CN114477999A - 一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法 - Google Patents

一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法 Download PDF

Info

Publication number
CN114477999A
CN114477999A CN202210310456.2A CN202210310456A CN114477999A CN 114477999 A CN114477999 A CN 114477999A CN 202210310456 A CN202210310456 A CN 202210310456A CN 114477999 A CN114477999 A CN 114477999A
Authority
CN
China
Prior art keywords
powder
alc
tio
thermal shock
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210310456.2A
Other languages
English (en)
Other versions
CN114477999B (zh
Inventor
刘华山
皮寿成
刘娜
余超
祝洪喜
邓承继
董博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Honghua Metallurgical Machinery Co ltd
Original Assignee
Taizhou Honghua Metallurgical Machinery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Honghua Metallurgical Machinery Co ltd filed Critical Taizhou Honghua Metallurgical Machinery Co ltd
Priority to CN202210310456.2A priority Critical patent/CN114477999B/zh
Publication of CN114477999A publication Critical patent/CN114477999A/zh
Application granted granted Critical
Publication of CN114477999B publication Critical patent/CN114477999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明公开了一种耐热震Al2TiO5‑Ti3AlC2陶瓷的制备方法,以Al2TiO5粉体和Ti3AlC2粉体的质量比为(8~9.5):(2~0.5)作为为原料,2~10wt%的调质剂;调质剂为质量比为1:1:5的镁铁尖晶石、Al和聚碳硅烷的混合物;在Al2TiO5粉体中加入一半调质剂混合,混合均匀后再依次加入Ti3AlC2粉体和剩余调质剂;然后将粉体总质量0.1~0.5wt%的碳纳米管分散于乙醇中,得到碳纳米管浆料,再称取粉体重量的0.1~0.5wt%的聚乙二醇,与粉体充分混合均匀;混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,用放电等离子进行烧结;通入冷却的氩气快速降温至室温,在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;经车床机加工后为需要的形状。本发明复合材料陶瓷在热震条件下低损伤、少缺陷、可以长期使用,具有较好的应用前景。

Description

一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法
技术领域
本发明属于复合陶瓷技术领域。具体涉及一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法。
背景技术
目前,冶金行业用高温结构件主要采用耐热钢生产制造,步进式加热炉是钢铁生产工艺主流程中关键设备,其加热钢坯的生产能力、质量和效率直接影响并决定轧钢及生产钢材的产量、质量和效益。步进式加热炉中水冷梁上的耐热钢垫块承托被加热的钢坯,是保障被加热钢坯温度的均匀性及加热质量、保障轧钢生产稳定进行的关键部件。由于耐热钢垫块存在热容高、导热系数大、高温蠕变和氧化损坏等先天性缺陷,易造成被加热钢坯出现“走偏”、与垫块接触部位产生“水冷瘢”(黑印)而影响轧材质量及成材率等突出问题,已成为制约热轧薄板等高技术钢材轧钢生产的“瓶颈”问题。为解决被加热钢坯与垫块接触部位产生的“水冷瘢”(黑印)问题,在不改变加热炉的前提下,常采用提高加热温度和延长加热时间的办法,以保证钢坯达到适当的热塑性和延展性。但此法明显存在能耗高、钢坯烧蚀量大,生产速度慢及效率低,而且耐热钢垫块会因为高温蠕变而被“压扁”损坏,造成被加热钢坯出现“走偏”、堆钢等问题,进而影响加热炉的正常生产,严重制约了行业的技术进步和经济效益。
将具有良好物理化学性能、强度高、高温蠕变性能优异等突出特点的高温陶瓷制造高温陶瓷部件,取代现有的耐热合金钢部件,有望解决耐热合金钢部件带来的突出问题。目前,国内外科研机构已经研究了氧化硅、碳化硅、氮化硅、氧化铝等材料及其复合材料的陶瓷垫块,部分已经获得实际应用,能够改善耐热钢垫块热导率高、高温蠕变性能差等问题。然而实际应用过程中缺陷也很突出:这些高性能结构陶瓷是典型的硬、脆的结构材料,同时温度变化对其弹塑性及高温蠕变性能的影响明显,其材料组成、微结构设计及性能调控一直是其科学研究的难点和热点;相关材料特别是复杂结构、大或小等极限尺寸的高性能陶瓷部件的制备、低损伤、少缺陷、高成品率、高精度加工是亟待突破的共性关键技术。
选择热膨胀系数小的组分一直是改善陶瓷材料的抗热震性、延长其使用寿命的方向之一。Al2TiO5陶瓷具有接近于零的热膨胀系数、低导热系数、高熔点、抗热震和抗热冲击性能优异等特性,是目前低膨胀材料中耐高温性能最好的一种。但由于强度和高温稳定性的原因使钛酸铝陶瓷未能得到广泛应用。Ti3AlC2材料结合了金属与陶瓷的特性,具有较的强度和模量,优异的抗水热氧化性、抗酸碱腐蚀性和抗离子辐照性;同时,像金属一样,可以进行切削加工;另外,Ti3AlC2不仅具备陶瓷所拥有的高屈服强度,高熔点和高热稳定性,还有良好的抗氧化性能;此外,还具备抗腐蚀性能和比MoS2和石墨还优良的自润滑性能。
但是两种材料和复配需要克服较多的技术难题,提高材料的结合性能,需要筛选出较为合适的调质剂和添加剂,以实现两者协同发挥功能的作用。
发明内容
本发明旨在克服现有技术缺陷:提供一种具有高致密度、低热导率、优良高温强度、优异热振稳定性和耐磨性、服役寿命长等特点的Al2TiO5-Ti3AlC2复合材料陶瓷的制备方法。
为实现上述目的,本发明采用的技术方案是:
一种耐热震Al2TiO5-Ti3AlC2复合材料陶瓷的制备方法,包括以下步骤:
(1)原料组成:Al2TiO5粉体和Ti3AlC2粉体的质量比为(8~9.5):(2~0.5)作为为原料,以2~10wt%的调质剂为外加剂;其中,调质剂为质量比为1:1:5的镁铁尖晶石、Al和聚碳硅烷的混合物;
(2)原料混合:将步骤(1)中原料和外加剂各自的百分含量比例;首先在Al2TiO5粉体中加入一半调质剂混合,混合均匀后再依次加入Ti3AlC2粉体和剩余调质剂;然后将粉体总质量0.1~0.5wt%的碳纳米管分散于乙醇中,得到碳纳米管浆料,再称取粉体重量的0.1~0.5wt%的聚乙二醇,与粉体充分混合均匀;
(3)成型、烧结与加工:得到的混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,然后用放电等离子进行烧结;
(5)烧结后,通入冷却的氩气快速降温至室温,再在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;
(6)经车床机加工为需要的形状。
优选的,所述Al2TiO5粉体纯度≥90wt%,粒径小于3mm;所述Ti3AlC2粉体纯度≥90wt%,粒径小于200μm;所述镁铁尖晶石粉体纯度≥92wt%,粒径小于50μm;所述Si粉体纯度≥95wt%,粒径小于10μm;所述模压成型的压力为50~300MPa,保压5-30min;所述氩气纯度≥99%。
所述的放电等离子烧结的过程是:将粉末的模具放入到放电等离子烧结炉中,持续向含模具施加10MPa~150MPa的轴向压力,在真空度为10-4Pa~10Pa下将放电等离子烧结炉内温度以20℃/min~200℃/min的升温速度从室温升温至950℃~1350℃,再在温度为950℃~1350℃下保温2min~30min,再关闭放电等离子烧结炉电源。
本发明与现有技术相比具有以下优点:具体来说,本发明的Al2TiO5-Ti3AlC2复合材料陶瓷具有以下特点:(1)与传统氧化物-碳化物复合材料不同,由于Al2TiO5和Ti3AlC2中共同具备Ti元素和Al元素,Al2TiO5-Ti3AlC2材料的界面在高温高压下能够形成连续化学结合;(2)通过镁铁尖晶石、Al、聚碳硅烷,优选的添加有聚乙二醇、碳纳米管等引入,能够提高复合材料结合性和高温稳定性;(3)Ti3AlC2的金属特性使数控车床机加工性能好和尺寸精确,复合材料陶瓷垫块低损伤、少缺陷、高成品率;(4)本发明Al2TiO5-Ti3AlC2复合材料陶瓷在热震条件下低损伤、少缺陷、可以长期使用,具有较好的应用前景。基于两种材料的特性,本发明Al2TiO5-Ti3AlC2复合材料陶瓷垫块是在热膨胀系数低的Al2TiO5材料中构建高强度、高韧性的Ti3AlC2结合相网络,提升材料的致密度、高温强度、热振稳定性和耐磨性,从而延长陶瓷服役寿命。
具体实施方式
为避免重复,本具体实施方式中:Al2TiO5粉体纯度≥90wt%,粒径小于3mm;Ti3AlC2粉体纯度≥90wt%,粒径小于200μm;调质剂为质量比为1:1:5的镁铁尖晶石、Si和聚乙二醇的混合物;镁铁尖晶石粉体纯度≥92wt%,粒径小于50μm;Si粉体纯度≥95wt%,粒径小于10μm;氩气纯度≥99%。实施例中不再赘述。
为避免重复,没有特别提及的情况下,采用下列方法测试复合材料陶瓷垫块的性能参数:
按照GB/T 25995-2010 精细陶瓷密度和显气孔率试验方法,测试气孔率。
按照GB/ T 4741-1999 陶瓷材料抗弯曲强度试验方法,测试抗折强度。
参照GB/T16535-1996工程陶瓷线热膨胀系数试验方法,测试热膨胀系数。测试温度范围按下述实验设定。
参照GB/T 16536-1996 工程陶瓷抗热震性试验方法,测试热震断裂次数,测试温度范围按照下述实验设定,水冷为15摄氏度。
实施例1
称取80wt%的Al2TiO5粉体和20wt%的Ti3AlC2粉体为原料,首先在Al2TiO5粉体中加入1wt%的调质剂混合,混合均匀后再依次加入Ti3AlC2粉体和剩余1wt%的调质剂,所述调质剂为1:1:5的镁铁尖晶石、Al和聚碳硅烷的混合物。
将粉体总质量0.1%的碳纳米管分散于乙醇中,得到碳纳米管浆料,再称取粉体重量的0.1wt%的聚乙二醇,与粉体充分混合均匀充分混合。
得到的混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,模压成型的压力为100MPa,保压25min。然后用放电等离子进行烧结。
烧结后,通入冷却的氩气快速降温至室温,再在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;经车床机加工为需要的形状。
气孔率为4.01%,抗折强度为120.5MPa,热膨胀系数α为1.31×10-6/℃(室温~1000℃),热震断裂次数为500次(1100℃~室温水冷)。
对比例1
与实施例1不同的是,称取80wt%的Al2TiO5粉体和20wt%的Ti3AlC2粉体为原料。不添加调质剂。将粉体总质量0.1%的碳纳米管分散于乙醇中,得到碳纳米管浆料,再称取粉体重量的0.1wt%的聚乙二醇,与粉体充分混合均匀充分混合。
得到的混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,模压成型的压力为100MPa,保压25min。然后用放电等离子进行烧结。烧结后,通入冷却的氩气快速降温至室温,再在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;经车床机加工为需要的形状。
经过测试,气孔率为7.02%,抗折强度为98.5MPa,热膨胀系数α为1.27×10-6/℃(室温~1000℃),热震断裂次数为469次(1100℃~室温水冷)。因为不加入调质剂,其粉体的结合情况较差,气孔率较高,影响了物理性能。
对比例2
与实施例1不同的是,称取80wt%的Al2TiO5粉体和20wt%的Ti3AlC2粉体为原料,首先在Al2TiO5粉体中加入1wt%的调质剂混合,混合均匀后再依次加入Ti3AlC2粉体和剩余1wt%的调质剂,所述调质剂为1:1:5的镁铁尖晶石、Al和聚碳硅烷的混合物。
不添加碳纳米管和聚乙二醇。得到的混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,模压成型的压力为100MPa,保压25min。然后用放电等离子进行烧结。烧结后,通入冷却的氩气快速降温至室温,再在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;经车床机加工为需要的形状。
气孔率为3.98%,抗折强度为87.5MPa,热膨胀系数α为1.22×10-6/℃(室温~1000℃),热震断裂次数为250次(1100℃~室温水冷)。
对比可以得出,不添加碳纳米管和聚乙二醇,虽然不会大幅度影响气孔率和抗折强度等指标,但是会极大的影响热震断裂次数,说明碳纳米管可以作为增强相,提高热震性能。
实施例2
称取95wt%的Al2TiO5粉体和5wt%的Ti3AlC2粉体为原料,首先在Al2TiO5粉体中加入5wt%的调质剂混合,混合均匀后再依次加入Ti3AlC2粉体和剩余5wt%的调质剂,所述调质剂为1:1:5的镁铁尖晶石、铝和聚碳硅烷的混合物。
将粉体总质量0.5%的碳纳米管分散于乙醇中,得到碳纳米管浆料,再称取粉体重量的0.1wt%的聚乙二醇,与粉体充分混合均匀充分混合。
得到的混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,模压成型的压力为100MPa,保压25min。然后用放电等离子进行烧结。
烧结后,通入冷却的氩气快速降温至室温,再在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;经车床机加工为需要的形状。
气孔率为3.85%,抗折强度为126.5MPa,热膨胀系数α为1.26×10-6/℃(室温~1000℃),热震断裂次数为550次(1100℃~室温水冷)。
提高调质剂和碳纳米管的添加量,可以改善陶瓷的综合性能,具体表现为气孔率下降,强度上升,最主要的指标热震断裂次数提高。
实施例3
以87wt%的Al2TiO5粉体和13wt%的Ti3AlC2粉体为原料,以6wt%的调质剂为外加剂;其中,调质剂为质量比为1:1:5的镁铁尖晶石、Al和聚碳硅烷的混合物;
原料和外加剂各自的百分含量比例;首先在Al2TiO5粉体中加入一半调质剂混合,混合均匀后再依次加入Ti3AlC2粉体和剩余调质剂;然后将粉体总质量0.3%的碳纳米管分散于乙醇中,得到碳纳米管浆料,再称取粉体重量的0.3wt%的聚乙二醇,与粉体充分混合均匀;得到的混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,然后用放电等离子进行烧结;烧结后,通入冷却的氩气快速降温至室温,再在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;经车床机加工为需要的形状。
气孔率为5.05%,抗折强度为92.5MPa,热膨胀系数α为1.22×10-6/℃(室温~1000℃),热震断裂次数为510次(1100℃~室温水冷)。
在合理的范围内调整调质剂和碳纳米管的添加量,可以获得抗热震性能较佳的产品。
对比例3
与实施例3不同的是,仅仅分别设定调质剂如下,其它不变,
(1)1:1:4的镁铁尖晶石、Al和聚碳硅烷的混合物;
经测试,气孔率为5.86%,抗折强度为89.4MPa,热膨胀系数α为1.29×10-6/℃(室温~1000℃),热震断裂次数为480次(1100℃~室温水冷)。性能有所下降。
(2)1:1:6的镁铁尖晶石、Al和聚碳硅烷的混合物;
经测试,气孔率为5.94%,抗折强度为87.3MPa,热膨胀系数α为1.32×10-6/℃(室温~1000℃),热震断裂次数为450次(1100℃~室温水冷)。过量添加聚碳硅烷会影响热震性能。
(3)1:1的镁铁尖晶石和铝
经测试,气孔率为8.54%,抗折强度为60.3MPa,热膨胀系数α为1.27×10-6/℃(室温~1000℃),热震断裂次数为350次(1100℃~室温水冷)。不添加聚碳硅烷会对热震性能产生较大的影响。
(4)1:5的铝和聚碳硅烷
经测试,气孔率为9.03%,抗折强度为59.6MPa,热膨胀系数α为1.20×10-6/℃(室温~1000℃),热震断裂次数为410次(1100℃~室温水冷)。不添加镁铁尖晶石,会增大气孔率,对热震性能稍有影响。
综上,本发明所采用的质量比为1:1:5的镁铁尖晶石、Al和聚碳硅烷的混合物综合性能最佳。
上述实施例是对本发明技术方案的解释,本发明的保护范围以权利要求书的内容为准。

Claims (8)

1.一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,其特征在于,包括以下步骤:
(1)原料组成:Al2TiO5粉体和Ti3AlC2粉体的质量比为(8~9.5):(2~0.5)作为为原料,以2~10wt%的调质剂为外加剂;其中,调质剂为质量比为1:1:5的镁铁尖晶石、Al和聚碳硅烷的混合物;
(2)原料混合:按照步骤(1)中原料和外加剂各自的比例;首先在Al2TiO5粉体中加入一半调质剂混合,混合均匀后再依次加入Ti3AlC2粉体和剩余调质剂;然后将粉体总质量0.1~0.5wt%的碳纳米管分散于乙醇中,得到碳纳米管浆料,再称取粉体重量的0.1~0.5wt%的聚乙二醇,将所述浆料、聚乙二醇与粉体充分混合均匀;
(3)成型、烧结与加工:得到的混合粉料装入石墨模具中,干燥脱水脱醇,冷压成型,然后用放电等离子烧结;
(5)烧结后,通入冷却的氩气快速降温至室温,再在氩气气氛下升温1200~1300℃保温24~48h,缓慢冷却得到的烧结坯体;
(6)经车床机加工后为需要的形状。
2.根据权利要求1所述耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,其特征在于,所述Al2TiO5粉体纯度≥90wt%,粒径小于3mm。
3.根据权利要求1所述耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,,其特征在于,所述Ti3AlC2粉体纯度≥90wt%,粒径小于200μm。
4.根据权利要求1所述耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,,其特征在于,所述镁铁尖晶石粉体纯度≥92wt%,粒径小于50μm。
5.根据权利要求1所述耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,其特征在于,所述Si粉体纯度≥95wt%,粒径小于10μm。
6.根据权利要求1所述耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,其特征在于,所述模压成型的压力为50~300MPa,保压5-30min。
7.根据权利要求1所述耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,其特征在于,所述氩气纯度≥99%。
8.根据权利要求1所述耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法,其特征在于,所述放电等离子烧结的过程是,将装有粉末的模具放入到放电等离子烧结炉中,持续向含模具施加10MPa~150MPa的轴向压力,在真空度为10-4Pa~10Pa下将放电等离子烧结炉内温度以20℃/min~200℃/min的升温速度从室温升温至950℃~1350℃,在温度为950℃~1350℃下保温2min~30min,关闭放电等离子烧结炉电源。
CN202210310456.2A 2022-03-28 2022-03-28 一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法 Active CN114477999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210310456.2A CN114477999B (zh) 2022-03-28 2022-03-28 一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210310456.2A CN114477999B (zh) 2022-03-28 2022-03-28 一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN114477999A true CN114477999A (zh) 2022-05-13
CN114477999B CN114477999B (zh) 2022-09-20

Family

ID=81488305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210310456.2A Active CN114477999B (zh) 2022-03-28 2022-03-28 一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN114477999B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016000A1 (en) * 1994-11-18 1996-05-30 Du Pont Lanxide Composites Inc. High temperature, thermal shock resistant ceramic structures
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN101397207A (zh) * 2008-11-19 2009-04-01 河北理工大学 一种钛酸铝基高温结构复合材料及其制备方法
CN101486572A (zh) * 2009-02-24 2009-07-22 河北理工大学 一种ZrO2-Al2TiO5复合材料的制备方法
JP2011253651A (ja) * 2010-05-31 2011-12-15 National Institute Of Advanced Industrial & Technology 高温耐酸化性に優れた導電性快削セラミックス及びその製造方法
CN102408242A (zh) * 2011-08-19 2012-04-11 武汉科技大学 一种热轧步进式加热炉用复合陶瓷垫块及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016000A1 (en) * 1994-11-18 1996-05-30 Du Pont Lanxide Composites Inc. High temperature, thermal shock resistant ceramic structures
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN101397207A (zh) * 2008-11-19 2009-04-01 河北理工大学 一种钛酸铝基高温结构复合材料及其制备方法
CN101486572A (zh) * 2009-02-24 2009-07-22 河北理工大学 一种ZrO2-Al2TiO5复合材料的制备方法
JP2011253651A (ja) * 2010-05-31 2011-12-15 National Institute Of Advanced Industrial & Technology 高温耐酸化性に優れた導電性快削セラミックス及びその製造方法
CN102408242A (zh) * 2011-08-19 2012-04-11 武汉科技大学 一种热轧步进式加热炉用复合陶瓷垫块及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XU XUEWEN等: "Study on the isothermal oxidation behavior in air of Ti_3AlC_2 sintered by hot pressing", 《SCIENCE IN CHINA SERIES E:TECHNOLOGY SCIENCES》 *
刘智恩等: "添加剂对热压钛酸铝陶瓷性能与结构的影响", 《无机材料学报》 *
袁蝴蝶等: "Ti3SiC2、Ti3AlC2复相材料高温抗氧化行为的研究", 《热加工工艺》 *

Also Published As

Publication number Publication date
CN114477999B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN112647009A (zh) 一种高强度高耐磨性中熵合金及其制备方法
CN104876598A (zh) 薄带连铸用Max相-氮化硼复合陶瓷侧封板及其制造方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN110923498B (zh) 一种含金属碳化物和金属氧化物复合陶瓷摩擦组元的铜基粉末冶金摩擦材料及其制备方法
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN114959406A (zh) 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料
CN103964859B (zh) 钢薄带连铸用侧封板及其制备方法
CN110204337B (zh) 一种航天陀螺仪轴承用碳化硼陶瓷材料的制备方法及其碳化硼陶瓷材料
CN110078511B (zh) 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法
CN118256762A (zh) 一种Cu微合金化的低氧NbMoTaW超细晶高熵合金及其制备方法
CN113443919A (zh) 一种非晶态合金喷嘴材料及其制备方法
CN114477999B (zh) 一种耐热震Al2TiO5-Ti3AlC2陶瓷的制备方法
CN111041355B (zh) 一种添加TiC的低密度高强度钢及其制备方法
CN116426782A (zh) 一种高钨含量钨铜材料的制备方法
CN109336614B (zh) 一种Sialon/Ti-22Al-25Nb陶瓷基复合材料的制备方法
CN112080678B (zh) 三元硼化物合金螺杆材料及其生产工艺
CN114605158A (zh) 一种钛合金熔炼用氮化物复合耐火材料及其制备方法
CN114538918B (zh) 一种冶金行业用复合材料陶瓷垫块的制备方法
CN108624795B (zh) 一种金属陶瓷的烧结方法
CN113957294A (zh) 一种CrCoNi中熵合金增强Al基复合材料及其制备方法
CN117088686B (zh) 一种改性氧化锆涂层及其制备方法
CN117344244B (zh) 一种高强度低膨胀系数因瓦合金及其制造方法
CN115231907B (zh) 一种钒钛合金-刚玉复合滑板及其制备方法
CN113999008B (zh) 一种低碳浸入式水口内衬及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method for heat-resistant and shock-absorbing Al2TiO5-Ti3AlC2 ceramics

Granted publication date: 20220920

Pledgee: Industrial Bank Co.,Ltd. Taizhou Branch

Pledgor: TAIZHOU HONGHUA METALLURGICAL MACHINERY CO.,LTD.

Registration number: Y2024980016529