CN114481092B - 一种脉冲化学气相沉积Al2O3膜层的方法 - Google Patents

一种脉冲化学气相沉积Al2O3膜层的方法 Download PDF

Info

Publication number
CN114481092B
CN114481092B CN202111660082.9A CN202111660082A CN114481092B CN 114481092 B CN114481092 B CN 114481092B CN 202111660082 A CN202111660082 A CN 202111660082A CN 114481092 B CN114481092 B CN 114481092B
Authority
CN
China
Prior art keywords
reactor
tio
reaction
chemical vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111660082.9A
Other languages
English (en)
Other versions
CN114481092A (zh
Inventor
钟山
杨柯
黄先良
唐思扬
岳海荣
马奎
刘长军
宋磊
梁斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202111660082.9A priority Critical patent/CN114481092B/zh
Publication of CN114481092A publication Critical patent/CN114481092A/zh
Application granted granted Critical
Publication of CN114481092B publication Critical patent/CN114481092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种脉冲化学气相沉积Al2O3膜层的方法。包括以下步骤:(1)预处理;(2)清除;(3)第一个半反应;(4)部分清除;(5)第二个半反应;(6)清除。本发明沉积温度比化学气相沉积和金属有机化学气相沉积的反应温度更低,条件更加温和,且过程更加安全可控。本发明提供的沉积方法操作简单,Al2O3膜层厚度可控,所得膜层非常均匀致密。沉积温度比化学气相沉积和金属有机化学气相沉积的反应温度更低,条件更加温和。采用的前驱体为AlCl3和H2O,安全易得。

Description

一种脉冲化学气相沉积Al2O3膜层的方法
技术领域
本发明属于脉冲化学气相沉积技术领域,具体涉及一种脉冲化学气相沉积Al2O3膜层的方法。
背景技术
二氧化钛(TiO2)是一种多功能材料,广泛用作催化剂、白色颜料、光伏太阳能电池、催化剂载体、紫外吸收剂等方面。对TiO2进行改性可以提高其性能,在实际应用中有着十分重要的意义。TiO2是一种典型的具有光催化活性的半导体材料,在紫外光的激发下,可以产生高活性的自由基(·OH,·O2 -)降解有机分子。一方面,水处理、空气净化、太阳能电池等领域的研究集中于利用和提高TiO2的光催化活性;另一方面,在涂料、塑料、造纸等行业,往往需要抑制TiO2的光催化活性。因此,调节TiO2的光催化活性可以使其更好地应用于多个领域。
TiO2作为催化剂,由于具有化学稳定性、耐光腐蚀、环保无毒、高效等优点吸引了众多研究者的关注。但是TiO2的禁带宽度较大,只能吸收紫外光,可吸收光谱只占总光谱的5%左右,且载流子的快速复合和缓慢的电荷迁移也不利于光催化过程。为了提高TiO2的光催化性能,化学掺杂(如Fe、V和Cr)、贵金属表面修饰或与窄带隙半导体形成异质结等改性技术已被广泛研究。TiO2作为颜料,被认为是目前世界上性能最好的一种白色颜料。但是,当长时间暴露于环境光照下,其光催化活性会导致涂料、塑料等基料出现变色、粉化、失光等现象。为了抑制其光催化活性,并提高其颜料性能,往往在TiO2颗粒表面包覆膜层,如SiO2、Al2O3、ZrO2、有机膜层或复合膜层等。氧化铝(Al2O3)是一种常见的无机氧化物,氧化铝膜层可以改变基底的表面性质或保护基底。利用Al2O3膜层改性TiO2,可以调节其光催化活性,适用于在不同领域的要求。
而在TiO2上沉积Al2O3膜层的方法主要可以分为液相沉积技术和气相沉积技术,气相沉积技术包括化学气相沉积(CVD)、金属有机化学气相沉积(MOCVD)、原子层沉积(ALD)等。
液相沉积过程中,NaAlO2水解得到Al2O3膜层。液相沉积技术操作简单,但是在该工艺中,薄膜的厚度和形貌对沉积条件非常敏感,受pH、前驱体浓度、温度等因素的影响。液相沉积过程可能形成颗粒状、絮状或多孔膜层,常常需要不断调节反应条件才能形成均匀致密的膜层。气相沉积技术可以避免这一缺点。常见的Al2O3膜层沉积的基底有氧化物颗粒、硅基板、金属、型材等。对于以TiO2颗粒为基底的表面改性技术,不应采用较高的沉积温度,以避免半导体颗粒表面的劣化和晶型转变。
在这些气相沉积技术中,化学气相沉积被广泛应用于Al2O3的制备。传统的化学气相沉积工艺采用AlCl3/H2/CO2体系,往往伴随着高温条件(>900℃)。金属有机化学气相沉积是制备Al2O3的另一种重要方法。目前已经提出了多种前驱体,如乙酰丙酮铝(Al(acac)3)、三仲丁醇铝(ATSB)、异辛酸铝等。然而,所需的温度仍高达250-700℃。原子层沉积可以实现在室温下合成Al2O3膜层,但原子层沉积所使用的前驱体三甲基铝(TMA)有一个不可忽视的缺点:三甲基铝(TMA)具有高度自燃性,遇水发生爆炸。AlCl3易升华,具有较低的危险性。因此,探索条件温和的制备方法和选取合适的前驱体可以使整个过程更加可控和安全。
发明内容
针对现有技术中的上述不足,本发明提供一种脉冲化学气相沉积Al2O3膜层的方法,用于表面改性TiO2颗粒以适用于不同应用领域。可解决液相沉积技术不易形成致密膜层和常见气相沉积技术温度较高和危险性高的问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种脉冲化学气相沉积Al2O3膜层的方法,包括以下步骤:
(1)预处理
于120~170℃加热基底材料2~5h以去除基底材料表面的物理结合水,再置于反应器中;
(2)清除
将前驱体AlCl3置于反应器中并密封,然后去除反应器内的空气;
(3)第一个半反应
将反应器加热至150~240℃,使AlCl3和基底材料反应5~10h;
(4)部分清除
调整反应器真空度为-0.09~-0.01MPa,部分清除反应器内剩余的AlCl3
(5)第二个半反应
向反应器内通入空气,以空气中的水作为前驱体继续反应1~3h;
(6)清除
去除反应器内的剩余前驱体和反应副产物。
本发明的总体过程为清除-第一个半反应-部分清除-第二个半反应-清除。
第一个清除步骤是指在反应前完全去除反应器内的空气。部分清除步骤是指在第一个半反应结束后去除部分多余前驱体和反应副产物,使其进入尾气处理装置。最后一个清除步骤是指再次去除多余前驱体和反应副产物。
主要的两个半反应是指前驱体AlCl3和H2O先后进入反应器并发生官能团取代反应。在第一个半反应中,AlCl3作为第一种前驱体与TiO2颗粒的表面羟基(-OH)发生非均匀反应,生成-O-Al-Cl基团,具体反应过程如下:
|-OH(s)+AlCl3(g)→|-O-Al-Cl(s)+HCl(g)
在第二个半反应中,前驱体H2O和-O-Al-Cl基团反应生成Al2O3,并产生新的表面羟基。同时,还存在AlCl3和H2O的气相反应等,生成Al2O3
|-O-Al-Cl(s)+H2O(g)→|-O-Al-OH(s)+HCl(g)
通过上述反应在TiO2颗粒表面形成了均匀致密的Al2O3膜层。由于表面羟基的再生,可以重复上述循环得到不同的膜层厚度。过程中的清除步骤可以通过抽真空或惰性气体吹扫来实现。尾气处理装置是盛装有高浓度碱液的吸收瓶。
进一步地,基底材料为TiO2颗粒,具体可以是TiO2纳米催化剂、工业级TiO2颜料、未处理的TiO2或包膜的TiO2颗粒等。
进一步地,预处理中的加热温度为120℃。
进一步地,第一个半反应的加热温度为180℃,反应时间为6h。
进一步地,部分清除过程中的真空度为-0.08MPa,去除反应器内剩余的前驱体AlCl3和产生的反应副产物。
进一步地,第二个半反应的反应时间为1h。
进一步地,对反应器抽真空,去除反应器内的剩余前驱体和反应副产物。
采用上述方法制备得到的以基底材料为核,Al2O3为壳的纳米颗粒。
膜层厚度可以通过前驱体反应时间、反应温度和循环次数来调控。
本发明的有益效果:
1、相比于液相沉积技术,采用脉冲化学气相沉积法更易形成非常均匀致密的膜层。
2、采用脉冲化学气相沉积法制备的Al2O3膜层的沉积温度约为180℃,比化学气相沉积和金属有机化学气相沉积的反应温度更低,条件更加温和,避免高温导致TiO2表面劣化和晶型转变。
3、采用脉冲化学气相沉积法制备的Al2O3膜层使用的第一种前驱体是AlCl3。AlCl3易升华,有利于进行气相沉积;且AlCl3的危险性远低于三甲基铝等常用铝前驱体,过程更加安全可控。
4、采用脉冲化学气相沉积法制备的Al2O3膜层使用的第二种前驱体是H2O,来源于空气,空气安全易得。
5、本发明的方法用于表面改性TiO2催化剂和TiO2颜料。
附图说明
图1为本申请实施例1制备得到的包覆Al2O3的TiO2催化剂的透射电子显微镜图像;
图2为本申请实施例1制备得到的包覆Al2O3的TiO2催化剂在氙灯下的光催化活性;
图3为本申请实施例1制备得到的包覆Al2O3的TiO2催化剂在可见光下的光催化活性;
图4为本申请实施例2制备得到的TiO2/SiO2/Al2O3颜料的透射电子显微镜图像;
图5为本申请实施例2制备得到的TiO2/SiO2/Al2O3颜料的光老化性能检测。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
实施例1
脉冲化学气相沉积Al2O3膜层用于表面改性TiO2催化剂,具体过程如下:
本实施例中采用容积为4.1L的固定床反应器进行脉冲化学气相沉积过程。
未包覆的TiO2催化剂颗粒平均粒径为30nm。
脉冲化学气相沉积Al2O3膜层用于表面改性TiO2催化剂,提高TiO2光催化降解有机污染物的效果,包括如下步骤:
(1)预处理:将0.6g未包覆的TiO2催化剂分散于反应器内置的多孔分布板上,在120℃下干燥2h,对TiO2进行加热预处理。
(2)清除:将0.5g前驱体AlCl3置于反应器底部,密封反应器,然后抽真空去除反应器内的空气。
(3)第一个半反应:将反应器加热至180℃,前驱体AlCl3逐渐升华,AlCl3气体与TiO2接触并反应6h。
(4)部分清除:对反应器抽真空,真空度达到约-0.08MPa,使大部分的多余前驱体和反应副产物(如HCl)进入尾气处理装置。
(5)第二个半反应:向反应器内部通入相对湿度约为60%的空气,使空气中的H2O作为第二种前驱体参与反应,密封反应器,反应1h。
(6)清除:对反应器抽真空,再次去除多余的前驱体和反应副产物。
(7)关闭加热,打开反应器得到表面沉积了Al2O3膜层的TiO2,即TiO2/Al2O3
对未包覆的TiO2催化剂和经上述方法包覆的TiO2/Al2O3拍摄了高分辨透射电子显微镜图像(HRTEM),可知在TiO2表面存在约3.01nm的均匀致密的无定形膜层(图1)。
在发射紫外光和可见光的氙灯光照下进行了光催化降解罗丹明B实验,测试了TiO2催化剂和经上述方法包覆的TiO2/Al2O3的光催化活性,可知上述方法沉积的Al2O3膜层促进了TiO2的光催化活性(图2)。
在可见光光照下进行了光催化降解罗丹明B实验,测试了TiO2催化剂和经上述方法包覆的TiO2/Al2O3在可见光下的光催化活性,可知上述方法沉积的Al2O3膜层将TiO2的光响应拓展到可见光区(图3)。
实施例2
脉冲化学气相沉积Al2O3膜层用于表面改性TiO2颜料,具体过程如下:
在已经包覆了SiO2膜层的TiO2颜料的表面,再通过本发明中的方法沉积Al2O3层。
未包覆的TiO2颜料的粒径为100-250nm。
脉冲化学气相沉积Al2O3膜层用于表面改性TiO2颜料,并将颜料应用于水性涂料中,考察其耐候性,包括如下步骤:
(1)预处理:将0.6gTiO2/SiO2颜料分散于反应器内置的多孔分布板上,在120℃下干燥2h,对颜料进行加热预处理。
(2)清除:将0.5g前驱体AlCl3置于反应器底部,密封反应器,然后抽真空去除反应器内的空气。
(3)第一个半反应:将反应器加热至180℃,前驱体AlCl3逐渐升华,AlCl3气体与颜料颗粒接触并反应6h。
(4)部分清除:对反应器抽真空,真空度达到约-0.08MPa,使大部分的多余前驱体和反应副产物(如HCl)进入尾气处理装置。
(5)第二个半反应:向反应器内部通入相对湿度约为60%的空气,使空气中的H2O作为第二种前驱体参与反应,密封反应器,反应1h。
(6)清除:对反应器抽真空,再次清除多余的前驱体和反应副产物。
(7)关闭加热,打开反应器得到表面沉积了Al2O3膜层的颜料,即TiO2/SiO2/Al2O3
(8)制备涂料:该过程分为制浆和制料两个部分。将10μL的731A分散剂溶于0.64mL超纯水中,再加入25μL成膜助剂(聚丙二醇)后混合均匀。再加入0.7g滑石粉和0.35g颜料,并在900r/min下快速搅拌30min。上述过程为制浆。将苯丙和纯丙混合乳液1.65g(苯丙:纯丙=2:1)与成膜助剂(醇酯十二)混合,在900r/min下快速搅拌30min,此过程为制料。将所制浆液和料液混合,在900r/min下搅拌4h。搅拌过程中加入助剂,包括30μL消泡剂BYK-028、30μL流平剂BYK-333、30μL流变助剂BYK-420。
(9)涂覆:将上述过程中的颜料取为未包覆的TiO2颜料、TiO2/SiO2/和经上述方法包覆的TiO2/SiO2/Al2O3,以制备含有不同颜料的水性涂料,分别记为WP-TiO2、WP-TiO2/SiO2、WP-TiO2/SiO2/Al2O3。每次取60μL水性涂料,在玻璃片上涂成25×15mm的长方形,在室温下干燥24h。
(10)光老化:在40W紫外灯照射下,对含颜料的水性涂料进行了光老化试验。样品和光源之间的距离为15cm。通过测定CIE L*a*b*参数,计算总色变,分析水性涂料样品的颜色变化。
对未包覆的TiO2颜料(左)、TiO2/SiO2(中)和经上述方法包覆的TiO2/SiO2/Al2O3(右)拍摄了高分辨透射电子显微镜图像(HRTEM),可知本实施例采用的基底(TiO2/SiO2)表面有一层SiO2膜,包覆Al2O3之后,膜层厚度增加(图4)。
如图5所示,对含有未包覆的TiO2颜料、TiO2/SiO2和TiO2/SiO2/Al2O3的水性涂料测试了光老化35天后的总色变,可知SiO2和Al2O3层可以提高TiO2的耐候性,缓解水性涂料在光照下的变色。

Claims (3)

1.一种脉冲化学气相沉积Al2O3膜层的方法,其特征在于,包括以下步骤:
(1)预处理
于120~170℃加热基底材料2~5h后,置于反应器中;所述基底材料为TiO2纳米催化剂、工业级TiO2颜料或包膜的TiO2颗粒;
(2)清除
将前驱体AlCl3置于反应器中并密封,然后去除反应器内的空气;
(3)第一个半反应
将反应器加热至180℃,使AlCl3和基底材料反应6h;
(4)部分清除
调整反应器真空度为-0.09~-0.01MPa,部分清除反应器内剩余的AlCl3和反应副产物;所述部分清除过程中的真空度为-0.08MPa,部分清除反应器内剩余的前驱体AlCl3和产生的反应副产物;
(5)第二个半反应
向反应器内通入空气,以空气中的水作为前驱体继续反应1h;
(6)清除
去除反应器内的剩余前驱体和反应副产物。
2.根据权利要求1所述的方法,其特征在于,所述预处理中的加热温度为120℃。
3.采用权利要求1或2所述方法制备得到的以基底材料为核,Al2O3膜层为壳的纳米颗粒。
CN202111660082.9A 2021-12-30 2021-12-30 一种脉冲化学气相沉积Al2O3膜层的方法 Active CN114481092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111660082.9A CN114481092B (zh) 2021-12-30 2021-12-30 一种脉冲化学气相沉积Al2O3膜层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111660082.9A CN114481092B (zh) 2021-12-30 2021-12-30 一种脉冲化学气相沉积Al2O3膜层的方法

Publications (2)

Publication Number Publication Date
CN114481092A CN114481092A (zh) 2022-05-13
CN114481092B true CN114481092B (zh) 2023-09-19

Family

ID=81508903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111660082.9A Active CN114481092B (zh) 2021-12-30 2021-12-30 一种脉冲化学气相沉积Al2O3膜层的方法

Country Status (1)

Country Link
CN (1) CN114481092B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234345A (ja) * 2000-02-25 2001-08-31 Denso Corp 薄膜の形成方法
KR20020020508A (ko) * 2000-09-09 2002-03-15 윤종용 화학기상증착장치
CN101014547A (zh) * 2004-03-10 2007-08-08 皮尔金顿北美公司 沉积氧化铝涂层的方法
CN102337523A (zh) * 2011-10-13 2012-02-01 姜谦 选择性原子层沉积成膜方法
CN105609637A (zh) * 2016-03-04 2016-05-25 北京大学深圳研究生院 沉积氧化物薄膜的方法、有机场效应晶体管及其制备方法
CN108676382A (zh) * 2018-06-22 2018-10-19 佛山陵朝新材料有限公司 一种纳米包覆的有机颜料粉体的制备方法
CN108866510A (zh) * 2018-08-21 2018-11-23 四川大学 一种在TiO2颗粒表面脉冲化学气相沉积无定形TiO2的方法
CN109852104A (zh) * 2019-01-22 2019-06-07 东华大学 一种锦纶化纤用消光剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133531B2 (en) * 2008-03-07 2012-03-13 The Regents Of The University Of Colorado Titanium dioxide particles coated via an atomic layer deposition process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234345A (ja) * 2000-02-25 2001-08-31 Denso Corp 薄膜の形成方法
KR20020020508A (ko) * 2000-09-09 2002-03-15 윤종용 화학기상증착장치
CN101014547A (zh) * 2004-03-10 2007-08-08 皮尔金顿北美公司 沉积氧化铝涂层的方法
CN102337523A (zh) * 2011-10-13 2012-02-01 姜谦 选择性原子层沉积成膜方法
CN105609637A (zh) * 2016-03-04 2016-05-25 北京大学深圳研究生院 沉积氧化物薄膜的方法、有机场效应晶体管及其制备方法
CN108676382A (zh) * 2018-06-22 2018-10-19 佛山陵朝新材料有限公司 一种纳米包覆的有机颜料粉体的制备方法
CN108866510A (zh) * 2018-08-21 2018-11-23 四川大学 一种在TiO2颗粒表面脉冲化学气相沉积无定形TiO2的方法
CN109852104A (zh) * 2019-01-22 2019-06-07 东华大学 一种锦纶化纤用消光剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Room-temperature pulsed CVD-grown SiO2;Jing Guo et al.;《RSC Advances》;20171231;第7卷;第4547-4554页 *

Also Published As

Publication number Publication date
CN114481092A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Adegoke et al. Synthesis, characterization and application of CdS/ZnO nanorod heterostructure for the photodegradation of Rhodamine B dye
Arin et al. Inkjet printing of photocatalytically active TiO2 thin films from water based precursor solutions
Boughelout et al. Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu 2 O thin films
Momeni et al. Preparation of TiO2 and WO3–TiO2 nanotubes decorated with PbO nanoparticles by chemical bath deposition process: a stable and efficient photo catalyst
Yang et al. Photocatalytic degradation of rhodamine B catalyzed by TiO 2 films on a capillary column
Kato et al. Crystal structures of TiO 2 thin coatings prepared from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic acid
Thirumalai et al. Superior photocatalytic, electrocatalytic, and self-cleaning applications of Fly ash supported ZnO nanorods
Zhang et al. Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface
Stambolova et al. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye
Gao et al. Effect of substrate pretreatment on controllable growth of TiO2 nanorod arrays
CN108866510B (zh) 一种在TiO2颗粒表面脉冲化学气相沉积无定形TiO2的方法
Suppuraj et al. Novel Ag–TiO2/ZnFe2O4 nanocomposites for effective photocatalytic, electrocatalytic and cytotoxicity applications
heng Chai et al. High-efficiency and environment-friendly sterilization PEVE coatings modified with Bi2WO6/TiO2 composites
Dulian et al. Effect of titanium source and sol-gel TiO2 thin film formation parameters on its morphology and photocatalytic activity
CN114481092B (zh) 一种脉冲化学气相沉积Al2O3膜层的方法
CN108485346B (zh) 一种无毒环保防污自清洁涂料及其制备方法
Habibi et al. Preparation of Glass Plate-Supported Nanostructure ZnO Thin Film Deposited by Sol-Gel Spin-Coating Technique and Its Photocatalytic Degradation to Monoazo Textile Dye.
Cen et al. The effect of background irradiation on photocatalytic efficiencies of TiO2 thin films
CN107486203B (zh) 一种可回收漂浮型复合光催化球及其制备方法和应用
Kaneva et al. ZnO thin films preparation on glass substrates by two different sol-gel methods
CN113797910B (zh) 一种含缺陷的纳米微球状钙钛矿催化剂及其制备方法和应用
Diesen et al. Improved Texturing and Photocatalytic Efficiency in Ti O 2 Films Grown Using Aerosol‐A ssisted CVD and Atmospheric Pressure CVD
WO2000060135A2 (de) Verfahren zur herstellung dünner, schwer löslicher beschichtungen
CN109603860B (zh) 一种ZnO/ZnS/ZnSe复合纳米带光催化剂薄膜的制备方法
Lai et al. Hierarchical heterostructure of rutile TiO2 nanoflower array on anatase TiO2 sheet with enhanced photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant