CN113152081A - 一种功能化核壳纳米线及其制备方法与应用 - Google Patents

一种功能化核壳纳米线及其制备方法与应用 Download PDF

Info

Publication number
CN113152081A
CN113152081A CN202110416613.3A CN202110416613A CN113152081A CN 113152081 A CN113152081 A CN 113152081A CN 202110416613 A CN202110416613 A CN 202110416613A CN 113152081 A CN113152081 A CN 113152081A
Authority
CN
China
Prior art keywords
nanowire
shell
core
functionalized
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110416613.3A
Other languages
English (en)
Other versions
CN113152081B (zh
Inventor
黄卫华
吴文涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202110416613.3A priority Critical patent/CN113152081B/zh
Publication of CN113152081A publication Critical patent/CN113152081A/zh
Application granted granted Critical
Publication of CN113152081B publication Critical patent/CN113152081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/63Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing sulfur in the main chain, e.g. polysulfones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Textile Engineering (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种功能化核壳纳米线及其制备方法与应用,属于电化学及材料领域。本发明通过3,4‑乙烯二氧噻吩(EDOT)与贵金属配合物间的化学聚合反应,在非导电纳米线表面均匀包裹聚EDOT(PEDOT)‑贵金属纳米颗粒复合物涂层,批量制备功能化核壳纳米线。本发明基于简便、普适的“一锅法”反应,通过调控核、壳材料种类,批量制备多种功能化导电核壳纳米线。以此核壳纳米线为电极材料进行组装,可获得具有优良电化学性能的功能化纳米电极,简化了纳米电极的制备过程,并突破了现有纳米电极制备材料的局限性,实现了单个活细胞内生物信号分子的实时定量监测。

Description

一种功能化核壳纳米线及其制备方法与应用
技术领域
本发明属于电化学及材料领域,具体涉及一种功能化核壳纳米线及其制备方法与应用。
背景技术
众多基本的科学过程(如细胞信号转导、催化反应等)发生在纳米尺度,因此在原位监测这些过程引起了广泛的研究兴趣。纳米电极电化学技术因其高灵敏度及空间分辨率,在纳米尺度研究中表现出显著的优越性。其中,一维导电纳米材料是制备纳米电极的理想材料,但其存在有材料种类局限(主要为碳、金、铂)、制备过程繁琐耗时等不足。因此,发展一种简便、高效制备功能化导电纳米线的方法仍面临巨大挑战。
发明内容
本发明的目的在于提供一种功能化核壳纳米线,本发明的目的还在于提供一种简便、批量制备所述功能化核壳纳米线的方法,及其在纳米电化学传感中的应用。
本发明的目的通过下述技术方案实现:
一种功能化核壳纳米线,为表面均匀包裹导电聚合物PEDOT(聚(3,4-乙烯二氧噻吩))-贵金属纳米颗粒复合物涂层的非导电纳米线。所述的贵金属纳米颗包括金纳米颗粒、钯纳米颗粒、铂纳米颗粒;所述的非导电纳米线包括碳化硅(SiC)纳米线、二氧化钛(TiO2)纳米线、二氧化硅(SiO2)纳米线。
所述的功能化核壳纳米线的制备方法,包括以下步骤:
(1)将非导电纳米线加入溶剂中,使纳米线均匀分散。所述的溶剂优选为乙腈或乙醇;优选通过超声使纳米线均匀分散。
(2)向步骤(1)得到的纳米线分散液中加入EDOT(3,4-乙烯二氧噻吩),使其均匀分散溶解。优选通过搅拌使其均匀分散溶解。
(3)向步骤(2)得到的分散液内加入贵金属配合物作为氧化剂,引发化学聚合反应。所述的贵金属配合物包括四氯金酸(HAuCl4)、四氯钯酸(H2PdCl4)、六氯铂酸(H2PtCl6)。在该过程中,EDOT氧化聚合为导电聚合物PEDOT,贵金属配合物还原为贵金属纳米颗粒。
(4)待PEDOT-贵金属纳米颗粒复合物均匀包裹在非导电纳米线表面后,将反应液离心,洗涤,得到PEDOT功能涂层包裹的核壳纳米线,即所述的功能化核壳纳米线。所述的洗涤优选为用水和乙醇分别洗涤。
所述的功能化核壳纳米线具有优良的电化学性能,可用于纳米电化学传感中。
进一步地,所述的功能化核壳纳米线在制备功能化纳米电极中的应用。
一种制备功能化纳米电极的方法,包括以下步骤:
(1)将上述功能化核壳纳米线加到溶剂中分散,得到均匀的纳米线分散液。所述的溶剂优选为乙醇或乙腈;所述的分散优选为超声分散。
(2)将分散好的纳米线分散液滴加在玻璃片上,加热烘干后剪裁制片,使玻璃片边缘暴露出纳米线。
(3)用激光拉制仪将玻璃管拉制成尖端直径约为1-2μm的锥形管。所述的玻璃管优选为硼酸盐玻璃管。
(4)向步骤(3)得到的锥形管中注入液态金属,离心将液态金属推送至距离锥形管尖端5-10μm处,随后用石蜡进行密封。所述的液态金属优选为镓铟锡锌合金。
(5)加热使步骤(4)得到的锥形管尖端石蜡熔化,将步骤(2)中玻璃片边缘暴露出的纳米线插入锥形管的液态金属后停止加热,制备得到功能化核壳纳米线电极。
一种功能化纳米电极,通过上述方法制备得到。
所述的功能化纳米电极可用于胞内生物信号分子监测。所述的生物信号分子包括一氧化氮、多巴胺、抗坏血酸、尿酸、NADH等。
一种监测胞内生物信号分子的方法,为将所述的功能化纳米电极插入活细胞内,用来检测胞内生物信号分子含量。
本发明具有如下优点和效果:
本发明展示了一种简便、普适制备功能化导电核壳纳米线的方法,通过调控反应原料种类,即可批量制备一系列不同核壳材料且尺寸可调的新型导电纳米线。用此纳米线组装纳米电极,极大简化了纳米电极的制备过程,突破了纳米电极材料的局限性,并且此核壳纳米线电极具有优良的电化学性能,可实现单个活细胞内生物信号分子的实时动态监测。此外,本发明展示的核壳纳米线种类、尺寸、性质均可调,在化学、纳米材料、生物传感器等领域均具有广阔的应用前景。
附图说明
图1是核壳纳米线的普适性制备方法流程图。
图2是多种核壳纳米线的扫描电镜图及元素mapping表征图。
图3是核壳纳米线组装为纳米电极及用于胞内电化学检测的示意图。
图4是SiC@Au-PEDOT纳米线电极的扫描电镜图。
图5是SiC@Au-PEDOT纳米线电极在六氨合钌溶液中的电化学行为图(循环扫描100圈)。
图6是SiC@Au-PEDOT纳米线电极插入细胞内检测一氧化氮的放大图。
图7是SiC@Au-PEDOT纳米线电极对胞内一氧化氮的实时监测结果图。
具体实施方式
以下结合实施例和附图对本发明涉及的功能化核壳纳米线的制备方法及应用的具体实施方案进行详细说明,但本发明的实施方式不限于此。
核壳纳米线的普适性制备方法如图1所示。
实施例1
SiC@Au-PEDOT纳米线(SiC为核,Au-PEDOT为壳)的具体制备步骤如下:
(1)将1mg SiC纳米线置于100mL烧杯内,加入30mL乙腈作为溶剂,超声使SiC纳米线均匀分散。
(2)搅拌状态下,向步骤(1)得到的SiC分散液中加入500μL EDOT单体,使EDOT均匀分散溶解。
(3)向步骤(2)得到的分散液内加入2mL HAuCl4(25mM)作为氧化剂,引发化学聚合反应。在该过程中,EDOT氧化聚合为导电聚合物PEDOT,AuCl4 -还原为金纳米颗粒。
(4)反应体系室温搅拌24h后,将反应溶液离心,并用水和乙醇分别洗涤3次,得到SiC@Au-PEDOT核壳纳米线。如图2所示,SiC@Au-PEDOT纳米线表面完整包覆聚合物涂层,且特征元素Si和Au均匀分布于整根核壳纳米线,表明PEDOT-金纳米颗粒复合物完整且均匀包裹在SiC纳米线表面。
实施例2
TiO2@Au-PEDOT纳米线(TiO2为核,Au-PEDOT为壳)的具体制备步骤如下:
(1)将1mg TiO2纳米线置于100mL烧杯内,加入30mL乙腈作为溶剂,超声使TiO2纳米线均匀分散。
(2)搅拌状态下,向步骤(1)得到的TiO2分散液中加入500μL EDOT单体,使EDOT均匀分散溶解。
(3)向步骤(2)得到的分散液内加入2mL HAuCl4(25mM)作为氧化剂,引发化学聚合反应。在该过程中,EDOT氧化聚合为导电聚合物PEDOT,AuCl4 -还原为金纳米颗粒。
(4)反应体系室温搅拌24h后,将反应溶液离心,并用水和乙醇分别洗涤3次,得到TiO2@Au-PEDOT核壳纳米线。如图2所示,TiO2@Au-PEDOT纳米线表面完整包覆聚合物涂层,且特征元素Ti和Au均匀分布于整根核壳纳米线,表明PEDOT-金纳米颗粒复合物完整且均匀包裹在TiO2纳米线表面。
实施例3
SiO2@Au-PEDOT纳米线(SiO2为核,Au-PEDOT为壳)的具体制备步骤如下:
(1)将1mg SiO2纳米线置于100mL烧杯内,加入30mL乙腈作为溶剂,超声使TiO2纳米线均匀分散。
(2)搅拌状态下,向步骤(1)得到的SiO2分散液中加入500μL EDOT单体,使EDOT均匀分散溶解。
(3)向步骤(2)得到的分散液内加入2mL HAuCl4(25mM)作为氧化剂,引发化学聚合反应。在该过程中,EDOT氧化聚合为导电聚合物PEDOT,AuCl4 -还原为金纳米颗粒。
(4)反应体系室温搅拌24h后,将反应溶液离心,并用水和乙醇分别洗涤3次,得到SiO2@Au-PEDOT核壳纳米线。如图2所示,SiO2@Au-PEDOT纳米线表面完整包覆聚合物涂层,且特征元素Si和Au均匀分布于整根核壳纳米线,表明PEDOT-金纳米颗粒复合物完整且均匀包裹在SiO2纳米线表面。
实施例4
SiC@Pd-PEDOT纳米线(SiC为核,Pd-PEDOT为壳)的具体制备步骤如下:
(1)将1mg SiC纳米线置于100mL烧杯内,加入30mL乙醇作为溶剂,超声使SiC纳米线均匀分散。
(2)搅拌状态下,向步骤(1)得到的SiC分散液中加入500μL EDOT单体,使EDOT均匀分散溶解。
(3)向步骤(2)得到的分散液内加入2mL H2PdCl4(37.5mM)作为氧化剂,引发化学聚合反应。在该过程中,EDOT氧化聚合为导电聚合物PEDOT,PdCl4 2-还原为钯纳米颗粒。
(4)反应体系室温搅拌24h后,将反应溶液离心,并用水和乙醇分别洗涤3次,得到SiC@Pd-PEDOT核壳纳米线。如图2所示,SiC@Pd-PEDOT纳米线表面完整包覆聚合物涂层,且特征元素Si和Pd均匀分布于整根核壳纳米线,表明PEDOT-钯纳米颗粒复合物完整且均匀包裹在SiC纳米线表面。
实施例5
SiC@Pt-PEDOT纳米线(SiC为核,Pt-PEDOT为壳)的具体制备步骤如下:
(1)将1mg SiC纳米线置于100mL烧杯内,加入30mL乙醇作为溶剂,超声使SiC纳米线均匀分散。
(2)搅拌状态下,向步骤(1)得到的SiC分散液中加入500μL EDOT单体,使EDOT均匀分散溶解。
(3)向步骤(2)得到的分散液内加入2mL H2PtCl6(18.75mM)作为氧化剂,引发化学聚合反应。在该过程中,EDOT氧化聚合为导电聚合物PEDOT,PtCl6 2-还原为铂纳米颗粒。
(4)反应体系室温搅拌24h后,将反应溶液离心,并用水和乙醇分别洗涤3次,得到SiC@Pt-PEDOT核壳纳米线。如图2所示,SiC@Pt-PEDOT纳米线表面完整包覆聚合物涂层,且特征元素Si和Pt均匀分布于核壳纳米线,表明PEDOT-铂纳米颗粒复合物完整且均匀包裹在SiC纳米线表面。
上述实施例表明本发明展示的制备核壳纳米线的方法简便易行,且具有普适性,通过调控反应原料,即可实现多种核壳纳米线的批量制备。
上述核壳纳米线组装为纳米电极及用于胞内电化学检测的示意图如图3所示。
实施例6
SiC@Au-PEDOT纳米线电极的组装及用于胞内一氧化氮检测的具体步骤如下:
(1)将实施例1制备得到的SiC@Au-PEDOT纳米线加到30mL乙醇中超声分散,得到均匀的SiC@Au-PEDOT纳米线分散液。
(2)将超声分散好的SiC@Au-PEDOT纳米线分散液滴加在载玻片上,在90℃下加热烘干后,用玻璃刀剪裁制片,使玻璃片边缘暴露出纳米线。
(3)用激光拉制仪将硼酸盐玻璃管拉制成尖端直径约为1-2μm的锥形管备用。
(4)向步骤(3)得到的硼酸盐锥形管中注入液态金属(镓铟锡锌合金),离心将液态金属推送至距离锥形管尖端5μm处,随后用石蜡进行密封。
(5)将步骤(4)得到的硼酸盐锥形管放入缠有加热丝的石英管中,将加热丝与直流电源相连,在0.25A直流电条件下加热使锥形管尖端石蜡熔化,将步骤(2)中玻璃片边缘暴露出的SiC@Au-PEDOT纳米线插入硼酸盐锥形管的液态金属后停止加热,制备得到SiC@Au-PEDOT纳米线电极,尖端暴露的纳米线电极长度约为4μm,直径约为500nm(图4)。
(6)将步骤(5)制备的SiC@Au-PEDOT纳米线电极进行电化学表征,六氨合钌在电极表面的循环伏安图呈现“S”型,表明该纳米线电极具有良好的电化学性能;循环扫描100圈后,电流大小无明显变化,表明该纳米线电极具有良好的电化学稳定性(图5)。
(7)将人乳腺癌细胞(MCF-7)接种到装有小圆形载玻片(直径7mm)的小皿中,加入DMEM培养基培养12小时用于细胞电化学检测实验。所有细胞实验均在与膜片钳放大器(EPC-10,HEKA Electronics,Germany)耦合的倒置显微镜上进行。将步骤(5)制备的SiC@Au-PEDOT纳米线电极与膜片钳放大器探头连接,在40倍物镜下,通过显微操纵器(TransferMan NK2,Eppendorf)将SiC@Au-PEDOT纳米线电极移至细胞膜附近,然后将纳米线电极缓缓向前移动并插入细胞(图6),Ag/AgCl电极作为参比电极和对电极,在800mV下检测不同刺激条件的胞内一氧化氮水平。如图7所示,人乳腺癌细胞受到刺激液L-精氨酸(L-Arg)(4mM)刺激时,胞内产生的信号分子一氧化氮在电极表面被氧化,安培电流随之增大,然后随着胞内产生一氧化氮量减少及其在电极表面的氧化,电流随之缓缓下降。对照组实验如下:当纳米线电极插入细胞后,用L-Arg(4mM)和NO合酶抑制剂L-NAME(4mM)混合溶液刺激细胞时,无明显电流增大现象;当用PBS刺激细胞时,也无电流曲线上升现象。
上述实施例表明本发明方法制备的核壳纳米线电极具有良好的传感性能,可对单个活细胞内生物信号分子水平进行实时动态监测。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种功能化核壳纳米线,其特征在于:为表面均匀包裹聚(3,4-乙烯二氧噻吩)-贵金属纳米颗粒复合物涂层的非导电纳米线。
2.根据权利要求1所述的功能化核壳纳米线,其特征在于:所述的贵金属纳米颗包括金纳米颗粒、钯纳米颗粒、铂纳米颗粒;所述的非导电纳米线包括碳化硅纳米线、二氧化钛纳米线、二氧化硅纳米线。
3.权利要求1或2所述的功能化核壳纳米线的制备方法,其特征在于:包括以下步骤:
(1)将非导电纳米线加入溶剂中,使纳米线均匀分散;
(2)向步骤(1)得到的纳米线分散液中加入3,4-乙烯二氧噻吩,使其均匀分散溶解;
(3)向步骤(2)得到的分散液内加入贵金属配合物;
(4)待聚(3,4-乙烯二氧噻吩)-贵金属纳米颗粒复合物均匀包裹在非导电纳米线表面后,将反应液离心,洗涤,得到功能化核壳纳米线。
4.根据权利要求3所述的功能化核壳纳米线的制备方法,其特征在于:步骤(1)中所述的溶剂为乙腈或乙醇。
5.根据权利要求3所述的功能化核壳纳米线的制备方法,其特征在于:步骤(3)中所述的贵金属配合物包括四氯金酸、四氯钯酸、六氯铂酸。
6.权利要求1或2所述的功能化核壳纳米线在纳米电化学传感中的应用。
7.权利要求1或2所述的功能化核壳纳米线在制备功能化纳米电极中的应用。
8.一种制备功能化纳米电极的方法,其特征在于:包括以下步骤:
(1)将权利要求1或2所述的功能化核壳纳米线加到溶剂中分散,得到均匀的纳米线分散液;
(2)将分散好的纳米线分散液滴加在玻璃片上,加热烘干后剪裁制片,使玻璃片边缘暴露出纳米线;
(3)用激光拉制仪将玻璃管拉制成尖端直径为1-2μm的锥形管;
(4)向步骤(3)得到的锥形管中注入液态金属,离心将液态金属推送至距离锥形管尖端5-10μm处,随后用石蜡进行密封;
(5)加热使步骤(4)得到的锥形管尖端石蜡熔化,将步骤(2)中玻璃片边缘暴露出的纳米线插入锥形管的液态金属后停止加热,制备得到功能化核壳纳米线电极。
9.一种功能化纳米电极,其特征在于:通过权利要求8所述的方法制备得到。
10.权利要求9所述的功能化纳米电极在胞内生物信号分子监测中的应用。
CN202110416613.3A 2021-04-19 2021-04-19 一种功能化核壳纳米线及其制备方法与应用 Active CN113152081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110416613.3A CN113152081B (zh) 2021-04-19 2021-04-19 一种功能化核壳纳米线及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110416613.3A CN113152081B (zh) 2021-04-19 2021-04-19 一种功能化核壳纳米线及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113152081A true CN113152081A (zh) 2021-07-23
CN113152081B CN113152081B (zh) 2022-04-01

Family

ID=76868374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110416613.3A Active CN113152081B (zh) 2021-04-19 2021-04-19 一种功能化核壳纳米线及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113152081B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367672A (zh) * 2021-12-31 2022-04-19 北京科技大学 银-金核壳纳米线、无酶葡萄糖传感器电极及制备和检测
CN114486843A (zh) * 2021-12-17 2022-05-13 厦门大学 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092683A (ko) * 2017-02-10 2018-08-20 한국과학기술원 결정성 전도성 고분자 쉘을 가지는 탄소소재 복합섬유 및 이의 제조방법
KR101908710B1 (ko) * 2017-06-12 2018-10-17 성균관대학교산학협력단 전도성 섬유 및 이를 포함하는 접촉 및 압력 센서
CN110130096A (zh) * 2019-05-30 2019-08-16 上海应用技术大学 一种柔性纤维织物复合热电材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092683A (ko) * 2017-02-10 2018-08-20 한국과학기술원 결정성 전도성 고분자 쉘을 가지는 탄소소재 복합섬유 및 이의 제조방법
KR101908710B1 (ko) * 2017-06-12 2018-10-17 성균관대학교산학협력단 전도성 섬유 및 이를 포함하는 접촉 및 압력 센서
CN110130096A (zh) * 2019-05-30 2019-08-16 上海应用技术大学 一种柔性纤维织物复合热电材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KWANG-HEON KIM ET AL.: "Synthesis of manganese dioxide/poly(3,4-ethylenedioxythiophene) core/sheath nanowires by galvanic displacement reaction", 《J ELECTROCERAM》 *
TATIANA AUGUSTO ET AL.: "Electrophoretic deposition of Au@PEDOT nanoparticles towards the construction of high-performance electrochromic electrodes", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486843A (zh) * 2021-12-17 2022-05-13 厦门大学 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用
CN114486843B (zh) * 2021-12-17 2023-12-19 厦门大学 一种双功能Au@Pd@Pt核壳纳米粒子及其制备方法和应用
CN114367672A (zh) * 2021-12-31 2022-04-19 北京科技大学 银-金核壳纳米线、无酶葡萄糖传感器电极及制备和检测
CN114367672B (zh) * 2021-12-31 2023-03-07 北京科技大学 银-金核壳纳米线、无酶葡萄糖传感器电极及制备和检测

Also Published As

Publication number Publication date
CN113152081B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
Li et al. Preparation and electrochemical response of 1− 3 nm Pt disk electrodes
Jackowska et al. New trends in the electrochemical sensing of dopamine
Glasscott et al. Direct electrochemical observation of single platinum cluster electrocatalysis on ultramicroelectrodes
Jiang et al. Novel modifications to carbon-based electrodes to improve the electrochemical detection of dopamine
Amemiya et al. Scanning electrochemical microscopy
Masitas et al. Size-dependent electrophoretic deposition of catalytic gold nanoparticles
Huang et al. A method for the fabrication of low-noise carbon fiber nanoelectrodes
CN113152081B (zh) 一种功能化核壳纳米线及其制备方法与应用
Thomas et al. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine
Watkins et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions
Xi et al. Ultrafine Pd nanoparticles encapsulated in microporous Co3O4 hollow nanospheres for in situ molecular detection of living cells
Liu et al. Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell
Senthilkumar et al. Flexible electrospun PVdF-HFP/Ni/Co membranes for efficient and highly selective enzyme free glucose detection
Zhou et al. Collisions of Ir oxide nanoparticles with carbon nanopipettes: experiments with one nanoparticle
Shi et al. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites
Hao et al. Nanopipette-based electroplated nanoelectrodes
Rezaei et al. Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine
Percival et al. Fast-scan cyclic voltammetry allows determination of electron-transfer kinetic constants in single nanoparticle collision
Wang et al. Construction of a non-enzymatic sensor based on the poly (o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood
JP2010531975A (ja) 金属ナノ粒子電極触媒増幅のための方法及び装置
Liu et al. A sensitive sensor for determination of l-tryptophan based on gold nanoparticles/poly (alizarin red S)-modified glassy carbon electrode
Selzer et al. Studying heterogeneous catalysis by the scanning electrochemical microscope (SECM): The reduction of protons by methyl viologen catalyzed by a platinum surface
CN114235924B (zh) 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备
Wang et al. Simple and efficient synthesis of various sized gold nanoparticles for the selective electrochemical determination of dopamine
US8968825B1 (en) Disposable palladium nanoparticle-modified graphite pencil electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant