CN114507672B - OsSLT1基因在控制水稻耐盐性中的应用 - Google Patents

OsSLT1基因在控制水稻耐盐性中的应用 Download PDF

Info

Publication number
CN114507672B
CN114507672B CN202011283158.6A CN202011283158A CN114507672B CN 114507672 B CN114507672 B CN 114507672B CN 202011283158 A CN202011283158 A CN 202011283158A CN 114507672 B CN114507672 B CN 114507672B
Authority
CN
China
Prior art keywords
rice
gene
osslt1
salt
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011283158.6A
Other languages
English (en)
Other versions
CN114507672A (zh
Inventor
熊立仲
王胜昌
肖本泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202011283158.6A priority Critical patent/CN114507672B/zh
Publication of CN114507672A publication Critical patent/CN114507672A/zh
Application granted granted Critical
Publication of CN114507672B publication Critical patent/CN114507672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于水稻基因工程领域,公开了OsSLT1基因在控制水稻耐盐性中的应用,所述的OsSLT1基因的基因组DNA序列为SEQ ID NO.1所示。申请人通过全基因组关联分析定位到该候选基因,是否能提高水稻的抗逆性目前尚无相关报道。因此,从水稻中分离出OsSLT1基因,并鉴定它在提高水稻抗逆性方面所发挥的功能,对于培育抗逆水稻新品种将具有非常重要的意义。本发明首次提出编码SEQ ID NO.6所示蛋白的基因可控制水稻的耐盐性,通过苗期盐胁迫表型鉴定表明,缺失该基因片段时,水稻耐盐胁迫能力降低,证实了该基因的功能及应用途径。

Description

OsSLT1基因在控制水稻耐盐性中的应用
技术领域
本发明属于水稻基因工程领域,具体涉及OsSLT1基因在控制水稻耐盐性中的应用,所述的OsSLT1基因的CDS序列为SEQ ID NO.2所示。
背景技术
植物在生长过程中受到许多非生物逆境的影响,其中土壤盐渍化不仅限制了水稻的生长范围,还制约着水稻产量,鉴定出与水稻耐盐相关的基因并进行生化分子等方面的深入研究具有重大意义。
土壤中盐对植物的胁迫可以分为两个阶段:渗透胁迫阶段和离子胁迫阶段。盐对植物的渗透胁迫发生在早期,导致细胞脱水,降低细胞膨压和根生长速率,抑制光合作用和地上部分生长速率;离子胁迫使植物细胞中积累过多的Na+和Cl-,降低生长速率和产量。盐胁迫对植物有很多不利影响,同样植物耐受盐胁迫的方式也有很多类型,主要可以分为三类:(1)渗透胁迫耐受。渗透胁迫能立刻降低幼叶和根尖的细胞扩增,并且导致气孔关闭。对渗透胁迫响应的降低会使叶片及气孔导度增大,但叶片面积增大只在植株有充足土壤水的情况下发挥有利作用;(2)Na+排出,把叶片中Na+通过根排出。Na+不能排除植株会在数天或数周后表现出毒性作用,并且会导致老叶的提前枯萎;(3)组织耐受,让有毒离子进入液泡或特定的组织,使盐分区域化(Munns and Tester,Mechanisms of salinitytolerance.Annu Rev Plant Biol.59:651-81,2008)。
在植物中已经鉴定出很多参与耐盐的基因。一些通过产生渗透调节物质,如糖(Cao等,Reduced expression of a gene encoding a Golgi localized monosaccharidetransporter(OsG MST1)confers hypersensitivity to salt in rice(Oryza sativa).JExp Bot,62:4595-4604,2011)、脯氨酸(Igarashi等,Characterization of the gene fordelta1-pyroline-5-carboxylate synt hetase and correlation between theexpression of the gene and salt tolerance in Oryza sati va L.Plant Mol Biol,33:857-865,1997)、和甜菜碱(Sakamoto等,Metabolic engineering of rice leading tobiosynthesis of glycinebetaine and tolerance to salt and cold.Plant MolBiol,38:1011-1019,1998),有效提高了转基因植株的耐盐性。很多调节蛋白,包括蛋白激酶、磷酸化酶、钙调蛋白、转录因子和信号因子也被证实参与植物的耐盐性调控。超表达依赖于Ca2+的蛋白激酶OsCDPK7(Saijo等,Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on riceplants.Plant J,23:319-327,2000)、OsCPK21(Asano等,Functional characterisationof OsCPK21,a calcium-depe ndent protein kinase that confers salt tolerance inrice.Plant Mol Biol,75:179-191,2011)能提高水稻的耐盐性。同样,一些转录因子也参与激活多种胁迫相关基因的表达并提高水稻的耐盐性,如bZIP(Xiang等,Characterization of OsbZIP23 as a key player of the basic l eucine zippertranscription factor family for conferring abscisic acid sensitivity andsalinityand drought tolerance in rice.Plant Physiol,148:1938-1952,2008)、DREB(Mallikarjuna等,Expression of OsDREB2A transcription factor confers enhanceddehydration and salt st ress tolerance in rice(Oryza sativa L.).BiotechnolLett,33:1689-1697,2011)、NAC(Hu等,Overexpressing a NAM,ATAF,and CUC(NAC)transcription factor enhances drought resistance and salt tolerance inrice.Proc Natl Acad Sci USA,103:12987-12992,2006;N akashima等,Functionalanalysis of a NAC-type transcription factor OsNAC6 involved in abiotic andbiotic stress-responsive gene expression in rice.Plant J,51:617-630,2007)。
还有一些转运离子的基因参与到盐响应过程。高亲和性钾转运子(high affinitypotassi un transporter,HKT)(Ali等,TsHKT1;2,a HKT1 homolog from theextremophile Arabid opsis relative Thellungiella salsuginea,shows K+specificity in the presence of NaCl.PlantPhysiol,158:1463-1474,2012;Byrt等,HKT1;5-like cation transporters linked to Na+e xclusion loci in wheat,Nax2and Kna1.Plant Physiol,143:1918-1928,2007;Davenport等,The Na+transporterAtHKT1;1controls retrieval of Na+from the xylem in Arabidops is.Plant CellEnviron,30:497-507,2007;Hauser and Horie,A conserved primary salt tol erancemechanism mediated by HKT transporters:a mechanism for sodium exclusion andmaintenance of high K+/Na+ratio in leaves during salinity stress.Plant CellEnviron,33:552-565,2010;Horie等,HKT transporter-mediated salinity resistancemechanisms in Ar abidopsis and monocot crop plants.Trends Plant Sci,14:660-668,2009;Horie等,Calciu m regulation of sodium hypersensitivities of sos3 andathkt1 mutants.Plant Cell Physiol,47:622-633,2006;Platten等,Nomenclature forHKT transporters,key determinants of pl ant salinity tolerance.Trends PlantSci,11:372-374,2006;Xue等,AtHKT1;1mediates n ernstian sodium channeltransport properties in Arabidopsis root stelar cells.PLoS One,6:e24725,2011)基因家族和SOS(salt overly sensitive)基因家族在调控Na+转运方面发挥了重要作用(Barragan等,Ion exchangers NHX1 and NHX2 mediate active potassium uptake intovacuoles to regulate cell turgor and stomatal function in Arabidopsis.PlantCell,24:1127-1142,2012;Bassil等,The Arabidopsis intracellular Na+/H+antiporters NHX5 and NHX6 are endosome associated and necessary for plantgrowth and development.Plant Ce ll,23:224-239,2011;Bassil等,The ArabidopsisNa+/H+antiporters NHX1 and NHX2 c ontrol vacuolar pH and K+homeostasis toregulate growth,flower development,and repro duction.Plant Cell,23:3482-3497,2011;Ji等,The Salt Overly Sensitive(SOS)pathway:established and emergingroles.Mol Plant,6:275-286,2013;Mahajan等,Calcium-and salt-stress signaling inplants:shedding light on SOS pathway.Arch Biochem Biophys,471:146-158,2008;Qiu等,Regulation of SOS1,a plasma membrane Na+/H+exchanger inArabidopsisthaliana,by SOS2 and SOS3.Proc Natl Acad Sci USA,99:8436-8441,2002;Shi等,Overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana.Nat Biotechnol,21:81-85,2003;Yang等,Overexpression of SOS(Salt Overly Sensitive)genes increases salt tolerance intransgenic Arabidopsis.M ol Plant,2:22-31,2009)。另外,增加液泡中Na+/H+反向转运子(NHX)的数目有助于提高地上部分的耐盐性(Barragan等,Ion exchangers NHX1 andNHX2 mediate active potass ium uptake into vacuoles to regulate cell turgorand stomatal function in Arabidopsis.Plan t Cell,24:1127-1142,2012;Bassil等,The Arabidopsis intracellular Na+/H+antiporters N HX5 and NHX6 are endosomeassociated and necessary for plant growth and development.Plant Cell,23:224-239,2011)。
表达N端截短的来自烟草的NtSLT1,能抑制钙调神经磷酸酶(CaN)缺陷酵母突变体。并且截短的NtSLT1能增加野生型酵母的耐盐性。NtSLT1编码一个功能未知的蛋白,但酵母中的实验证实其为一个耐盐决定因子。NtSLT1在拟南芥中的同源蛋白,AtSLT1在N端含有自抑制结构域,也能抑制酵母CaN缺陷突变体的盐敏感表型(Matsumoto等,TobaccoandArabidiopsis SLT1 mediate salt tolerance of yeast,Plant Molecular Biology,45:489–500,2001)。
发明内容
本发明的目的在于提供了OsSLT1基因在控制水稻耐盐性中的应用;所述的OsSLT1基因的CDS序列为SEQ NO:2所示,其编码的蛋白的氨基酸的序列为SEQ ID NO:6所示。为了达到上述目标,本发明采取以下技术措施:
OsSLT1基因在控制水稻耐盐性中的应用,所述的应用过程包括利用本发明的常规方案,通过控制OsSLT1基因的表达,以控制水稻的耐盐性,所述的OsSLT1基因的序列为SEQID NO.1所示,CDS序列为SEQ ID NO.2所示,编码的蛋白质序列为SEQ ID NO.6所示
以上所述的应用中,优选的是通过CRISPR/Cas9的方法,在OsSLT1基因内选取靶位点将该基因敲除,获得的水稻突变体为盐敏感型水稻;
以上所述的应用中,优选的所述的盐敏感型水稻包含SEQ ID NO.3或SEQ ID NO.4所示的核苷酸序列。
与现有技术相比,本发明具有以下优点:
本发明首次提出编码SEQ ID NO.6所示蛋白的基因可控制水稻的耐盐性,通过苗期盐胁迫表型鉴定表明,缺失该基因片段时,水稻耐盐胁迫能力降低,证实了该基因的功能及应用途径。
附图说明
图1为野生型水稻和水稻OsSLT1 CRISPR突变体osslt1-1苗期盐胁迫实验示意图;
每个圆盆的左边为对照野生型立新粳(C087),右边为CRISPR突变体osslt1-1。
图2为野生型水稻和水稻OsSLT1 CRISPR突变体osslt1-17苗期盐胁迫实验示意图;
每个圆盆的左边为对照野生型立新粳(C087),右边为CRISPR突变体osslt1-17。
具体实施方式
以下实施例定义了本发明,并描述了本发明在构建了OsSLT1的CRISPR突变体材料,鉴定了其基因型得到纯合突变体,并对其进行了苗期的盐胁迫表型鉴定。根据以下描述的全部或部分实施步骤,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用不同的用途和条件。
本发明所述技术方案,如未特别说明,均为本领域的常规方案;所述试剂或材料,如未特别说明,均来源于商业渠道。
实施例1:
OsSLT1基因的获得及CRISPR目标载体OsSLT1-TKC的构建:
OsSLT1基因为SEQ ID NO.1所示。
OsSLT1-TKC的构建:
第一,设计和选择靶序列:设计U6启动的OsSLT1基因的sgRNA的靶序列为GGCCTCTCCATGGATCCCGCCGG。
第二,合成CRISPR的引物:
01g05790U6-F:GCCTCTCCATGGATCCCGCCgttttagagctagaaatagcaagtta
01g05790U6-R:GGCGGGATCCATGGAGAGGCaacctgagcctcagcgcagc
边界引物:与TKC质粒Pme I酶切位点两侧序列部分重叠的引物为:
OsU6P-F:gtcgtttcccgccttcagtttatgtacagcattacgtagg
OsU6T-R:CTGTCAAACACTGATAGTTTAAACgatggtgcttactgtttag
第三,PCR扩增sgRNA的转录元件。
第一轮PCR分两管进行,模板是TKC质粒((He等,Programmed self-eliminationof the CRISPR/Cas9 construct greatly accelerates theisolation of edited andtransgene-free rice plants.Mol Plant,11(9):1210-1213,2018)):
PCR1:OsU6P-F+01g05790U6-R
PCR2:OsU6T-R+01g05790U6-F
第二轮PCR,将PCR1和PCR2的产物挖胶回收后分别取0.5μL作为模板,使用Os U6P-F+OsU6T-R作为引物来扩增。
第四,将第二轮PCR产物挖胶回收后与已经被Pme I酶切完全的TKC载体相连。最后转化大肠杆菌获得阳性转化子后送测序,最终获得OsSLT1-TKC载体。
TKC两侧的测序引物为ZRP_390(GAACGGATAAACCTTTTCACGCCC),ZRP_395-2(tggcgtaatagcgaagaggc)。
实施例2:
农杆菌介导的遗传转化
(1)电转化:将最终CRISPR目标载体OsSLT1-TKC,用1800v电压,电转化入农杆菌EHA105菌株,涂到带有对应抗性选择的LA培养基上,筛选出阳性克隆,用于下述转化愈伤。
(2)愈伤组织诱导:将成熟的立新粳水稻种子去壳,然后依次用70%的乙醇处理1分钟,0.15%氯化汞(HgCl2)种子表面消毒15分钟;用灭菌水洗种子4-5次;将该消过毒的种子放在诱导培养基上;将接种后的愈伤组织诱导培养基置于黑暗处培养4周,温度25±1℃。
(3)愈伤继代:挑选亮黄色、紧实且相对干燥的胚性愈伤,放于继代培养基上黑暗下培养2周,温度25±1℃。
(4)预培养:挑选紧实且相对干燥的胚性愈伤,放于预培养基上黑暗下培养2周,温度25±1℃。
(5)农杆菌培养:在带有对应抗性选择的LA培养基上预培养农杆菌EHA105(来源于CAMBIA,商用菌株,携带有本发明的CRISPR载体OsSLT1-TKC),28℃培养两天;将所述的农杆菌转移至悬浮培养基里,28℃摇床上培养2-3小时。
(6)农杆菌侵染:将预培养的愈伤转移至灭菌好的瓶子内;调节农杆菌的悬浮液至OD600 0.8-1.0;将愈伤在农杆菌悬浮液中浸泡30分钟;转移愈伤至灭菌好的滤纸上吸干;然后放置在共培养基上培养3天,培养温度19-20℃。
(7)愈伤洗涤和选择培养:灭菌水洗涤愈伤至看不见农杆菌;浸泡在含400ppm羧苄青霉素(CN)的灭菌水中30分钟;转移愈伤至灭菌好的滤纸上吸干;转移愈伤至选择培养基上选择2-3次,每次2周(第一次筛选羧苄青霉素浓度为400ppm,第二次以后为250ppm,潮霉素浓度250ppm)。
(8)分化:将抗性愈伤转移至预分化培养基上黑暗处培养5-7周;转移预分化培养的愈伤至分化培养基上,光照下培养,温度26℃。
(9)生根:剪掉分化时产生的根;然后将其转移至生根培养基中光照下培养2-3周,温度26℃。
(10)移栽:洗掉根上的残留培养基,将具有良好根系的幼苗转入温室,同时在最初的几天保持水分湿润。
实施例3:OsSLT1的CRISPR突变体基因型检测
将构建好的OsSLT1-TKC载体转化出苗后,对出苗的转基因材料进行检测,用PCR的方法检测。引物为F:AGGAGGAGCAAGAGGTGGAA;R:GTCCTGGATGCGCAGATTCA。将出苗的转基因材料抽提DNA小样,随后用以上引物进行PCR,95℃5min预变性,95℃30s变性,57℃30s退火,72℃30s延伸,此扩增过程进行32个循环,最后72℃延伸5min,25℃保温。将PCR产物进行琼脂糖凝胶电泳,扩增出来的片段送测序公司测序,测序结果再和野生型序列(SEQ ID NO.5所示)比对确定基因型。
实施例4:鉴定CRISPR突变体苗期盐胁迫表型
将已鉴定好基因型的纯合CRISPR突变体(本发明的盐敏感突变体筛选出两株osslt1-1和osslt1-17,分别含有SEQ ID NO.3和SEQ ID NO.4的序列)、野生型家系(含有SEQ ID NO.5所示序列)的水稻种子催芽后直播到小圆桶中。苗期盐胁迫采用小蓝桶土培种植,每个蓝桶中土壤重量和紧实度一致。对健康生长的四叶期的植株进行4‰盐胁迫(浇相同体积相同浓度盐水,4‰为NaCl和土壤的质量比),待左右两边出现明显差异时,开始拍照
与野生型对照相比,CRISPR纯合植株表现为干旱敏感表型(图1和图2)。图1的两个图代表osslt1-1这个转基因系的两个重复,图2的三个图代表osslt1-17这个转基因系的三个重复;图1和图2中,每个圆盆的左边种植的为野生型水稻;右边种植的为突变体。
序列表
<110> 华中农业大学
<120> OsSLT1基因在控制水稻耐盐性中的应用
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2872
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
tcctccattg ttcccctcct ccccttctct cccctctcct cctcgcttcc ggcgagaagc 60
tccggcgagg cgaagcctcc agaaccttca ggagagctcc tcaccgaagg gacaaggggc 120
cttctagaac cttgctgctt cctcccccaa aggttagatc agagcaaggg cagctgctct 180
ttcttctttc tttcttcctc gtttgtcttc gtttccacct tccagcgagg attctttgtg 240
tgtttaatgg gattttcgag gtgtggtacg gcttgattgg agaaaatatt gttgttttcg 300
tgacgaaatt tagtgaggta ttgtggggaa atcgagtggc ctttttagcg aaaggaagtg 360
ttttttttta cttgatctgt atttcgaggt atgtgtgcat caacatgctg ttaatttggt 420
agtaagtctg ataaattgct tttctttttt tttgtctctg gatttttcta ggcttgcagc 480
gctggattgg ctccgaagat cttaattttg ctccaaagga aggatccccc atcgcaaatc 540
ttgatctgtg ggtggatttg gtgggttgaa aactccatct tttatggggc aaggctatgc 600
gaaatccttg atgctcccat ggagttctcc tcccatgggg caagaggtga agaggcagta 660
gatagaggag gagcaagagg tggaagcgaa gagaagtagg tgagaatagg aaggacgaag 720
gataaggaga ggagggagct ctccatggga gagcccctcc tcaccaccct gtccatggag 780
aacaccaaca gccatccctg cacccgcctc tccatggatc ccgccgggtc gcacgcggcc 840
tcgggtgact cctccggtgg cggtggaggt ggcggcagca ccggtgccgg tggtggtggt 900
ggtggtggcg gtggtgacag ggaattgttc atcattccgc ggcgtgaatc tgcgcatcca 960
ggaccaccgg acattaacct gcccctttct gcagacccct caccaccacc gccgccgcat 1020
ccgccgtcgt ggggtatcga ccagttcgac atgcttgatg tcggtctcgg cacgcagact 1080
tatgagtctg aggttgcgct cacgcttcca aagttgactg gcaatggcaa cactgcggtt 1140
ggcgtcggtg cgaggaagtg tgccaagagg ggggacagca tttggggtgc atggttcttc 1200
ttcaatcact acttcaaacc tgcacttgtg gaaaagccga agggcaaggt gacacgggac 1260
tcttctggga gcgtttcggg ctttgagaag tctgatcttc gccttgatgt cttcctggtg 1320
cagcatgaca tggagaacat gtacatgtgg gtttttaagg aacggcctga caatgccctc 1380
gggaagatgc agctccggag cttcatgaat gggcattcca agcatggtga gccatccttt 1440
ccattcagtg cagataaggg ctttgcaagg tcacaccgca tgcaacgaaa gcactatcga 1500
gggctgtcca acccacaatg ccttcatggg atagagattg tgagttcacc aaatctgtca 1560
gctgttcctg aagctgaaat gaaaaggtgg gcggaactta caggaagaga acttaatttc 1620
tcaattcctc ctgaagcaag tgactttgaa tcatggagga atcttccaag cactgatttc 1680
gaacttgata ggccactgcc actgtcatca aagattacac atggctctca cagtcacaaa 1740
aaggcactga atggttcagg tcttaacctt tctacgccac catcatcaga cgatgggatg 1800
gacctttcac caaaatgcgc caagcgacgg aaggacttct ttgctcatgg tgcagatgag 1860
gattgcgtga tggcaaataa ttcttgttct gacagagagc aagagataga agttcacaca 1920
ggtgagccgt catggatgca tgagttcact ggtgtagcaa aacatgcaag tggacctgtt 1980
acggctgcca agacaatata tgaggacgat gaaggctact taatcatggt gagcatgctc 2040
ttctctgatc ctcacagtgt caaggtctct tggaggaaca cattgacaca tggcattgtg 2100
aagatatcgt gtgtgagcac tgctcgaatg ccctttgtta agagacatga caggacattc 2160
aagttgactg atcctttccc tgagcactgc cctcctggag aatttgtgag agagatacct 2220
ttggctacaa ggattccaga agatgcaaag ctcgaagcgt attatgacga gactggcact 2280
ggactggaaa tcatggtccc caagcaccga gttggacccg aagagcatga agtccaggtt 2340
tgcatgaggc ccccacacct tggtgaaaac gatcttcttt tatcatagaa cagaaaacag 2400
tttagtcttt agatcttcct gtgtcatgcc atgatatgca ggaaagtaac aagtgatgcc 2460
atggatattt tgctgctaaa catttagctg aaattccttt ctcagtagtg ttggtgattt 2520
aggcaaaaaa gttaccactt tgttgattct cccctgtact ttttacacta gcaccactat 2580
attggagatc ttgatttcta tggaacatgg caaagttaaa attctgtata tatatctgat 2640
gatcaagttc aacggttcat tactccataa taatgtcgac agctacttac gactagaagt 2700
tcggaactgt gttgtcaatt tcagcaattg tttgtaatcg ctgtcttaat catttcaatg 2760
tgctgtacta caatactact ggctggatcg ctttcaactg aaaccaaaaa ctcgatccca 2820
ttgctgtact aacttcatga tcgatatgct cctatgcgaa ttccgtttgg tg 2872
<210> 2
<211> 1644
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgggagagc ccctcctcac caccctgtcc atggagaaca ccaacagcca tccctgcacc 60
cgcctctcca tggatcccgc cgggtcgcac gcggcctcgg gtgactcctc cggtggcggt 120
ggaggtggcg gcagcaccgg tgccggtggt ggtggtggtg gtggcggtgg tgacagggaa 180
ttgttcatca ttccgcggcg tgaatctgcg catccaggac caccggacat taacctgccc 240
ctttctgcag acccctcacc accaccgccg ccgcatccgc cgtcgtgggg tatcgaccag 300
ttcgacatgc ttgatgtcgg tctcggcacg cagacttatg agtctgaggt tgcgctcacg 360
cttccaaagt tgactggcaa tggcaacact gcggttggcg tcggtgcgag gaagtgtgcc 420
aagagggggg acagcatttg gggtgcatgg ttcttcttca atcactactt caaacctgca 480
cttgtggaaa agccgaaggg caaggtgaca cgggactctt ctgggagcgt ttcgggcttt 540
gagaagtctg atcttcgcct tgatgtcttc ctggtgcagc atgacatgga gaacatgtac 600
atgtgggttt ttaaggaacg gcctgacaat gccctcggga agatgcagct ccggagcttc 660
atgaatgggc attccaagca tggtgagcca tcctttccat tcagtgcaga taagggcttt 720
gcaaggtcac accgcatgca acgaaagcac tatcgagggc tgtccaaccc acaatgcctt 780
catgggatag agattgtgag ttcaccaaat ctgtcagctg ttcctgaagc tgaaatgaaa 840
aggtgggcgg aacttacagg aagagaactt aatttctcaa ttcctcctga agcaagtgac 900
tttgaatcat ggaggaatct tccaagcact gatttcgaac ttgataggcc actgccactg 960
tcatcaaaga ttacacatgg ctctcacagt cacaaaaagg cactgaatgg ttcaggtctt 1020
aacctttcta cgccaccatc atcagacgat gggatggacc tttcaccaaa atgcgccaag 1080
cgacggaagg acttctttgc tcatggtgca gatgaggatt gcgtgatggc aaataattct 1140
tgttctgaca gagagcaaga gatagaagtt cacacaggtg agccgtcatg gatgcatgag 1200
ttcactggtg tagcaaaaca tgcaagtgga cctgttacgg ctgccaagac aatatatgag 1260
gacgatgaag gctacttaat catggtgagc atgctcttct ctgatcctca cagtgtcaag 1320
gtctcttgga ggaacacatt gacacatggc attgtgaaga tatcgtgtgt gagcactgct 1380
cgaatgccct ttgttaagag acatgacagg acattcaagt tgactgatcc tttccctgag 1440
cactgccctc ctggagaatt tgtgagagag atacctttgg ctacaaggat tccagaagat 1500
gcaaagctcg aagcgtatta tgacgagact ggcactggac tggaaatcat ggtccccaag 1560
caccgagttg gacccgaaga gcatgaagtc caggtttgca tgaggccccc acaccttggt 1620
gaaaacgatc ttcttttatc atag 1644
<210> 3
<211> 100
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgggagagc ccctcctcac caccctgtcc atggagaaca ccaacagcca tccctgcacc 60
cgcctctcca tgccgggtcg cacgcggcct cgggtgactc 100
<210> 4
<211> 105
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atgggagagc ccctcctcac caccctgtcc atggagaaca ccaacagcca tccctgcacc 60
cgcctctcca tggatcgccg ggtcgcacgc ggcctcgggt gactc 105
<210> 5
<211> 107
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atgggagagc ccctcctcac caccctgtcc atggagaaca ccaacagcca tccctgcacc 60
cgcctctcca tggatcccgc cgggtcgcac gcggcctcgg gtgactc 107
<210> 6
<211> 547
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 6
Met Gly Glu Pro Leu Leu Thr Thr Leu Ser Met Glu Asn Thr Asn Ser
1 5 10 15
His Pro Cys Thr Arg Leu Ser Met Asp Pro Ala Gly Ser His Ala Ala
20 25 30
Ser Gly Asp Ser Ser Gly Gly Gly Gly Gly Gly Gly Ser Thr Gly Ala
35 40 45
Gly Gly Gly Gly Gly Gly Gly Gly Gly Asp Arg Glu Leu Phe Ile Ile
50 55 60
Pro Arg Arg Glu Ser Ala His Pro Gly Pro Pro Asp Ile Asn Leu Pro
65 70 75 80
Leu Ser Ala Asp Pro Ser Pro Pro Pro Pro Pro His Pro Pro Ser Trp
85 90 95
Gly Ile Asp Gln Phe Asp Met Leu Asp Val Gly Leu Gly Thr Gln Thr
100 105 110
Tyr Glu Ser Glu Val Ala Leu Thr Leu Pro Lys Leu Thr Gly Asn Gly
115 120 125
Asn Thr Ala Val Gly Val Gly Ala Arg Lys Cys Ala Lys Arg Gly Asp
130 135 140
Ser Ile Trp Gly Ala Trp Phe Phe Phe Asn His Tyr Phe Lys Pro Ala
145 150 155 160
Leu Val Glu Lys Pro Lys Gly Lys Val Thr Arg Asp Ser Ser Gly Ser
165 170 175
Val Ser Gly Phe Glu Lys Ser Asp Leu Arg Leu Asp Val Phe Leu Val
180 185 190
Gln His Asp Met Glu Asn Met Tyr Met Trp Val Phe Lys Glu Arg Pro
195 200 205
Asp Asn Ala Leu Gly Lys Met Gln Leu Arg Ser Phe Met Asn Gly His
210 215 220
Ser Lys His Gly Glu Pro Ser Phe Pro Phe Ser Ala Asp Lys Gly Phe
225 230 235 240
Ala Arg Ser His Arg Met Gln Arg Lys His Tyr Arg Gly Leu Ser Asn
245 250 255
Pro Gln Cys Leu His Gly Ile Glu Ile Val Ser Ser Pro Asn Leu Ser
260 265 270
Ala Val Pro Glu Ala Glu Met Lys Arg Trp Ala Glu Leu Thr Gly Arg
275 280 285
Glu Leu Asn Phe Ser Ile Pro Pro Glu Ala Ser Asp Phe Glu Ser Trp
290 295 300
Arg Asn Leu Pro Ser Thr Asp Phe Glu Leu Asp Arg Pro Leu Pro Leu
305 310 315 320
Ser Ser Lys Ile Thr His Gly Ser His Ser His Lys Lys Ala Leu Asn
325 330 335
Gly Ser Gly Leu Asn Leu Ser Thr Pro Pro Ser Ser Asp Asp Gly Met
340 345 350
Asp Leu Ser Pro Lys Cys Ala Lys Arg Arg Lys Asp Phe Phe Ala His
355 360 365
Gly Ala Asp Glu Asp Cys Val Met Ala Asn Asn Ser Cys Ser Asp Arg
370 375 380
Glu Gln Glu Ile Glu Val His Thr Gly Glu Pro Ser Trp Met His Glu
385 390 395 400
Phe Thr Gly Val Ala Lys His Ala Ser Gly Pro Val Thr Ala Ala Lys
405 410 415
Thr Ile Tyr Glu Asp Asp Glu Gly Tyr Leu Ile Met Val Ser Met Leu
420 425 430
Phe Ser Asp Pro His Ser Val Lys Val Ser Trp Arg Asn Thr Leu Thr
435 440 445
His Gly Ile Val Lys Ile Ser Cys Val Ser Thr Ala Arg Met Pro Phe
450 455 460
Val Lys Arg His Asp Arg Thr Phe Lys Leu Thr Asp Pro Phe Pro Glu
465 470 475 480
His Cys Pro Pro Gly Glu Phe Val Arg Glu Ile Pro Leu Ala Thr Arg
485 490 495
Ile Pro Glu Asp Ala Lys Leu Glu Ala Tyr Tyr Asp Glu Thr Gly Thr
500 505 510
Gly Leu Glu Ile Met Val Pro Lys His Arg Val Gly Pro Glu Glu His
515 520 525
Glu Val Gln Val Cys Met Arg Pro Pro His Leu Gly Glu Asn Asp Leu
530 535 540
Leu Leu Ser
545
<210> 7
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ggcctctcca tggatcccgc cgg 23
<210> 8
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gcctctccat ggatcccgcc gttttagagc tagaaatagc aagtta 46
<210> 9
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ggcgggatcc atggagaggc aacctgagcc tcagcgcagc 40
<210> 10
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
gtcgtttccc gccttcagtt tatgtacagc attacgtagg 40
<210> 11
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ctgtcaaaca ctgatagttt aaacgatggt gcttactgtt tag 43
<210> 12
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gaacggataa accttttcac gccc 24
<210> 13
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tggcgtaata gcgaagaggc 20
<210> 14
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
aggaggagca agaggtggaa 20
<210> 15
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gtcctggatg cgcagattca 20

Claims (4)

1.OsSLT1基因在控制水稻耐盐性中的应用;所述的OsSLT1基因的CDS编码的蛋白的氨基酸的序列为SEQ ID NO:6所示。
2.根据权利要求1所述的应用,所述的OsSLT1基因的CDS序列为SEQ ID NO.1所示。
3.根据权利要求1所述的应用,其应用过程是通过CRISPR/Cas9的方法,将OsSLT1基因敲除,获得盐胁迫敏感型水稻。
4.根据权利要求3所述的应用,所述的干旱敏感型水稻包含SEQ ID NO.3或SEQ IDNO.4所示的核苷酸序列。
CN202011283158.6A 2020-11-17 2020-11-17 OsSLT1基因在控制水稻耐盐性中的应用 Active CN114507672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011283158.6A CN114507672B (zh) 2020-11-17 2020-11-17 OsSLT1基因在控制水稻耐盐性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011283158.6A CN114507672B (zh) 2020-11-17 2020-11-17 OsSLT1基因在控制水稻耐盐性中的应用

Publications (2)

Publication Number Publication Date
CN114507672A CN114507672A (zh) 2022-05-17
CN114507672B true CN114507672B (zh) 2024-01-12

Family

ID=81546286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011283158.6A Active CN114507672B (zh) 2020-11-17 2020-11-17 OsSLT1基因在控制水稻耐盐性中的应用

Country Status (1)

Country Link
CN (1) CN114507672B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538573A (zh) * 2009-04-16 2009-09-23 华中农业大学 利用水稻基因OsNHAD提高植物的耐盐性
CN109112140A (zh) * 2018-03-24 2019-01-01 华中农业大学 OsSN28基因在控制水稻耐高温中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538573A (zh) * 2009-04-16 2009-09-23 华中农业大学 利用水稻基因OsNHAD提高植物的耐盐性
CN109112140A (zh) * 2018-03-24 2019-01-01 华中农业大学 OsSN28基因在控制水稻耐高温中的应用

Also Published As

Publication number Publication date
CN114507672A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US7692067B2 (en) Yield and stress tolerance in transgenic plants
US20090044297A1 (en) Transgenic plants with enhanced agronomic traits
MX2008016224A (es) Rendimiento mejorado y tolerancia al estres en plantas transgenicas.
WO2008070179A2 (en) Genes and uses for plant improvement
CN108948164B (zh) 甘薯耐盐抗旱相关蛋白IbbZIP1及其编码基因与应用
US20160068860A1 (en) Transgenic plants
CN101747419A (zh) 耐盐相关蛋白及其编码基因与应用
CN110016478B (zh) 一种密罗木基因MfWRKY7及其应用
WO2012136129A1 (en) Application of ossro1c gene in controlling rice drought resistance
CN103436547A (zh) 一种具有草甘膦耐性的基因及其应用
CN102978218A (zh) 苹果抗逆相关基因MdSIMYB2的克隆及其应用
US10072271B2 (en) Methods for improving crop yield
CN111662928A (zh) 调控植物耐盐性的方法及耐盐相关蛋白
US9322031B2 (en) Transgenic plants with enhanced agronomic traits
US20140373193A1 (en) Use of OsPP18 Gene in Controlling Rice Drought Resistance
KR101915296B1 (ko) 식물의 염 스트레스 내성을 조절하는 벼 유래의 OsPHYB 유전자 및 이의 용도
US20140150133A1 (en) Use of Modified OsbZIP46 Gene in Controlling Plant Drought Resistance
CN113604480A (zh) 一种玉米转录因子ZmHsf28及应用
CN114507672B (zh) OsSLT1基因在控制水稻耐盐性中的应用
CN103421809A (zh) OsHSF08基因在控制水稻抗旱性中的应用
CN116410279B (zh) 与调控水稻非生物胁迫耐受性相关的蛋白及其相关生物材料与应用
CN111118024B (zh) 一种密罗木基因MfbHLH44及其应用
KR101376522B1 (ko) 내염성을 증가시키는 벼 유래의 OsMLD 유전자 및 이의 용도
KR101841606B1 (ko) 식물의 벼흰잎마름병 저항성을 증가시키는 OsLCT1 유전자 및 이의 용도
KR101664206B1 (ko) 식물의 환경 스트레스 내성을 증가시키는 벼 유래의 OsWOX13 유전자 및 이의 용도

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant