CN114478020B - 一种大尺寸高结晶度h-BN陶瓷材料及其制备方法 - Google Patents

一种大尺寸高结晶度h-BN陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114478020B
CN114478020B CN202011145870.XA CN202011145870A CN114478020B CN 114478020 B CN114478020 B CN 114478020B CN 202011145870 A CN202011145870 A CN 202011145870A CN 114478020 B CN114478020 B CN 114478020B
Authority
CN
China
Prior art keywords
crystallinity
powder
lamellar
size high
diluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011145870.XA
Other languages
English (en)
Other versions
CN114478020A (zh
Inventor
贺刚
吴晓明
王良
杨增朝
李江涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202011145870.XA priority Critical patent/CN114478020B/zh
Publication of CN114478020A publication Critical patent/CN114478020A/zh
Application granted granted Critical
Publication of CN114478020B publication Critical patent/CN114478020B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种大尺寸高结晶度六方‑氮化硼及其制备工艺,采用镁粉、硼源、稀释剂为原料,铵盐为添加剂,通过高温下铵盐分解形成气体,气体流动通道的形成带动了反应物充分接触反应,提高了反应效率,同时,燃烧合成法的高能有利于层片状h‑BN的形成,适量稀释剂的控制,能够避免层片状h‑BN出现厚度过大或者层片断裂等现象。燃烧合成的h‑BN的GI指数为1.91,这表明燃烧合成h‑BN结晶度高,本征热导率高。h‑BN片层直径范围在5‑40μm之间,这使h‑BN作为热导填料时能够显著了降低导热网络中的界面热阻,在热界面材料领域具有较大的应用潜力。

Description

一种大尺寸高结晶度h-BN陶瓷材料及其制备方法
技术领域
本发明涉及陶瓷领域,尤其涉及大尺寸高结晶度六方氮化硼陶瓷材料领域
背景技术
导热填料中氮化硼具有较高的热导率,较低的热膨胀系数,优良的热稳定性,较高的抗氧化性等优点,是目前较为理想的散热材料。h-BN纳米片是柔性绝缘材料中热导率最高的材料,同时少层氮化硼常温条件下的热膨胀系数为(3.58~1.67)×10-6/K,在高热导材料中性能非常突出。氮化硼是目前唯一同时兼具良好的柔性、绝缘性和低热膨胀系数的高导热材料,同时还兼具良好的化学稳定性、低密度、高强度、高韧性、高延展性、抗渗性等众多优点,是最为理想的热界面填料。
T.E.O’Connor早在“Synthesis of hexagonal boron nitride”中研究了硼酸-氨路线制备六方氮化硼,特别强调了中间加成化合物(BN)x(B2O3)y(NH3)z的产率和组成。CN101531349A中提到采用硼酸、铵盐、金属镁粉混合物制圆片状六方氮化硼多晶微粉;吉钰纯等人探讨制备花束BN纳米囊,但是上述制备大尺寸h-BN粉体方法存在反应温度高、时间长、耗能久、工艺复杂、粉体微观形貌结晶度不高等问题。
发明内容
本发明要解决的技术问题是针对上述缺点提供一种大尺寸高结晶度h-BN及其制备方法,高效节能、易于大规模生产,能够用作高导热材料。
本发明采用的技术方案为:一种大尺寸高结晶度h-BN陶瓷材料,其特征在于,所述h-BN陶瓷材料的结晶化指数不大于2.0,所述h-BN呈现不规则分布的层片状结构,其中,层片状h-BN的直径范围在5-40μm之间,所述层片状h-BN的厚度范围在30-50nm之间,所述层片状h-BN的直径厚度比在400-600之间。
进一步的,所述层片状h-BN的中位直径D50在17-25μm之间。
进一步的,所述层片状h-BN的结晶化指数在1.8-1.91之间,优选为1.91。
进一步的,所述层片状h-BN的厚度范围在35-50nm之间,优选为50nm。
进一步的,所述层片状h-BN的直径厚度比在400-550之间,优选为400、500。
一种大尺寸高结晶度h-BN陶瓷材料的制备方法,其特征在于,以镁源、硼源为原料,以铵盐为添加剂,以h-BN为稀释剂,镁源、硼源根据化学计量比混合均匀后在氮气条件下通过燃烧合成制备h-BN和MgO复合产物,利用稀盐酸对产物进行酸洗去除MgO,干燥得到大尺寸高结晶度h-BN粉体;其中氮气压力控制在0.4~1.5MPa,稀释剂添加量为硼源摩尔比的10~30%。
进一步的,所述镁源为镁粉,优选所述镁粉粒径为75~300μm,形貌为片型、球型。
进一步的,所述硼源为B2O3粉,优选所述B2O3粉粒径为100μm~400μm。
进一步的,所述铵盐为NH4Cl、NH4F、NH4Br。
进一步的,所述混合采用球磨湿法混合,将镁源、硼源、添加剂、稀释剂放入滚筒中,加入球磨剂氧化锆球或者氧化铝球,混合球磨20~60min,球料比为3:1。
进一步的,所述混合均匀后,将样品过筛、置于石墨坩埚中,充入氮气,用钨丝引燃通过燃烧合成法制备h-BN。
进一步的,将所述复合产物进行研磨,采用浓度为1mol/L的稀盐酸进行淋洗,洗至中性,过滤干燥,得到大尺寸高结晶度h-BN陶瓷材料。
为了评价分析燃烧合成h-BN的三维有序化程度(结晶度),通常采用Thomas等人定义的方法石墨化指数(Graphitization index)对h-BN的结晶度进行评价。石墨化指数用GI表示,GI值越大表示晶体的三维有序度越低,结晶度越差,否则结晶度越好。一般来说,GI值在1.60-5.00之间为结晶度良好的产物。GI值的定量计算可用六方氮化硼的X射线衍射图谱(XRD)中(100)、(101)及(102)晶面衍射峰面积之间的关系确定,如下式所示;
Figure BDA0002739720680000021
式中Area(100)、Area(101)和Area(102)分别代表六方氮化硼(100)、(101)和(102)晶面衍射峰的面积。
本发明燃烧合成制备h-BN陶瓷粉体过程中,反应原料如下所示:
3Mg+B2O3+N2+0.6h-BN=3MgO+2h-BN+0.6h-BN
h-BN的生成机制如图1所示,Mg和B2O3的熔化,在液相的接触界面发生还原反应生成B。B与氮气反应生成了h-BN纳米颗粒,燃烧合成的h-BN纳米颗粒在液相Mg中实现形核和传输,NH4Cl和Mg反应生成的MgCl2的存在增大了h-BN在液相Mg中的溶解度和传输速度。h-BN的生长尺寸取决于纳米片层的熟化时间,厚度受MgCl2影响较大,因此h-BN在含MgCl2的液相的Mg中最终生成了h-BN为纳米片层。
本发明的有益效果在于:采用镁粉作为还原剂,通过高温下铵盐分解形成气体,气体流动通道的形成带动了反应物充分接触反应,提高了反应效率,同时,燃烧合成法的高能有利于层片状h-BN的形成,稀释剂的加入能够有效降低反应温度,给层片状h-BN的形成提供了充分的时间,并且适量稀释剂的控制,能够避免层片状h-BN出现厚度过大或者层片断裂等现象。另一方面,镁粉在反应的同时为h-BN纳米片提供了高温的生长环境,有利h-BN的生长和结晶的作用。
燃烧合成的h-BN的GI指数为1.91,这表明燃烧合成h-BN结晶度高,本征热导率高。h-BN片层直径较大为20μm,厚度较薄为50nm,这使h-BN作为热导填料时能够显著了降低导热网络中的界面热阻,在热界面材料领域具有较大的应用潜力。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1.燃烧合成h-BN的反应机制原理;
图2.大尺寸高结晶度h-BN陶瓷材料复合产物的XRD图谱,(a)酸洗前;(b)酸洗后;
图3.大尺寸高结晶度h-BN陶瓷材料的SEM图,(a)h-BN横向尺寸(b)h-BN厚度;
图4.大尺寸高结晶度h-BN陶瓷材料四个区域的TEM图。
具体实施方式
实施例1.
取镁粉85g,粒径为150μm,氧化硼64g,粒径为200μm,氯化铵5.4g,稀释剂h-BN14.4g,将上述粉体置于球磨机滚筒中,加入球磨介质无水乙醇,球料比为3:1,球磨混合30min得到混合粉体。将上述混合粉体过50目筛,将其置于石墨坩埚中,放入反应釜中,充入1.0MPa氮气,之后采用钨丝引爆,通过燃烧合成法制备得到h-BN与MgO的复合产物。待冷却后,将上述复合产物进行研磨,后采用浓度为1mol/L的稀盐酸进行淋洗,溶解去除MgO,过滤烘干,得到大尺寸高结晶度h-BN。通过XRD衍射仪表征发现经过盐酸酸洗后获得产物为单相六方氮化硼,通过计算得到结晶度为1.91。通过扫描电镜观察粉体微观形貌,呈现不规则分布的层片状,对样品横向尺寸的统计可知,图3(a)显示层片状结构的直径为5-35μm,中位尺寸为20μm,图2(b)显示层片状结构的厚度为50nm左右,直径厚度比为400。这说明燃烧合成的h-BN粉体直径较大,厚度较薄,适合用作导热填料。
实施例2.
取镁粉85g,粒径为300μm,氧化硼64g,粒径为200μm,氯化铵5.4g,稀释剂h-BN14.4g,将上述粉体置于球磨机滚筒中,加入球磨介质无水乙醇,球料比为3:1,球磨混合30min得到混合粉体。将上述混合粉体过50目筛,将其置于石墨坩埚中,放入反应釜中,充入1.5M Pa氮气,之后采用钨丝引爆,通过燃烧合成法制备得到h-BN与MgO的复合产物。待冷却后,将上述复合产物进行研磨,后采用浓度为1mol/L的稀盐酸进行淋洗,溶解去除MgO,过滤烘干,得到大尺寸高结晶度h-BN。通过XRD衍射仪表征发现经过盐酸酸洗后获得产物为单相六方氮化硼,通过计算得到结晶度为1.8。通过扫描电镜观察粉体微观形貌,呈现不规则分布的层片状,对样品横向尺寸的统计可知,层片状结构的直径为10-40μm,中位尺寸为25μm,厚度为50nm左右,平均直径厚度比为500。这说明燃烧合成的h-BN粉体直径较大,厚度较薄,适合用作导热填料。
实施例3.
取镁粉85g,粒径为150μm,氧化硼68g,粒径为400μm,溴化铵10.8g,稀释剂h-BN14.4g,将上述粉体置于球磨机滚筒中,加入球磨介质无水乙醇,球料比为3:1,球磨混合30min得到混合粉体。将上述混合粉体过50目筛,将其置于石墨坩埚中,放入反应釜中,充入0.5MPa氮气,之后采用钨丝引爆,通过燃烧合成法制备得到h-BN与MgO的复合产物。待冷却后,将上述复合产物进行研磨,后采用浓度为1mol/L的稀盐酸进行淋洗,溶解去除MgO,过滤烘干,得到大尺寸高结晶度h-BN。通过XRD衍射仪表征发现经过盐酸酸洗后获得产物为单相六方氮化硼,通过计算得到结晶度为1.91。通过扫描电镜观察粉体微观形貌,呈现不规则分布的层片状,对样品横向尺寸的统计可知层片状结构的直径为10~30μm,中位尺寸为18μm,厚度为30nm左右,直径厚度比为600。这说明燃烧合成的h-BN粉体直径较大,厚度较薄,适合用作导热填料。
实施例4.
取镁粉85g,粒径为75μm,氧化硼64g,粒径为100μm,氯化铵10.8g,稀释剂h-BN14.4g,将上述粉体置于球磨机滚筒中,加入球磨介质无水乙醇,球料比为3:1,球磨混合30min得到混合粉体。将上述混合粉体过50目筛,将其置于石墨坩埚中,放入反应釜中,充入0.4MPa氮气,之后采用钨丝引爆,通过燃烧合成法制备得到h-BN与MgO的复合产物。带冷却后,将上述复合产物进行研磨,后采用浓度为1mol/L的稀盐酸进行淋洗,溶解去除MgO,过滤烘干,得到大尺寸高结晶度h-BN。通过XRD衍射仪表征发现经过盐酸酸洗后获得产物为单相六方氮化硼,通过计算得到结晶度为1.87。通过扫描电镜观察粉体微观形貌,呈现不规则分布的层片状,对样品横向尺寸的统计可知层片状结构的直径为5~25μm,中位尺寸为17μm,厚度为35nm左右,直径厚度比为550。这说明燃烧合成的h-BN粉体直径较大,厚度较薄,适合用作导热填料。
实施例5.
取镁粉85g,粒径为150μm,氧化硼64g,粒径为200μm,氟化铵5.4g,稀释剂h-BN14.4g,将上述粉体置于球磨机滚筒中,加入球磨介质无水乙醇,球料比为3:1,球磨混合30min得到混合粉体。将上述混合粉体过50目筛,将其置于石墨坩埚中,放入真空反应釜中,充入0.5MPa氮气,之后采用钨丝引爆,通过燃烧合成法制备得到h-BN与MgO的复合产物。带冷却后,将上述复合产物进行研磨,后采用浓度为1mol/L的稀盐酸进行淋洗,溶解去除MgO,过滤烘干,得到大尺寸高结晶度h-BN。通过XRD表征发现经过盐酸酸洗后获得产物为单相六方氮化硼,通过计算得到结晶度为1.7。通过扫描电镜观察粉体微观形貌,呈现不规则分布的层片状,对样品横向尺寸的统计可知层片状结构的直径为10~35μm,中位尺寸为20μm,厚度为50nm左右,直径厚度比为400。这说明燃烧合成的h-BN粉体直径较大,厚度较薄,适合用作导热填料。

Claims (3)

1.一种大尺寸高结晶度h-BN陶瓷材料的制备方法,其特征在于,以镁源、硼源为原料,以铵盐为添加剂,以h-BN为稀释剂,镁源、硼源根据化学计量比混合均匀后在氮气条件下通过燃烧合成制备h-BN和MgO复合产物,利用酸洗去除产物中的MgO,干燥得到大尺寸高结晶度h-BN粉体;所述的大尺寸高结晶度h-BN粉体,其层片状h-BN的中位直径D50在17-25μm之间,所述层片状h-BN的结晶化指数在1.8-1.91之间,所述层片状h-BN的直径厚度比在400-550之间。
2.如权利要求1所述的大尺寸高结晶度h-BN陶瓷材料的制备方法,其特征在于,氮气压力控制在0.4~1.5MPa,稀释剂添加量为硼源摩尔比的10~30%。
3.如权利要求1所述的大尺寸高结晶度h-BN陶瓷材料的制备方法,其特征在于,所述镁源为镁粉,镁粉粒径为75~300μm,形貌为片型、球型;所述硼源为B2O3粉,B2O3粉粒径为100μm~400μm。
CN202011145870.XA 2020-10-23 2020-10-23 一种大尺寸高结晶度h-BN陶瓷材料及其制备方法 Active CN114478020B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011145870.XA CN114478020B (zh) 2020-10-23 2020-10-23 一种大尺寸高结晶度h-BN陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011145870.XA CN114478020B (zh) 2020-10-23 2020-10-23 一种大尺寸高结晶度h-BN陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114478020A CN114478020A (zh) 2022-05-13
CN114478020B true CN114478020B (zh) 2023-04-28

Family

ID=81471484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011145870.XA Active CN114478020B (zh) 2020-10-23 2020-10-23 一种大尺寸高结晶度h-BN陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114478020B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531349A (zh) * 2009-04-01 2009-09-16 武汉工程大学 圆片状六方氮化硼多晶微粉的制备方法
CN102757025A (zh) * 2012-05-08 2012-10-31 辽宁科技大学 高温自蔓延合成高密度六方氮化硼的方法
CN104233454A (zh) * 2014-06-17 2014-12-24 中山大学 一种高效合成单晶六方氮化硼结构的取代反应方法
CN106430126A (zh) * 2016-11-01 2017-02-22 河北正雍新材料科技有限公司 一种高结晶度六方氮化硼粉体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020049817A1 (ja) * 2018-09-07 2020-09-10 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531349A (zh) * 2009-04-01 2009-09-16 武汉工程大学 圆片状六方氮化硼多晶微粉的制备方法
CN102757025A (zh) * 2012-05-08 2012-10-31 辽宁科技大学 高温自蔓延合成高密度六方氮化硼的方法
CN104233454A (zh) * 2014-06-17 2014-12-24 中山大学 一种高效合成单晶六方氮化硼结构的取代反应方法
CN106430126A (zh) * 2016-11-01 2017-02-22 河北正雍新材料科技有限公司 一种高结晶度六方氮化硼粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
裴立宅编.氮化硼.《高技术陶瓷材料》.合肥工业大学出版社,2015,(第1版),第64页. *

Also Published As

Publication number Publication date
CN114478020A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN101935877B (zh) 一种常压烧结合成莫来石晶须的方法
CN110980664B (zh) 一种多孔少层h-BN纳米片及其制备方法
CN107140641B (zh) 一种以硅酸盐玻璃为原料制备三维多孔硅的方法
CN107640751A (zh) 一维氮化硼纳米材料及其制备方法
CN113058605A (zh) 碳纳米管用催化剂及其制备方法和应用
CN114478020B (zh) 一种大尺寸高结晶度h-BN陶瓷材料及其制备方法
Zhang et al. High purity and good dispersity AlN nanoparticles synthesized by an arc discharge with assistance of direct nitridation
CN112661123B (zh) 一种双层带状氮化硼分级结构的制备方法及产品
CN110817814B (zh) 一种一维分级结构薄壁bn微米管的制备方法及产品
CN112551599B (zh) 一种硫磷酸镍纳米片/石墨烯复合材料及其制备方法
CN104071760B (zh) 一种多孔棒状六方氮化硼陶瓷材料的制备方法
CN113184870A (zh) 一种宏量粒度可控LaB6粉体的制备方法
CN114956085A (zh) 一种低温熔融盐体系制备抗氧化MXene的方法
CN106430225B (zh) 一种片状多孔硼化镍粉体及其制备方法
CN114988887B (zh) 一种基于核壳型纳米复合粉体改性的陶瓷刀具材料及其制备方法
CN114835092B (zh) 一种球形氮化硼导热材料及其制备方法
CN113479855B (zh) 一种利用体相层状过渡金属硫化物制备非层状二维过渡金属化合物的方法
CN112919431B (zh) 一种高产率、高结晶度的六方氮化硼纳米片及其制备方法
CN113005323B (zh) 一种金刚石/铜复合导热材料及其制备方法
Wu et al. Effect of ammonium chloride on the morphology of hexagonal boron nitride prepared by magnesium thermal reduction
CN107640750A (zh) 氮化硼纳米片粉体及其低成本批量制备方法
CN111704165B (zh) 一种六方MoTe2纳米片及制备方法
CN114852976B (zh) 一种空心氮化硼短棒及其制备方法
Liu et al. Combustion synthesis of ceramic powders with controlled grain morphologies
CN115676858B (zh) 一种片状多孔硅钢级氧化镁的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant