290W,腔压至7.4kPa,甲烷15sccm,氧气 0.5sccm,氮气1sccm,样品温度750℃,时间1min。第二层工艺参数:功率2180W,腔压至7.9kPa,甲烷15sccm,氧气0.5sccm,氮气8sccm,样品温度750℃,时间55S。设定循环周期次数200次。循环结束之后即可在刀具基体上得到200个周期共400层少掺氮与多掺氮交替生长4μm厚的超纳米金刚石周期性多层涂层材料。
实施例3
将所选用的厚度3mm,尺寸3cm×1cm硬质合金衬底进行预处理,具体流程为:首先选择合适的喷砂速度和喷砂粒径,对基体表面进行喷砂处理,去除表面油污、氧化层与底材金属。喷砂后的基体经稀硫酸溶液清洗,可得到粗糙度为 19.5nm的基体,提高涂层与基体之间的结合强度。最后依次使用丙酮、无水乙醇、去离子水对预处理的基体进行超声清洗,去除表面杂质及残留的酸溶液,超声波功率为80瓦,每次清洗10min,至吹干后无水痕。采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空;后通入氩气,用氩等离子体清洗基体30min;随后控制氩气流量为20sccm,分别溅射纯钛靶和钼靶,靶材与基片的距离为10cm,制得厚度为500nm的Ti/Mo复合膜,沉积时间为40min,温度150℃;沉积结束后,等待腔室温度冷却到室温时,取出刀具。将上述镀有Ti/Mo复合过渡层的刀具置于纳米金刚石悬浊液中进行超声震荡,悬浊液中纳米金刚石颗粒的粒径范围为30/50nm,超声震荡的时间为30min,超声功率80瓦,最后在烘箱中干燥20-30min。之后将刀具置于微波真空腔室中,开机械泵抽本底真空小于0.1Pa后,通入超纯氢气(纯度99.9999%以上)300sccm,升功率至2300W,腔室压力达到9.5kPa,使刻蚀温度达到750℃,后设置第一层生长工艺参数:功率2290W,腔压至7.4kPa,甲烷15sccm,氧气 0.5sccm,氮气1sccm,样品温度750℃,时间1min。第二层工艺参数:功率2180W,腔压至7.9kPa,甲烷15sccm,氧气0.5sccm,氮气8sccm,样品温度750℃,时间55S。设定循环周期次数200次。循环结束之后即可在硬质合金基体上得到200 个周期共400层少掺氮与多掺氮交替生长4μm厚的超纳米金刚石周期性多层涂层材料。
实施例4
将所选用的厚度0.5mm,尺寸8mm×8mm硬质合金衬底进行预处理,具体流程为:首先选择合适的喷砂速度和喷砂粒径,对基体表面进行喷砂处理,去除表面油污、氧化层与底材金属。喷砂后的基体经稀硫酸溶液清洗,可得到粗糙度为19.3nm的基体,提高涂层与基体之间的结合强度。最后依次使用丙酮、无水乙醇、去离子水对预处理的基体进行超声清洗,去除表面杂质及残留的酸溶液,超声波功率为60瓦,每次清洗10min,至吹干后无水痕。采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空;后通入氩气,用氩等离子体清洗基体30min;随后控制氩气流量为20sccm,分别溅射纯钛靶和钼靶,靶材与基片的距离为10cm,制得厚度为500nm的Ti/Mo 复合膜,沉积时间为40min,温度150℃;沉积结束后,等待腔室温度冷却到室温时,取出刀具。将上述镀有Ti/Mo复合过渡层的刀具置于纳米金刚石悬浊液中进行超声震荡,悬浊液中纳米金刚石颗粒的粒径范围为30/50nm,超声震荡的时间为30min,超声功率60瓦,最后在烘箱中干燥20-30min。之后将刀具置于微波真空腔室中,开机械泵抽本底真空小于0.1Pa后,通入超纯氢气(纯度99.9999%以上)300sccm,升功率至2300W,腔室压力达到9.5kPa,使刻蚀温度达到750℃,后设置第一层生长工艺参数:功率2290W,腔压至7.4kPa,甲烷15sccm,氧气 0.5sccm,氮气1sccm,样品温度750℃,时间1min。第二层工艺参数:功率2180W,腔压至7.9kPa,甲烷15sccm,氧气0.5sccm,氮气8sccm,样品温度750℃,时间55S。设定循环周期次数300次。循环结束之后即可在硬质合金基体上得到300 个周期共600层少掺氮与多掺氮交替生长6μm厚的超纳米金刚石周期性多层涂层材料。

Claims (7)

1.一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于,刀具基体表面周期性生长超纳米金刚石多层涂层,包括以下步骤:
步骤1:基体表面预处理:
1.1首先对基体表面进行喷砂处理,以去除表面油污、氧化层与底材金属;
1.2喷砂后的基体经稀硫酸溶液清洗,提高涂层与基体之间的结合强度,减小应力;
1.3依次使用丙酮、无水乙醇、去离子水对预处理的基体进行超声清洗,去除表面杂质及残留的酸溶液;
步骤2:在刀具表面镀Ti/Mo复合过渡层:
采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空,分别溅射纯钛靶和钼靶,沉积结束后,等待腔室温度冷却到室温时,取出刀具;
步骤3:在纳米级粉体悬浊液中进行超声震荡以增加形核密度:
将上述镀有Ti/Mo复合过渡层的刀具置于纳米金刚石悬浊液中进行超声震荡,后在烘箱中干燥;
步骤4:超纳米金刚石周期性多层涂层刀具的制备:
将处理好的刀具基体置于微波真空腔室中,通过周期性调整氮含量进行多层沉积,根据设计涂层的厚度,沉积不同的时间和周期。
2.根据权利要求1所述长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于,基体表面预处理的具体流程为:对基体表面进行喷砂处理,喷砂粒径为0.125-0.35μm,喷砂压力为0.2-1.0MPa,样品与喷嘴的距离为3-6cm,以去除表面油污、氧化层与底材金属并能提高涂层与基体之间的结合强度。
3.根据权利要求1所述长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于,在刀具表面镀Ti/Mo复合过渡层:采用射频直流磁控溅射系统设备,将刀具固定在衬底板上,然后把衬底板放到沉积腔室中,抽真空;用氩等离子体清洗基体10-40min;随后控制氩气流量为10-80sccm,分别溅射纯钛靶和钼靶,靶材与基片的距离为8-20cm,制得厚度为100-800nm的Ti/Mo复合膜,沉积时间为10-60min,温度120-180℃。
4.根据权利要求1所述长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于,将镀完过渡层的刀具在纳米级粉体悬浊液中进行超声震荡:纳米金刚石颗粒的粒径范围为1-100nm,超声震荡的时间为20-120min,超声功率50-200瓦,最后在烘箱中干燥5-40min。
5.根据权利要求1所述长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于,超纳米金刚石周期性多层涂层材料的制备:基体预处理之后置于微波真空腔室中,抽本底真空小于0.1Pa后,通入超纯氢气(纯度99.9999%以上)50-500sccm,后升微波功率和腔压使温度达到生长温度600-800℃,再依次通入1-100sccm的甲烷,0.1-20sccm的氧气,0.1-30sccm的氮气,功率范围在1000-3000W,腔压6.0-12.0KPa,使样品温度保持在600-800℃;通过周期掺入少量与多量氮气,实现多层超纳米金刚石膜生长,每层生长厚度小于10nm,两层为一个周期,根据设计涂层的厚度,沉积不同的时间和周期。
6.根据权利要求1或5所述长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于,掺入氮气的含量:少掺氮生长层的氮含量在0.1-7sccm范围内,多掺氮生长层的氮含量在7-30sccm范围内,通过高低掺氮量的调控,可以形成多层界面与界面应力场,造成界面和应力场阻碍位错运动,从而实现增强增韧。
7.根据权利要求1所述长寿命超纳米金刚石周期性多层涂层刀具的制备方法,其特征在于,周期性生长多层超纳米金刚石涂层的过程中,少量氧气的通入有利于超纳米金刚石颗粒的质量和表面光滑度,降低刀具表面粗糙度,提高其使用寿命。
CN202210094826.3A 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法 Active CN114507858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210094826.3A CN114507858B (zh) 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210094826.3A CN114507858B (zh) 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法
CN201910667303.1A CN110453176A (zh) 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201910667303.1A Division CN110453176A (zh) 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法

Publications (2)

Publication Number Publication Date
CN114507858A true CN114507858A (zh) 2022-05-17
CN114507858B CN114507858B (zh) 2022-10-21

Family

ID=68483048

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910667303.1A Withdrawn CN110453176A (zh) 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法
CN202210094826.3A Active CN114507858B (zh) 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910667303.1A Withdrawn CN110453176A (zh) 2019-07-23 2019-07-23 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法

Country Status (1)

Country Link
CN (2) CN110453176A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277445B (zh) * 2021-12-24 2023-03-14 安徽光智科技有限公司 超声辅助去除金刚石应力的装置及方法
CN114717534B (zh) * 2022-03-29 2022-12-30 北京科技大学 一种大面积超高硬度金刚石膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031839A1 (en) * 2000-10-09 2002-04-18 The University Of Chicago N-type doping of nanocrystalline diamond films with nitrogen and electrodes made therefrom
US20160101974A1 (en) * 2014-05-20 2016-04-14 Uchicago Argonne, Llc Low-stress doped ultrananocrystalline diamond
CN105506574A (zh) * 2015-12-24 2016-04-20 富耐克超硬材料股份有限公司 纳米金刚石涂层的制备方法及纳米金刚石刀片
CN107740184A (zh) * 2017-09-30 2018-02-27 湖北碳六科技有限公司 一种梯度单晶金刚石及其制备方法
CN108588822A (zh) * 2018-04-08 2018-09-28 北京科技大学 不间断动态原位合成单晶与超纳米金刚石复合结构的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031839A1 (en) * 2000-10-09 2002-04-18 The University Of Chicago N-type doping of nanocrystalline diamond films with nitrogen and electrodes made therefrom
US20160101974A1 (en) * 2014-05-20 2016-04-14 Uchicago Argonne, Llc Low-stress doped ultrananocrystalline diamond
CN105506574A (zh) * 2015-12-24 2016-04-20 富耐克超硬材料股份有限公司 纳米金刚石涂层的制备方法及纳米金刚石刀片
CN107740184A (zh) * 2017-09-30 2018-02-27 湖北碳六科技有限公司 一种梯度单晶金刚石及其制备方法
CN108588822A (zh) * 2018-04-08 2018-09-28 北京科技大学 不间断动态原位合成单晶与超纳米金刚石复合结构的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕琳等: ""超纳米金刚石薄膜的性能和制备及应用"", 《真空与低温》 *

Also Published As

Publication number Publication date
CN110453176A (zh) 2019-11-15
CN114507858B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN102650053B (zh) 复杂形状cvd金刚石/类金刚石复合涂层刀具制备方法
CN108677144B (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN114507858B (zh) 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法
CN1219109C (zh) 硬质合金基体复杂形状刀具金刚石涂层制备方法
JP2006152424A (ja) 硬質被膜および硬質被膜被覆加工工具
CN108468032B (zh) 一种塑性提升的纳米晶薄膜制备方法
CN111005000B (zh) 一种低应力四面体非晶碳复合膜及其制备方法
CN111647875B (zh) 高光洁度复杂形状超纳米金刚石涂层刀具批量制备方法
CN105543803B (zh) 一种硬质合金衬底的金刚石/碳化硼复合涂层及制备方法
CN105937021A (zh) 一种微型铣刀金刚石复合涂层的制备方法
CN108220916B (zh) 一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法
CN114703452B (zh) 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
CN103628036B (zh) 立方氮化硼涂层刀具的制备方法
CN108611638B (zh) 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法
CN114836715A (zh) 一种金属表面Cr/CrN/CrCN/Cr-DLC多层复合自润滑薄膜及其制备方法
CN109825821B (zh) 一种金刚石/cbn复合涂层硬质合金刀具、制备方法及装置
CN113089093B (zh) 金刚石半导体结构的形成方法
CN113621926A (zh) 一种低应力类金刚石耐磨涂层及其制备方法
Lu et al. Novel pretreatment of hard metal substrate for better performance of diamond coated cutting tools
CN111850484B (zh) 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法
CN101230453A (zh) 一种适用于切削工具的超细晶金刚石涂层的制备方法
CN114351088B (zh) 一种固体自润滑涂层及其制备方法
CN114686832A (zh) 一种制备减摩耐磨TiAlN/TiAlCN多层复合薄膜的方法
CN108624863B (zh) 一种表面硬度增强涂层及其制备方法
KR101557936B1 (ko) 플라즈마 처리를 통한 나노 결정 다이아몬드가 포함된 탄소막의 제조방법 및 이를 통해 제조된 나노 결정 다이아몬드를 포함하는 탄소막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant