CN114486843B - 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用 - Google Patents

一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用 Download PDF

Info

Publication number
CN114486843B
CN114486843B CN202111556059.5A CN202111556059A CN114486843B CN 114486843 B CN114486843 B CN 114486843B CN 202111556059 A CN202111556059 A CN 202111556059A CN 114486843 B CN114486843 B CN 114486843B
Authority
CN
China
Prior art keywords
core
shell
nanoparticle
layer
shell nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111556059.5A
Other languages
English (en)
Other versions
CN114486843A (zh
Inventor
李剑锋
孙钰琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202111556059.5A priority Critical patent/CN114486843B/zh
Publication of CN114486843A publication Critical patent/CN114486843A/zh
Application granted granted Critical
Publication of CN114486843B publication Critical patent/CN114486843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用,Au@Pd@Pt核壳纳米粒子从内至外包括内核、中间层和外层,所述内核为粒径40~70nm的金纳米颗粒,所述中间层为0.1~5nm厚的Pd壳层,所述外层为0.1~5nm厚的Pt壳层;其制备方法,包括如下步骤:合成金纳米粒子、合成Au@Pd核壳纳米粒子、合成Au@Pd@Pt核壳结构纳米粒子。本发明合成的Au@Pd@Pt核壳结构纳米粒子具有双功能,除了良好的氧还原性能外,还具有超薄的双壳层(0.1~5nm),因此可以产生很强的局域电磁场增强作用,具有较强的拉曼信号增强能力,可应用于燃料电池氧还原反应过程机理的研究,对燃料电池材料的设计具有指导作用,有广泛的应用前景。

Description

一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用
技术领域
本发明属于纳米粒子制备技术领域,具体涉及一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用。
背景技术
表面增强拉曼散射(SERS)是一种强大的光谱技术,可提供超高灵敏度的指纹振动信息,使得表面拉曼光谱本质上的低检测灵敏度不再是其致命的缺点。燃料电池氧还原(ORR)反应过程复杂,存在多种路径及中间物种,因此借助表面增强拉曼散射从分子水平深入研究燃料电池氧还原(ORR)反应机理具有重大意义。然而,在早期阶段只有少数几种金属(如Au,Ag和Cu)会产生较大的SERS效应,并且它们必须是纳米级粗糙,而在其他金属表面(如Pt、Pd、Rh、Ni、Ti或Co)增强作用明显降低,甚至几乎没有检测到过渡金属上的探针分子,这也导致了1980-1990中期SERS的低潮。直到90年代,各种表面粗化方法被提出用来提高过渡金属的强化效果,并在裸露的Pd、Pt、Rh、Ru、Fe、Co和Ni电极上获得了1-3个数量级的增强。然而,由金属纳米结构提供的信号增强关键取决于其尺寸,形状和间距,这严重地限制了SERS实际应用。
为了解决这一问题,一种核-壳纳米结构“借力”策略被开发用来制备Au核过渡金属壳(Au@TM,TM=Pt、Pd、Rh、Ru、Co和Ni)纳米粒子,以扩展SERS到过渡金属表面(Chem.Commun.,2007,34,3514-3534)。内核是具有高SERS活性金属纳米粒子,可以产生强电磁场,以增强吸附在壳层过渡金属上的分子的拉曼信号。通过这种方法,增强作用足够强(大约4-5个数量级)以满足分子水平的研究。此外,纳米粒子的性质可以直接代表过渡金属的性质,因为纳米粒子的表面完全被过渡金属壳覆盖,因此纳米粒子仍然具有过渡金属的功能性,可应用于不同催化反应体系。但为了提高催化性能,引入不同元素的壳层后,由于这些金属的光学阻尼性质和粗糙表面的不均匀性,会使得拉曼光谱的信号大大减弱,信噪比较差,这极大的限制了原位拉曼光谱技术在表界面反应机理的研究,所以制备尺寸均一、壳层厚度可调的超薄核壳结构纳米粒子迫在眉睫。
发明内容
本发明的目的在于克服现有技术存在的缺陷,提供一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法,采用核-壳纳米结构“借力”策略,合成具有双功能的Au@Pd@Pt核壳结构纳米粒子。
为了实现以上目的,本发明的技术方案之一为:一种双功能Au@Pd@Pt核壳纳米粒子,从内至外包括内核、中间层和外层,所述内核为粒径40~70nm的金纳米颗粒,所述中间层为0.1~5nm厚的Pd壳层,所述外层为0.1~5nm厚的Pt壳层。
本发明的技术方案之二为:一种双功能Au@Pd@Pt核壳纳米粒子在氧还原反应中的应用。
本发明的技术方案之三为:一种双功能Au@Pd@Pt核壳纳米粒子在燃料电池中的应用。
本发明的技术方案之四为:一种双功能Au@Pd@Pt核壳纳米粒子在拉曼光谱检测中的应用。
本发明的技术方案之五为:一种双功能Au@Pd@Pt核壳纳米粒子的制备方法,具体包括如下步骤:
(1)合成金纳米粒子:将质量分数为0.01%wt.的氯金酸溶液加热回流后,按照体积比1~5mL:1~5mL加入质量分数为1%wt.的柠檬酸钠溶液,继续加热回流,冷却后得到金纳米粒子溶胶;
(2)合成Au@Pd核壳纳米粒子:取步骤(1)中得到的金纳米粒子溶胶,加入圆底烧瓶中,再分别加入H2O和H2PdCl4溶液,移入冰浴中,再加入抗坏血酸,即可得到包覆Pd壳层的Au@Pd核壳纳米粒子溶胶;
(3)合成Au@Pd@Pt核壳结构纳米粒子:取步骤(2)中合成得到的Au@Pd核壳纳米粒子溶胶,加入圆底烧瓶中,再分别加入H2O和H2PtCl6溶液,水浴加热,再加入摩尔浓度为10mM的抗坏血酸,即可得到Au@Pd@Pt核壳纳米粒子溶胶。
在本发明一较佳实施例中,所述步骤(1)中合成纳米粒子的粒径为40~70nm。
在本发明一较佳实施例中,所述步骤(2)中合成Au@Pd核壳纳米粒子的Pd层厚度为0.1~5nm。
在本发明一较佳实施例中,所述步骤(2)中H2PdCl4溶液的浓度为1mM,H2O、H2PdCl6和抗坏血酸的体积比为10~50mL:0.1~5mL:100~1000μL。
在本发明一较佳实施例中,所述步骤(3)中合成Au@Pd@Pt核壳结构纳米粒子的Pt层厚度为0.1~5nm。
在本发明一较佳实施例中,所述步骤(3)中H2PtCl6的浓度为1mM,H2O、H2PtCl6和抗坏血酸的体积比为10~50mL:0.1~5mL:100~1000μL。
与现有技术相比,本发明的有益效果为:
1.本发明合成的Au@Pd@Pt核壳结构纳米粒子,通过在金纳米粒子表面包覆一层0.1~5nm的Pd壳层后,再包覆一层0.1~5nm的Pt壳层,制成具有双功能的核壳结构纳米粒子,粒子表面壳层厚度可调,形貌均匀、尺寸均一;
2.本发明采用的合成方法制得的纳米粒子合成的重复性高,避免使用会对后续实验造成影响的强吸附试剂;
3.本发明合成的Au@Pd@Pt核壳结构纳米粒子,因Pd和Pt之间存在的应力效应以及界面电子转移效应,使其具有良好的氧还原性能,可应用于燃料电池的研究;
4.本发明合成的Au@Pd@Pt核壳结构纳米粒子具有双功能,即除了良好的氧还原性能外,还具有超薄的双壳层(0.1~5nm),因此可以产生很强的局域电磁场增强作用,具有较强的拉曼信号增强能力,可应用于燃料电池氧还原反应过程机理的研究,对燃料电池材料的设计具有指导作用,有广泛的应用前景。
附图说明
图1为实施例1中制备的金纳米粒子的扫描电镜图;
图2为实施例2中制备的Au@Pd核壳纳米粒子的透射电镜图;
图3为实施例3中制备的Au@Pd@Pt核壳纳米粒子的透射电镜图;
图4为CV表征曲线图,其中图a为实施例1制备的金纳米粒子的CV表征曲线图,图b为实施例2制备的Au@Pd核壳纳米粒子的CV表征曲线图,图c、d、e为实施例3制备的三种包覆不同Pt壳层厚度的Au@Pd@Pt核壳纳米粒子(其中Pd层厚度都一样)的CV表征曲线图;
图5为实施例2、对比例1和实施例3分别制备的Au@Pd、Au@Pt和Au@Pd@Pt核壳纳米粒子在旋转环盘上的氧还原性能表征曲线图;
图6为实施例3制备的Pt层厚度为1.4nm的Au@Pd@Pt核壳纳米粒子和玻碳电极的拉曼光谱表征图,其中图a为Au@Pd@Pt核壳纳米粒子的拉曼光谱表征图,图b为玻碳电极的拉曼光谱表征图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面将通过实施例对本发明的内容进行更详细地描述,但本发明的保护范围并不受限于这些实施例。
一种双功能Au@Pd@Pt核壳纳米粒子,从内至外包括内核、中间层和外层,所述内核为粒径40~70nm的金纳米颗粒,所述中间层为0.1~5nm厚的Pd壳层,所述外层为0.1~5nm厚的Pt壳层。
一种双功能Au@Pd@Pt核壳纳米粒子的制备方法,具体包括如下步骤:
(1)合成金纳米粒子:200mL质量分数为0.01%wt.的氯金酸溶液,加热回流后,加入1~5mL质量分数为1%wt.的柠檬酸钠溶液,继续加热回流,冷却后得到金纳米粒子溶胶;
(2)合成Au@Pd核壳纳米粒子:取步骤(1)中得到的金纳米粒子溶胶,加入圆底烧瓶中,再分别加入10~50mLH2O以及0.1~5mL浓度为1mM的H2PdCl4溶液,移入冰浴中,再加入100~1000μL摩尔浓度为10mM的抗坏血酸,即可得到厚度为0.1~5nm的Pd壳层包覆的Au@Pd核壳纳米粒子溶胶;
(3)合成Au@Pd@Pt核壳结构纳米粒子:取步骤(2)中合成得到的Au@Pd核壳纳米粒子溶胶,加入圆底烧瓶中,再分别加入10~50mL H2O,以及0.1~5mL浓度为1mMH2PtCl6溶液,水浴加热,再控制加入100~1000μL浓度为10mM的抗坏血酸,即可得到Au@Pd@Pt核壳纳米粒子溶胶,Pt壳层厚度为0.1~5nm。
实施例1
制备粒径为55nm的金纳米粒子,具体合成步骤如下:加入200ml的氯金酸溶液,加热回流后,再加入质量分数为1%wt.的柠檬酸钠溶液,继续加热回流,冷却后得到粒径为55nm的金纳米粒子溶胶,颜色呈现砖红色;将金纳米粒子溶胶移入离心管中,以5500rpm转速进行离心,离心时间10min,去除母液后再以超纯水进行洗涤离心,得到浓缩液后滴在干净硅片上,运用扫描电镜观察金纳米粒子的形貌,结果如图1所示,从图1可知制备的金纳米粒子形状尺寸都比较均匀。
实施例2
制备Au@Pd核壳纳米粒子,具体合成步骤如下:取实施例1中所得到的金纳米粒子,分别加入19.4/18.8/17.54mL H2O和0.4/0.8/1.64mL浓度为1mM的H2PdCl4溶液,移入冰浴中,再逐滴加入不同量的抗坏血酸(10mM,0.2/0.4/0.82mL),冰浴中搅拌反应,即可得到不同Pd壳层厚度(0.35/0.7/1.4nm)的Au@Pd核壳纳米粒子溶胶,颜色呈黑红色;将Au@Pd(0.7nm)核壳纳米粒子溶胶移入离心管中,以5500rpm转速进行离心,离心时间10min,去除母液后再以超纯水进行洗涤离心,得到浓缩液后稀释至0.5mL,滴在干净铜网上,运用透射电镜观察Au@Pd核壳纳米粒子结构,结果如图2所示。从图2可以看出:纳米粒子具有较薄壳层且表面光滑。
实施例3
制备Au@Pd@Pt核壳纳米粒子,具体合成步骤如下:取实施例2中所得到的Au@Pd核壳纳米粒子溶胶,分别加入18.92/17.79/15.37mLH2O和0.72/1.47/3.09mL浓度为1mM的H2PtCl6溶液,水浴加热,再逐滴加入不同量的抗坏血酸(10mM,0.36/0.74/1.54mL),80℃水浴搅拌反应30分钟即可得到不同Pt壳层厚度(0.7/1.4/2.8nm)的Au@Pd@Pt核壳纳米粒子溶胶,颜色呈黑红色;取1.5mlAu@Pd@Pt(2.8nm)核壳纳米粒子溶胶移入离心管中5500rpm转速进行离心,离心时间10min,去除母液后再以超纯水进行洗涤离心,得到浓缩液后再稀释至0.5ml,滴于干净铜网上,运用透射电镜观察Au@Pd@Pt核壳纳米粒子结构,得到图3。从图3可以看出:纳米粒子尺寸均一,表面具有粗糙壳层。
对比例1
制备Au@Pt核壳纳米粒子,具体合成步骤如下:取实施例1中所得到的金纳米粒子,分别加入17.79mL H2O和1.47mL浓度为1mM的H2PtCl6溶液,移入冰浴中,再逐滴加入0.74mL浓度为10mM的抗坏血酸,冰浴中搅拌反应,即可得到Pt壳层厚度为1.4nm的Au@Pt核壳纳米粒子溶胶。
实施例4
将实施例1-3分别制备的金纳米粒子、Au@Pd核壳纳米粒子和Au@Pd@Pt核壳纳米粒子进行CV曲线表征,分别将上述粒子稀释至0.5mL后滴于玻碳电极上,干燥后在高氯酸溶液中进行CV表征,结果如图4所示;电压窗口在0.05~1.75V(RHE),扫速为50mV s-1。金纳米粒子中1.2V附近极强的峰为金的还原峰,Au@Pd中Au的氧化还原峰完全消失,说明Au表面已完全被Pd覆盖;随着Pt壳层的引入,H吸脱附区域趋向对称,并出现Pt的还原峰,说明Au@Pd@Pt中Pd壳层已被Pt覆盖。
实施例5
将实施例2、对比例1和实施例3中的Au@Pd、Au@Pt和Au@Pd@Pt核壳纳米粒子进行氧还原性能测试,结果如图5所示。横坐标为Potential,单位为V,纵坐标为Current density,单位为mA cm-2。通过图5可以看出,Pd壳层的引入大大提高了氧还原性能,Au@Pd@Pt核壳纳米粒子的氧还原性能相比于Au@Pd和Au@Pt都有了大幅的提升。
实施例6
将实施例3所合成的Au@Pd@Pt核壳纳米粒子进行拉曼光谱表征,将Pt层厚度为1.4nm的Au@Pd@Pt稀释后,用移液枪取少量滴于玻碳电极上,干燥后将其置于在高氯酸溶液中的进行拉曼光谱的表征;测试激光为638nm,功率为3mW,粒子具有较强的增强拉曼信号能力,金属-氧特征峰(a曲线中阴影覆盖区域为Pt-O)表明所合成的Au@Pd@Pt核壳纳米粒子表面所包覆的Pt壳层都是致密的;对玻碳电极进行拉曼光谱表征,背景强度仅为~500(b曲线);相比之下,Au@Pd@Pt核壳纳米粒子的背景强度可达到~8000,进一步说明所合成的这种核壳纳米粒子具有较强的增强拉曼信号能力。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种双功能Au@Pd@Pt核壳纳米粒子,其特征在于,从内至外包括内核、中间层和外层,所述内核为粒径55~70nm的金纳米颗粒,所述中间层为0.1~5nm厚的Pd壳层,所述外层为0.1~5nm厚的Pt壳层;所述Au@Pd@Pt核壳纳米粒子由如下方法制备,包括以下步骤:
(1)合成金纳米粒子:将氯金酸溶液加热回流后,加入柠檬酸钠溶液,继续加热回流,冷却后得到金纳米粒子溶胶;
(2)合成Au@Pd核壳纳米粒子:取步骤(1)中得到的金纳米粒子溶胶,加入圆底烧瓶中,分别加入H2O和H2PdCl4溶液,移入冰浴中,再加入抗坏血酸,即可得到包覆Pd壳层的Au@Pd核壳纳米粒子溶胶;
(3)合成Au@Pd@Pt核壳结构纳米粒子:取步骤(2)中合成得到的Au@Pd核壳纳米粒子溶胶,加入圆底烧瓶中,再分别加入H2O和H2PtCl6溶液,水浴加热,再加入摩尔浓度为10mM的抗坏血酸,即可得到Au@Pd@Pt核壳纳米粒子溶胶。
2.根据权利要求1所述的一种双功能Au@Pd@Pt核壳纳米粒子在氧还原反应中的应用。
3.根据权利要求1所述的一种双功能Au@Pd@Pt核壳纳米粒子在燃料电池中的应用。
4.根据权利要求1所述的一种双功能Au@Pd@Pt核壳纳米粒子在拉曼光谱检测中的应用。
5.根据权利要求1所述的一种双功能Au@Pd@Pt核壳纳米粒子,其特征在于,所述步骤(2)中合成Au@Pd核壳纳米粒子的Pd层厚度为0.1~5nm。
6.根据权利要求1所述的一种双功能Au@Pd@Pt核壳纳米粒子,其特征在于,所述步骤(2)中H2PdCl4溶液的浓度为1mM,H2O、H2PdCl4和抗坏血酸的体积比为10~50mL:0.1~5mL:100~1000μL。
7.根据权利要求1所述的一种双功能Au@Pd@Pt核壳纳米粒子,其特征在于,所述步骤(3)中合成Au@Pd@Pt核壳结构纳米粒子的Pt层厚度为0.1~5nm。
8.根据权利要求1所述的一种双功能Au@Pd@Pt核壳纳米粒子,其特征在于,所述步骤(3)中H2PtCl6的浓度为1mM,H2O、H2PtCl6和抗坏血酸的体积比为10~50mL:0.1~5mL:100~1000μL。
CN202111556059.5A 2021-12-17 2021-12-17 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用 Active CN114486843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111556059.5A CN114486843B (zh) 2021-12-17 2021-12-17 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111556059.5A CN114486843B (zh) 2021-12-17 2021-12-17 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114486843A CN114486843A (zh) 2022-05-13
CN114486843B true CN114486843B (zh) 2023-12-19

Family

ID=81493167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111556059.5A Active CN114486843B (zh) 2021-12-17 2021-12-17 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114486843B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101263A (zh) * 2007-07-20 2008-01-09 苏州大学 高活性表面增强拉曼光谱的核壳纳米粒子及其制备方法
CN101130883A (zh) * 2006-08-22 2008-02-27 国家纳米科学中心 一种长方形金核/钯壳双金属纳米棒及其制备方法
CN101832933A (zh) * 2010-01-21 2010-09-15 厦门大学 用壳层隔绝纳米粒子增强拉曼光谱的方法
CN102059346A (zh) * 2010-12-08 2011-05-18 厦门大学 一种金-二氧化锰核壳结构纳米粒子的制备方法
CN102581273A (zh) * 2012-03-05 2012-07-18 安徽师范大学 一种多孔核壳纳米含金合金及其制备方法
CN102608097A (zh) * 2012-02-03 2012-07-25 济南大学 一种具有可调拉曼散射效应的探针及其制备方法
CN102818893A (zh) * 2012-08-28 2012-12-12 济南大学 金钯核壳材料构建肺癌肿瘤标志物免疫传感器制备及应用
CN103468002A (zh) * 2013-09-03 2013-12-25 太原理工大学 丝素蛋白/金属纳米粒子复合体系的制备方法
CN104174392A (zh) * 2013-05-27 2014-12-03 中国科学院大连化学物理研究所 一种担载型铂基多金属催化剂的一步制备方法和应用
WO2015171892A1 (en) * 2014-05-07 2015-11-12 Yadong Yin Fully alloyed ag-au nanostructures
CN106953104A (zh) * 2017-03-20 2017-07-14 北京理工大学 一种以还原氧化石墨烯为载体的Ni@Au@Pd三层核壳结构的电催化剂及其制备方法
KR20180024478A (ko) * 2016-08-30 2018-03-08 고려대학교 산학협력단 중형기공 쉘을 갖는 과산화수소 제조용 나노촉매 및 이를 이용한 과산화수소의 제조방법
CN108499560A (zh) * 2018-05-11 2018-09-07 华南理工大学 一种Pt@Pd核壳结构纳米颗粒电催化剂及制备与应用
CN109311662A (zh) * 2016-03-24 2019-02-05 南洋理工大学 核壳等离子体纳米间隙的纳米结构材料
CN113152081A (zh) * 2021-04-19 2021-07-23 武汉大学 一种功能化核壳纳米线及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216961B2 (en) * 2008-08-27 2012-07-10 Korea University Research And Business Foundation Nanoparticles including metal oxide having catalytic activity

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130883A (zh) * 2006-08-22 2008-02-27 国家纳米科学中心 一种长方形金核/钯壳双金属纳米棒及其制备方法
CN101101263A (zh) * 2007-07-20 2008-01-09 苏州大学 高活性表面增强拉曼光谱的核壳纳米粒子及其制备方法
CN101832933A (zh) * 2010-01-21 2010-09-15 厦门大学 用壳层隔绝纳米粒子增强拉曼光谱的方法
CN102059346A (zh) * 2010-12-08 2011-05-18 厦门大学 一种金-二氧化锰核壳结构纳米粒子的制备方法
CN102608097A (zh) * 2012-02-03 2012-07-25 济南大学 一种具有可调拉曼散射效应的探针及其制备方法
CN102581273A (zh) * 2012-03-05 2012-07-18 安徽师范大学 一种多孔核壳纳米含金合金及其制备方法
CN102818893A (zh) * 2012-08-28 2012-12-12 济南大学 金钯核壳材料构建肺癌肿瘤标志物免疫传感器制备及应用
CN104174392A (zh) * 2013-05-27 2014-12-03 中国科学院大连化学物理研究所 一种担载型铂基多金属催化剂的一步制备方法和应用
CN103468002A (zh) * 2013-09-03 2013-12-25 太原理工大学 丝素蛋白/金属纳米粒子复合体系的制备方法
WO2015171892A1 (en) * 2014-05-07 2015-11-12 Yadong Yin Fully alloyed ag-au nanostructures
CN109311662A (zh) * 2016-03-24 2019-02-05 南洋理工大学 核壳等离子体纳米间隙的纳米结构材料
KR20180024478A (ko) * 2016-08-30 2018-03-08 고려대학교 산학협력단 중형기공 쉘을 갖는 과산화수소 제조용 나노촉매 및 이를 이용한 과산화수소의 제조방법
CN106953104A (zh) * 2017-03-20 2017-07-14 北京理工大学 一种以还原氧化石墨烯为载体的Ni@Au@Pd三层核壳结构的电催化剂及其制备方法
CN108499560A (zh) * 2018-05-11 2018-09-07 华南理工大学 一种Pt@Pd核壳结构纳米颗粒电催化剂及制备与应用
CN113152081A (zh) * 2021-04-19 2021-07-23 武汉大学 一种功能化核壳纳米线及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core-Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell;Liang Wang, Yusuke Yamauchi;JACS;第132卷(第39期);第13636-13638页 *
Liang Wang, Yusuke Yamauchi.Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core-Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell.JACS.2010,第132卷(第39期),第13636-13638页. *

Also Published As

Publication number Publication date
CN114486843A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Cui et al. Gold nanoparticle–colloidal carbon nanosphere hybrid material: Preparation, characterization, and application for an amplified electrochemical immunoassay
CN107313046B (zh) 一种sers基底及其制备方法
CN111289493B (zh) 一种表面增强拉曼基底及其制备方法
Zhang et al. Graphene oxide-wrapped flower-like sliver particles for surface-enhanced Raman spectroscopy and their applications in polychlorinated biphenyls detection
CN106493381B (zh) 一种银/氧化亚铜微纳结构复合材料的制备方法及其应用
Kasztelan et al. Ammonia modified graphene oxide–gold nanoparticles composite as a substrate for surface enhanced Raman spectroscopy
CN110018148B (zh) 一种表面增强拉曼试纸的制备方法
Dong et al. Carbon based dot capped silver nanoparticles for efficient surface-enhanced Raman scattering
Gan et al. The chain-like Au/carbon dots nanocomposites with peroxidase-like activity and their application for glucose detection
CN108333168A (zh) 一种利用卫星结构的增强拉曼检测方法
Long et al. Preparation of stable core–shell dye adsorbent Ag-coated silica nanospheres as a highly active surfaced-enhanced Raman scattering substrate for detection of Rhodamine 6G
CN104730056A (zh) 利用纳米级Cu2-xS材料作为基底进行SERS检测的方法
Toma et al. Pushing the surface-enhanced Raman scattering analyses sensitivity by magnetic concentration: a simple non core–shell approach
Gao et al. In situ monitoring of plasmon-driven photocatalytic reactions at gas–liquid–solid three-phase interfaces by surface-enhanced Raman spectroscopy
CN111675495A (zh) 一种玻璃sers平台基底及其制备方法
Guo et al. Construction of black phosphorus nanosheets and Ag nanoparticles co-sensitized TiO2 nanorod arrays as high-performance SERS substrate and photocatalyst
Zhang et al. Plasmon enhanced fluorescence and Raman scattering by [Au-Ag Alloy NP Cluster]@ SiO2 core-shell nanostructure
Saito et al. Size-controlled synthesis of cyclodextrin-capped gold nanoparticles for molecular recognition using surface-enhanced Raman scattering
CN114486843B (zh) 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用
Marques et al. Structural characterization and plasmonic properties of manganese oxide-coated gold nanorods
Yang et al. Nb2C MXene self-assembled Au nanoparticles simultaneously based on electromagnetic enhancement and charge transfer for surface enhanced Raman scattering
Liu et al. A self-cleaning SERS substrate based on flower-like Au@ MoS2/Ag NPs with photocatalytic ability
CN110280778B (zh) 一种Ag@ZrO2核-壳纳米材料及其制备方法和应用
Li et al. Shell‐Isolated Nanoparticle‐Enhanced Raman Spectroscopy (SHINERS)
CN105819434B (zh) 一种表面增强拉曼基底材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant