CN114471654B - 一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用 - Google Patents

一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用 Download PDF

Info

Publication number
CN114471654B
CN114471654B CN202210005053.7A CN202210005053A CN114471654B CN 114471654 B CN114471654 B CN 114471654B CN 202210005053 A CN202210005053 A CN 202210005053A CN 114471654 B CN114471654 B CN 114471654B
Authority
CN
China
Prior art keywords
cofe
bnmts
boron nitride
composite catalyst
cobalt ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210005053.7A
Other languages
English (en)
Other versions
CN114471654A (zh
Inventor
景凌云
朱浩
杨文涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Lanzhou University of Technology
Original Assignee
Lanzhou University
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University, Lanzhou University of Technology filed Critical Lanzhou University
Priority to CN202210005053.7A priority Critical patent/CN114471654B/zh
Publication of CN114471654A publication Critical patent/CN114471654A/zh
Application granted granted Critical
Publication of CN114471654B publication Critical patent/CN114471654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用。本发明采用共沉淀和水热法制备了氮化硼类材料锚定铁酸钴复合催化剂BNMTs@CoFe2O4和H‑BN@CoFe2O4。基于活化过氧单硫酸盐(PMS)的高级氧化工艺将复合催化剂用于对土霉素的降解,H‑BN@CoFe2O4/PMS和BNMTs@CoFe2O4/PMS体系对土霉素均展现出良好的降解性能和循环稳定性。BNMTs@CoFe2O4由于具有丰富介孔和含氧基团,更为有效地固定和分散了CoFe2O4,显著增强了PMS的活化,对于土霉素的降解性能更为优异。该发明有望为氮化硼类材料和过渡金属激活PMS体系的合理设计和在去除难降解有机废水等方面的应用提供更多思路。

Description

一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降 解土霉素中应用
技术领域
本发明属于材料制备及难降解有机废水处理领域,涉及一种氮化硼类材料锚定铁酸钴复合催化剂的制备方法,本发明同时还涉及该氮化硼类材料锚定铁酸钴复合催化剂在催化降解土霉素中的应用。
背景技术
目前,抗生素耐药性在水生环境中的发生和传播严重威胁到生态环境和人类健康。抗生素中的土霉素(OTC)作为抗菌剂和生长因子被广泛用于药物治疗。它通过人类或动物排泄和表面流动释放到环境中,造成污染。人们尝试了各种方法来处理水中的抗生素,包括物理吸附、光催化、电化学和高级氧化工艺(AOPs)。目前,活化过氧单硫酸盐(PMS)的AOPs是去除难降解有机污染物的最有吸引力的方法之一。与羟基自由基(·OH)相比,硫酸盐自由基(SO4 •-)具有氧化性强、选择性好、活性自由基寿命长等特点。紫外线辐射 (UV)、热处理、微波辐射和过渡金属离子或过渡金属氧化物均可用于激活 PMS,过渡金属激活PMS是一种最有效和最经济的方法。含钴(Co)的催化剂可以激活 PMS 并产生活性氧(ROS),由于其高催化活性而广受欢迎。有研究表明,双金属系统可以提供新的内部催化性能,使得PMS的静态效率和使用效率高于单金属系统。
含有Co和铁(Fe)的层状双羟基(Co-Fe LDH)作为二维阴离子键,具有特定的大比表面积和优异的PMS激活效果。龚等人报道的Co-Fe LDH/PMS体系能够高效降解罗丹明B(RhB)[Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubledhydroxide forefficient catalytic degradation of Rhoadmine B]。叶等人用生物炭负载Co-Fe LDH激活PMS产生更多活性物质,对邻苯二甲酸二甲酯(DMP)展现出突出的去除效果[Enhancingperoxymonosulfate activation by Co-Fe layered double hydroxidecatalysts via compositing with biochar]。将Co-Fe LDH煅烧成CoFe2O4,合金或是金属氧化物的状态能够改善Co-Fe LDH的稳定性并提升使用寿命[Co7Fe3/CoFe2O4@C Lamellarcomposites derived from Co–Fe LDH/PVA as aneffective heterogeneous activatorof peroxymonosulfate]。这其中,CoFe2O4不仅具有良好的磁性易于回收,Co-Fe两种金属间还具有较强的结合力,能够有效抑制Co的洗脱。但无论是Co-Fe LDH还是CoFe2O4都极易团聚和堆积,导致活性位点大量损失,限制了使用范围。因此,将CoFe2O4相变或改性为复合结构是改善其理化性质和提高催化性能的有效方法。陈等人使用石墨-碳硝化纳米片(CNS)来支撑和分散CoFe2O4,使催化剂具有更大的比表面积[A magnetic CoFe2O4–CNSnanocomposite as an effiffifficient, recyclable catalyst forperoxymonosulfate activation and pollutant degradation]。杨等人设计使用双金属有机骨架(Co/Fe bi-MOFs)来增加介孔结构,复合后的催化剂对双酚 A 展现出优异的去除效率[MOF-templated synthesis of CoFe2O4nanocrystals and its coupling withperoxymonosulfate for degradation of bisphenol A]。换句话说,使用简单的合成策略将功能性的载体材料用以负载和分散CoFe2O4,提高整体催化活性是十分有必要的。
氮化硼(BN)具有二维石墨样结构。它表现出一些独特的物理和化学特性,如高特定表面区域,许多结构缺陷,高导热性,化学耐久性和高抗氧化性。 BN的晶体结构和形貌也可以根据需要进行调整,如氮化硼纳米片(BNNSs)、氮化硼纳米管(BNNTs)、氮化硼纳米纤维(BNNFs)和氮化硼纳米带(BNNRs)等。这些特性和属性使BN在许多领域具有良好的应用前景,包括储运相关气体的吸附、污染物的吸附和催化剂载体等。BN纳米材料作为吸附剂在吸附水中抗生素污染物方面的潜在应用也已得到证实。
以BN为支撑骨架分散CoFe2O4,不仅有机会有效拓宽BN的应用范围,而且能够利用二者优势为催化反应过程带来新的希望。基于此,本发明通过共沉淀和水热法制备了一种硼氮微纳米管(BNMTs)锚定的CoFe2O4(BNMTs@ CoFe2O4)和六方片状氮化硼(H-BN)锚定的CoFe2O4(H-BN@ CoFe2O4)。BNMTs@ CoFe2O4的粗糙管状结构具有丰富的孔隙和含氧基团,有效增加了CoFe2O4的负载量并加强了催化剂的稳定结构。BNMTs@ CoFe2O4激活PMS后,表现出优异的OTC去除效率和循环稳定性。与H-BN@ CoFe2O4相比,其整体性能优势得到了显着提升。该结果有利于深入了解OTC/AOPs的作用机理,为去除废水中的抗生素提供有效的新型纳米材料。
发明内容
本发明的目的是提供一种氮化硼类材料锚定铁酸钴复合催化剂的制备方法;
本发明的另一个目的是提供该氮化硼类材料锚定铁酸钴复合催化剂在催化降解土霉素中的应用。
一、氮化硼类材料锚定铁酸钴复合催化剂的制备
本发明氮化硼类材料锚定铁酸钴复合催化剂的制备方法,包括以下步骤:
(1)氮化硼纳米管的制备:将硼酸(H3BO3)和三聚氰胺(C3H6N6)溶于去离子水中,加热至80~100℃并搅拌5~6 h,形成无色透明溶液,将其冷却至室温,待白色沉淀析出后进行抽滤并干燥;将得到的白色沉淀在N2氛围下加热至1000~1100℃煅烧2~4 h,得到的白色粉末状产物即为氮化硼纳米管BNMTs。其中,所述硼酸和三聚氰胺的摩尔比为2:1。
(2)氮化硼类材料锚定铁酸钴复合催化剂的制备:将氮化硼纳米管或六方氮化硼(H-BN)、Co(NO32·6H2O和Fe(NO33·9H2O加入去离子水中,搅拌分散均匀,用NaOH和Na2CO3的混合溶液调节pH至10~10.5,超声后在60~70℃下搅拌4~5 h,然后于 140~150℃下水热反应10~12 h,洗涤沉淀,冷冻干燥,得到BNMTs@CFLDH或H-BN@CFLDH;将BNMTs@CFLDH或H-BN@CFLDH在N2保护下,于 500~600℃下煅烧 1~3h ,得到氮化硼类材料锚定铁酸钴复合催化剂BNMTs@CoFe2O4或H-BN@CoFe2O4。其中,所述氮化硼纳米管或六方氮化硼与Co(NO32·6H2O和Fe(NO33·9H2O投加总量的质量比为1:2~1: 4;所述Co(NO32·6H2O和Fe(NO33·9H2O的摩尔比为1:1~4:1;所述冷冻干燥是在-35~-45℃冷冻干燥20~24 h。BNMTs@CoFe2O4合成示意图如图 1 所示。
二、氮化硼类材料锚定铁酸钴复合催化剂的表征
1、微观形貌的表征
图 2为本发明制备材料的SEM 图:(a, b)六方片状H-BN,(c, d) 多孔管状BNMTs,(e, f)H-BN@CoFe2O4,(g, h) BNMTs@CoFe2O4。图2a-2b显示了直径约为230 nm的H-BN的光滑六方薄片形态。BNMTs呈现出粗糙表面和许多不规则孔洞的管状结构(图 2c-2d)。它们的直径基本上在纳米到微米的数量级,这种形貌结构可以促进表面物质的分散和转移。源自于Co-Fe LDH 的CoFe2O4纳米颗粒分别负载在H-BN和BNMTs上。H-BN@CoFe2O4有严重的团聚现象(图 2e-2f)。BNMTs@CoFe2O4仍然具有管状结构,CoFe2O4更均匀地嵌入或沉积在BNMTs的表面(图 2g-2h)。
图 3为本发明制备材料的 TEM 图像:(a, b) 六方片状 H-BN,(c, d) 多孔管状BNMTs,(e) BNMTs的B、N、O、总元素的元素映射;(f) H-BN@CoFe2O4的TEM 图像,(g) BNMTs@CoFe2O4的TEM图像;(h, i) HRTEM图像,(j) B、N、O、C、Co 和 Fe 的元素映射。TEM 图像更清楚地描述了 H-BN 光滑、片状六边形的形貌(图 3a-3b)和具有丰富孔隙的 BNMTs 的管状形貌特征(图 3c-3d)。 BNMTs的元素映射显示 B、N 和 O 均匀分散(图 3e)。图 3f 中的CoFe2O4纳米颗粒堆叠团聚在 H-BN 薄片上。 BNMTs的表面镶嵌着许多小颗粒的CoFe2O4(图3g)。通过HRTEM测量 BNMTs@CoFe2O4,其典型晶格间距为 0.335 nm(图 3h)和 0.254 nm(图3i),分别对应于 BN 的(002)面和CoFe2O4的(311)面。 BNMTs的加入并未影响CoFe2O4的晶体结构。此外,图 3j 显示了 B、N、O、C、Co 和 Fe 元素在 BNMTs@CoFe2O4中的均匀分散。
2、XRD 分析
图4为本发明制备材料的XRD 谱图。XRD 谱揭示了所制备材料的晶体结构。 H-BN和BNMTs的特征衍射峰位于26.7°和41.7°,对应于BN(JCPDS 卡号 45-0896)的(002)和(100)晶面。BNMTs的衍射强度降低,衍射峰变宽,表明可能存在结构缺陷。11.7°、23.6°、34.1°、38.7°、46.3°、59.1°和60.7°的特征衍射峰分别对应了Co-Fe LDH经典的(003)、(006)、(012)、(015)、(018)、(110)和(113)晶面(JCPDS NO.50-0235)。通过高温煅烧使得Co-Fe LDH发生分解,原有结构被破坏。在30.3°,35.4°,43.1°,53.8°,57.0°和62.6°处发现的特征衍射峰可指向尖晶石CoFe2O4的(220),(311),(400),(422),(511)和(440)晶面(JCPDS NO.22-1086)。由于H-BN和BNMTs的结晶度不高,复合材料的衍射峰强度较弱或被覆盖。但这也说明加入H-BN和BNMTs不会影响CoFe2O4的晶型。结合HRTEM结果进一步证明BNMTs@CoFe2O4和H-BN@CoFe2O4的成功制备。
3、FT-IR分析
图5为本发明制备材料的FT-IR谱图。如图 5 所示,在3427-3503 cm-1附近的宽频带是由于样品层间羟基的振动。在1630 cm-1处的吸收峰是由于层间水分子的羟基变形模式。在1380 cm-1和800 cm-1左右发现的特征峰,这分别是由B-N拉伸振动和B-N-B平面外弯曲振动引起的。相比于H-BN,BNMTs在3146 cm-1处还显示了-NH2的特征吸收峰。BNMTs表面的羟基,氨基等官能团更有助于复合催化剂的功能化。此外,在400-800 cm-1范围内观察到的带可以被解释为金属氧(M-O)或金属羟基(M-OH)的晶格振动模式。
4、N2的吸附曲线和孔径分布
图6为本发明制备材料的N2吸附脱附曲线,图7为本发明制备材料的孔径分布。与C-BN(2.41 m2/g)、BNMTs(18.10 m2/g)和C-BN@CoFe2O4(26.70 m2/g)相比,BNMTs@CoFe2O4(107.81 m2/g) 显示出更高的表面积。这也证实了BNMTs可以锚定更多的CoFe2O4,它与CoFe2O4的结合可以有效地增加复合材料的比表面积并提供更多的活性位点。在图6中,BNMTs,H-BN@CoFe2O4和BNMTs@CoFe2O4的N2吸附-解吸等温线符合H3型回滞环的IV 型等温线,说明样品内部都存在介孔。BJH 孔径分布曲线证实制备的材料大部分为2-20 nm的介孔(图 7)。BNMTs@CoFe2O4在 53.57 nm、87.70 nm、103.08 nm 和 123.27 nm处具有大孔特性,它的孔体积也明显增大。基于上述结果,BNMTs@CoFe2O4具有更大的表面积和丰富的孔隙结构。这有利于污染物的转移和扩散,使得活性位点发挥更大活化PMS的效用,为高效降解OTC提供重要的优势。
5、XPS 分析
图 8为H-BN、BNMT、H-BN@CoFe2O4和BNMTs@CoFe2O4的XPS光谱。其中,H-BN 和BNMTs 的 XPS 光谱:(a)总谱,(b)B 1s,(c)N 1s;H-BN@CoFe2O4和 BNMTs@CoFe2O4的 XPS光谱:(d)总谱,(e)B 1s,(f) N 1s。从图中8a 和 8e可以看出,与H-BN(16.8%)相比,BNMTs的氧含量(39.4%)明显更高。H-BN@CoFe2O4的氧含量从16.8% 增加到28.8%,表明在CoFe2O4形成过程中,Co和Fe可能与空气中的氧发生反应。BNMTs@CoFe2O4的氧含量从 39.4% 下降到22.7%,但其 Co 和 Fe 含量达到了 H-BN@CoFe2O4的两倍左右。这表明 Co 和 Fe 主要与BNMTs上的氧反应,这有效地增加了CoFe2O4的负载量。
与 H-BN 相比,BNMTs在B 1s光谱中具有B-O键(图 8b)。 H-BN@CoFe2O4的B-N/N-B键的结合能降低。结果表明,B-N/N-B 键与CoFe2O4之间存在相互作用,CoFe2O4失去了电子(图 8b、8c、8f、8g)。在 N 1s 光谱中,H-BN 的 N-B 键为 398.3 eV,BNMT 的 N-B 键的结合能降低到 398.1 eV(图 8c)。证明N原子周围的电子密度增加,B原子可能存在缺陷空位。这也使得BNMTs与H-BN相比具有多变的表面电子结构和丰富的活性位点。BNMTs@CoFe2O4的N-B 键没有移动,并未起到主要连接CoFe2O4的作用(图 8c、8g)。在 O 1s 光谱中,530-531eV 附近的峰是典型的金属氧键(Co-O/Fe-O),532.5 eV 附近的峰是 O-B键(图 8d、8h)。BNMTs@CoFe2O4的O-B键向低结合能方向的偏移表明氧原子附近的电子密度增加,进一步证明氧元素在固定CoFe2O4方面起到主要作用。
三、氮化硼类材料锚定铁酸钴复合催化剂对OTC的催化降解
降解实验均在室温下(25℃)100 mL的锥形瓶中,以250 rpm在恒温摇床中震荡进行。本发明考虑了pH、PMS浓度、催化剂剂量,OTC的初始浓度和无机阴离子和腐植酸对OTC降解的影响。在典型的OTC反应中,OTC的初始浓度和体积为20 mg/L和50 ml,催化剂和PMS为0.4 g/L,初始pH为6.68。pH值用盐酸(0.1 M)和氢氧化钠(0.1 M)溶液调整。反应过程中每5min从反应溶液中用5 mL的注射器提取约2 mL的分析样品,然后通过0.22 μm的PES过滤器进行过滤。紫外可见分光光度计(UV-Vis,UV1901PCs)在355 nm处立即分析OTC的浓度。为了评价BNMTs@CoFe2O4的可重复性,采用磁分离法收集催化剂,每次使用后用超纯水将催化剂洗涤几次。高分辨率等离子体发射光谱仪(ICP-OES,Plasma QuantPQ9000)用来近距离观察物种的溶出情况。为了进一步检测所产生的活性物质,我们使用5, 5-二甲基-1-吡咯酸n-氧化物(DMPO)作为自旋陷阱,在OTC氧化过程中进行电子顺磁共振(EPR)测试。同时,分别利用甲醇(MeOH)和叔丁醇(TBA)作为·OH和SO4 •-清除剂,进行了猝灭实验,研究催化机理。
OTC降解率计算公式:
其中R t 表示OTC的降解率,C 0 C t 分别表示OTC的初始浓度值和特定时间的浓度值,C 0 C t 的单位(mg/L)。
采用高效液相色谱-质谱法(HPLC-MS Orbitrap Fusion Lumos)测定了OTC的降解中间产物。流动相由乙腈和超纯水(0.05%氨)组成,流量为0.4 mL min-1,比例为95:5(min/v),HPLC分析的样品注入体积为20 μL。
COD去除率的计算方法如下:
T 0 (COD)T t (COD)分别表示OTC的初始COD浓度和t时间处OTC的COD浓度。
1、不同催化剂的催化活性对比
图 9为不同反应体系对 OTC 的降解(a)和OTC 降解的一级动力学速率常数(b)。反应参数:[OTC] = 20mg/L,[PMS] = 0.4 mg/L,[催化剂]= 0.4 mg/L,[初始 pH] = 6.68,[T]= 25℃。如图9a-9b所示,当仅添加PMS、C-BN、BNMTs、C-BN@CoFe2O4和 BNMTs@CoFe2O4时,OTC无法快速高效的降解。与C-BN@CoFe2O4(64.6%,k=0.0177 min-1)和BNMTs@CoFe2O4(74.2%,k=0.0145 min-1)相比,C-BN@CoFe2O4/PMS和BNMTs@CoFe2O4/PMS体系可以在30 min内分别去除89.4% (k=0.0085 min-1)和95.8% (K =0.0224 min-1)的OTC。特别的是,BNMTs@CoFe2O4/PMS体系仅在5 min内快速有效地降解92.7%的OTC。这说明BNMTs@CoFe2O4可以利用其丰富的孔隙结构和高CoFe2O4负载量来提供更多的活性位点并有效地富集污染物。PMS的加入带来了更多的活性自由基,加速了电子转移,发挥了更大程度地催化作用。与不同催化体系去除OTC的优势相比,BNMTs@CoFe2O4体系具有较优异的性能优势(表 S1)。
表中的参考文献为:
[12] Ultrasound-assistedsynthesized BiFeO3as FeOH+promoted peroxymonosulfateactivator for highly efficient degradation of tetracycline, J. Alloy.Compd.854 (2021) 157281. https://doi.org/10.1016/j.jallcom.2020.157281.
[14] Oxidativedegradation of the antibiotic oxytetracycline by Cu@Fe3O4core-shell nanoparticles, Sci. Total. Environ. 631–632 (2018) 608–618.https://doi.org/10.1016/j.scitotenv.2018.03.067.
[25] Core-shell Zn/CoMOFs derived Co3O4/CNTs as an efficient magneticheterogeneous catalyst for persulfate activation and oxytetracyclinedegradation,Chem. Eng. J. 387 (2020) 124008. https://doi.org/10.1016/j.cej.2019.124008.
[45] CoMn2O4nanoparticles embed in graphene oxide aerogel with three-dimensional networkfor practical application prospects of oxytetracyclinedegradation, Sep. Purif. Technol. 259 (2021) 118179. https://doi.org/10.1016/j.seppur.2020.118179.
[47] Visiblelights-assisted NGO-Fe3O4composite activated peroxydisulfateFor degradation of oxytetracycline, Water Sci Technol. (2020)164. https://sci-hub.ren/10.2166/wst.2020.164.
[48] Catalyticdegradation of oxytetracycline via FeVO4nanorodsactivating PMS and the insights into the performance and mechanism, J.Environ. Chem. Eng. 9(2021) 105864. https://doi.org/10.1016/j.jece.2021.105864.
2、不同因素对催化活性的影响
溶液的初始pH值对于体系中自由基的产生以及催化剂的表面电荷性能都有一定的影响。图10a 说明BNMTs@CoFe2O4/PMS体系有较宽的pH适用范围,在较低的pH条件下,PMS激活后产生的SO4 •-和·OH被H+竞争(Eqs.(1-1)-(1-3))。活性基团的减少导致了OTC降解效率的降低。而在pH值较高的条件下,碱性环境使得M(III)被还原为M(II),抑制了自由基的产生并阻碍了OTC的去除(Eqs.(1-4)-(1-5))。在弱酸或者中性条件下,OTC的降解效率达到最佳。为简便操作,后续操作对于反应体系不做酸碱性调整。
在BNMTs@CoFe2O4(0.4g/L)和OTC(20mg/L)下,评估了不同PMS的投加量(0.1-0.5g/L)对于OTC去除的影响(图10b)。PMS投加量从0.1 g/L增加到0.5 g/L,OTC的去除解效率在30min内从73%上升到96.8%。当加入0.4g/L和0.5g/L的PMS时,OTC的降解效率变化不大。这说明PMS的量与催化剂的量达到平衡时,SO4 •-会自发进行反应 (Eqs. (1-6)-(1-7))。
BNMTs@CoFe2O4的用量(0.1-0.5g/L)如图所示(图10c),当催化剂从0.1 g/L增加到0.5g/L,OTC(20 mg/L)的去除效率从88.5%增加至96%左右。高催化剂剂量有利于提高OTC去除效率,这可以给予更多活性物种和活性位点。但为节约成本,选定投加0.4 g/L的催化剂。
在BNMTs@CoFe2O4(0.4 g/L)和PMS(0.4 g/L)的条件下,探究OTC的初始浓度(10-30mg/L)对降解效果的影响。当OTC的浓度为10 mg/L,20 mg/L和30 mg/L时,30 min内可分别去除98%,95.8%和84.4%的OTC(图10d)。这说明过量的OTC分子会去竞争活性基团,从而导致降解效率降低。
3、无机阴离子和HA对降解效果的影响
在实际废水的处理中,水中的无机阴离子和大分子物质对污染物的降解有影响。探讨了不同浓度的Cl-、HCO3 -、NO3 -和HPO4 2-对BNMTs@CoFe2O4/PMS系统中OTC降解效率的影响。当添加 10 mM 的Cl-、HCO3 -、NO3 -和HPO4 2-(图 11a)时,高活性的SO4 •-和·OH将被淬灭(方程式(1-8)-(1-15))。低活性物质的形成阻碍了 OTC 的降解。这种抑制效果是:HCO3 -(28.1%)>HPO4 2-(61.9%)>Cl-(81.2%)>NO3 -(84.8%)。
图 11b 讨论了在不同 pH 条件下添加不同量的 HA 对 OTC 降解的影响。显然,HA的存在抑制了OTC的氧化并降低其降解效率。一般来说,HA 充当金属螯合剂和各种容器官能团用以结合活性位点。随着 pH 值的变化,可能会导致 HA 和 BNMTs@CoFe2O4之间相互排斥。此外,HA还可能堵塞催化剂表面的孔隙,降低活性成分之间相互接触的可能性。
4、催化剂的可重复利用性和稳定性
图12为BNMTs@CoFe2O4和H-BN@CoFe2O4的 VSM 表征(a),H-BN@CoFe2O4/PMS和BNMTs@CoFe2O4/PMS体系循环5次的OTC去除效率(b),每次使用后溶液中 Co 和 Fe 的损失含量(c), BNMTs@CoFe2O4循环 5 次 OTC 的 COD 去除率(d); 反应参数:[OTC] = 20mg/L,[PMS] = 0.4 mg/L,[催化剂]= 0.4 mg/L,[初始 pH] = 6.68,[T]= 25℃。
催化剂的稳定性和可重复利用性直接关系到它自身的实际应用价值。图12a 说明外加磁场可以很好地从溶液中将催化剂分离出来。BNMTs@CoFe2O4(19.64 emu/g)的饱和磁化强度大于H-BN@CoFe2O4(19.64 emu/g)。图 12b说明经过5次循环,BNMTs@CoFe2O4/PMS体系在30 min内仍然能够降解87.6%的OTC,这说明催化剂具有优异的稳定性和重复使用性。H-BN@CoFe2O4/PMS 在 5 个循环后也可以达到 70% 以上的 OTC 去除率。我们清洗了催化剂并分析了循环实验中的物质损失。图 12c的ICP测试说明随着循环次数的增加,钴和铁的浸出值均低于1.0 mg/L,满足污水排放标准(GB 25487-2010)。除此之外,BNMTs@CoFe2O4/PMS体系运行一次能达到90%以上的COD去除效率,5次循环也仍然能达到70%以上的COD去除效率(图12d)。因为随着实验次数的增加,催化剂表面的活性成分会产生不同程度地流失。OTC降解过程中产生的一些中间产物也可能会堵塞催化剂表面的活性位点,导致整体催化性能下降。
四、降解机理研究
1、降解后催化剂的形貌变化
为了进一步确定催化剂在反应过程中的稳定性,我们收集催化降解OTC后的催化剂进行了结构测试。BNMTs@CoFe2O4依然保持多孔管状结构(图13a-13b)。CoFe2O4依旧呈规则状均匀分散在BNMTs上(图13c-13d)。H-BN@CoFe2O4也呈片状堆叠形态(图14a)。BNMTs@CoFe2O4和H-BN@CoFe2O4完成降解OTC后的XRD谱图与降解前完全一致(图 14b)。因此,可以确定它们的形貌结构相对稳定,具有实际应用的潜力。
2、BNMTs@CoFe2O4降解OTC前后的XPS光谱对照
XPS用于探索BNMTs@CoFe2O4降解前后表面元素的价态变化。图13e 显示了 C 1s、O1s、B 1s、N 1s、Co 2p、Fe 2p 同时存在于 BNMTs@CoFe2O4中的情况。C 1s在284.7,286.3和288.4 eV被解开分成三个峰,分别对应于sp2-有界碳(C=C),sp3-杂交碳(C-N,C-O)和sp2-杂交碳(N-C=N)。N 1s的高分辨率XPS谱分解为吡啶-N(398.2 eV),吡咯-N(399.2 eV)和石墨烯骨架中四元-N(400.3 eV)(图15b)。丰富的碳-氮结构可以通过与金属的协同作用产生杂化电子态,从而改善催化性能。B 1s的峰B-N(190.3 eV)和B-O(191.6 eV)组成(图15c)。530.0-531.0 eV左右的峰属于典型的金属氧(Co-O/Fe-O)或者不同化学状态的金属氧(图15d)。BNMTs@CoFe2O4的精细扫描图Co 2p光谱中783.3 eV/798.3 eV和780.9 eV/796.5 eV的峰值可以分配给CO2+(2p3/2/2p1/2)和CO3+(2p3/2/2p1/2),还有787.0eV和804.0 eV的卫星峰(图15e)。Fe 2p 光谱的峰值710.8/724.8 eV 分配给 Fe2+(2p3/2/2p1/2),712.9/727.0 eV则分配给Fe3+(2p3/2/2p1/2)。718.1 eV处存在卫星峰(图15f)。XPS光谱在反应前后基本没有太大变化,证明催化剂具有良好的稳定性。部分电荷转移使催化剂中的电子密度重新分布并重复其配位结构,促进了氧化能力并增强了其活性。
3、自由基猝灭试验和EPR光谱
图 16a 研究了 MeOH 和 TBA 对 OTC 降解过程中自由基消灭的影响。这用于确定在反应过程中起主导作用的自由基的类型。当加入1 M EeOH和 1 M TBA时,OTC的降解效率仅为62.3%和79.2%,SO4 •-和·OH分别被清除。OTC的降解速度明显减慢,这说明SO4 •-和·OH都参与了 OTC 的降解并且SO4 •-的作用较为突出。通过EPR 测试监测短寿命的自由基,DMPO作为一种常用的自由基清除剂,可以稳定系统中的这些自由基。图 16b 的EPR谱图中,加入BNMTs@CoFe2O4/PMS/DMPO后,DMPO-SO4 •-和DMPO-·OH被检测到。这也进一步证实了BNMTs@CoFe2O4/PMS对OTC催化降解的机制的合理性。
4 、OTC的降解途径
通过 HPLC-MS 鉴定了BNMTs@CoFe2O4/PMS体系中生成的 OTC 的中间产物(图17)。根据结果分析并结合相关文献,总结出OTC可能存在三条降解途径,包括脱甲基化,脱氢,羟基化和脱碳(图18)。OTC通过脱氨基(途径1)转化成m/z 445的中间体,然后-NH2,-CH3,-OH和-CHO被破坏形成芳香族降解产物m/z 320。OTC受到SO4 •-和·OH的攻击而形成羟基化产物(途径2),随后脱甲胺,酰胺和羟基基团变为m/z 370的碎片。OTC环结构的-CO被破坏从而脱碳(途径3),导致了副产品m/z 433的形成。产物m/z 418像是SO4 •-攻击OTC产生的双自由基中间体,再次脱水后的副产物为m/z 410。最后,碎片化的小分子(m/z 279,m/z272,m/z 242,m/z 240,m/z 144)继续分解为CO2,H2O和NH4 +
5 、催化反应体系存在的降解机理分析
BNMTs@CoFe2O4活化PMS对于OTC的氧化降解机制如图19所示。CoFe2O4密集地负载在具有丰富孔隙和大比表面积的管状 BNMTs上,这有利于大量活性物质的转移和扩散。BNMTs@CoFe2O4激活 PMS,引起 Co 和 Fe 离子之间的电子迁移,实现价态转换,HSO5 -衍生的电子被激活,产生SO4 •-和·OH(Eqs. (1-16)-(1-18))。BNMTs 的框架被设计与CoFe2O4紧密交联以保护活性位点的损失。SO4 •-和·OH攻击并破坏OTC的结构,形成中间产物,通过自由基氧化进一步矿化成CO2和H2O。结合EPR结果和文献,我们可以推断后续机制反应 (Eqs.(1-19)-(1-20)).
综上所述,本发明采用共沉淀和水热法制备了氮化硼类材料锚定铁酸钴复合催化剂BNMTs@CoFe2O4和H-BN@CoFe2O4。基于活化PMS的高级氧化工艺将复合催化剂用于对OTC的降解,H-BN@CoFe2O4/PMS和BNMTs@CoFe2O4/PMS体系对OTC均展现出良好的降解性能和循环稳定性。BNMTs@CoFe2O4由于具有丰富介孔和含氧基团,不仅可以更高效地固定CoFe2O4纳米粒子,而且还增加了比表面积并保护了活性位点的损失,对于土霉素的降解性能更为优异。BNMTs@CoFe2O4/PMS体系在5 min内降解了 92.7%的OTC(20 mg/L),在 5 个循环后也能去除87.6% 的OTC(20 mg/L)。优异的催化效果归因于PMS被BNMTs@CoFe2O4激活产生硫酸盐自由基(SO4 •-)和羟基自由基(·OH),SO4 •-和·OH进一步高效攻击目标污染物OTC。本发明为BN类材料作为载体构建异质PMS催化剂应用于环境修复提供了新的见解。
附图说明
图 1为BNMTs@CoFe2O4合成示意图。
图 2为本发明制备材料的SEM 图:(a, b)六方片状H-BN,(c, d)多孔管状BNMTs,(e, f)H-BN@CoFe2O4,(g, h)BNMTs@CoFe2O4
图 3为本发明制备材料的 TEM 图像:(a, b) 六方片状 H-BN,(c, d)多孔管状BNMTs,(e)BNMTs的B、N、O、总元素的元素映射;(f)H-BN@CoFe2O4的TEM图像,(g) BNMTs@CoFe2O4的TEM图像;(h, i)HRTEM图像,(j)B、N、O、C、Co 和 Fe 的元素映射。
图4为本发明制备材料的XRD谱图。
图5为本发明制备材料的FT-IR谱图。
图6为本发明制备材料的N2吸附脱附曲线。
图7为本发明制备材料的孔径分布。
图 8为H-BN、BNMT、H-BN@CoFe2O4和BNMTs@CoFe2O4的XPS光谱。
图 9为不同反应体系对OTC的降解(a)和OTC降解的一级动力学速率常数(b)。
图 10为不同条件对OTC去除率的影响:(a)初始溶液pH,(b)PMS 浓度,(c)BNMTs@CoFe2O4的用量,(d)初始的OTC浓度;反应参数:[OTC] = 20mg/L,[PMS] = 0.4 mg/L,[催化剂]= 0.4 mg/L,[初始 pH] = 6.68,[T]= 25℃。
图 11为水中共存阴离子对OTC降解的影响(a)和HA对OTC降解的影响(b);反应参数:[OTC] = 20mg/L,[PMS] = 0.4 mg/L,[催化剂]= 0.4 mg/L,[初始 pH] = 6.68,[T]=25℃。
图12为BNMTs@CoFe2O4和H-BN@CoFe2O4的 VSM 表征(a),H-BN@CoFe2O4/PMS和BNMTs@CoFe2O4/PMS体系循环5次的OTC去除效率(b),每次使用后溶液中Co和Fe的损失量(c),BNMTs@CoFe2O4循环5次OTC的COD去除率(d)。
图 13为BNMTs@CoFe2O4催化降解OTC后的 SEM 图像(a, b),BNMTs@CoFe2O4催化降解OTC后的TEM 图像(c, d)以及BNMTs@CoFe2O4催化降解OTC前后的XPS总光谱(e)。
图 14为H-BN@CoFe2O4催化降解OTC后的SEM 图像(a),H-BN@CoFe2O4和 BNMTs@CoFe2O4催化降解OTC后的 XRD谱(b)。
图 15为BNMTs@CoFe2O4催化前和催化后的XPS光谱:(a)C 1s, (b)N 1s, (c)B 1s,(d)O 1s, (e)Co 2p, (f)Fe 2p。
图 16 为自由基清除剂对BNMTs@CoFe2O4中OTC降解的影响(a),在DMPO存在下从BNMTs@CoFe2O4/PMS 系统获得的EPR光谱(b)。
图17为BNMTs@CoFe2O4/PMS体系降解OTC的主要产物的HPLC-MS谱图。
图 18为BNMTs@CoFe2O4/PMS体系中OTC可能存在的降解途径。
图19为BNMTs@CoFe2O4/PMS体系去除OTC的潜在降解机制示意图。
具体实施方式
下面通过具体实例对本发明氮化硼类材料锚定铁酸钴复合催化剂的制备做进一步说明。
本发明所用试剂如下:
土霉素(OTC,98%)和六方氮化硼(H-BN)购自于上海麦克林生化科技有限公司。过氧单硫酸盐(2KHSO4·K2SO4·KHSO5,PMS,98%)购买于武汉朋和科技有限公司。三聚氰胺(C3H6N6,99%)和九水硝酸铁(Fe(NO33·9H2O,98%)购于上海阿拉丁生化科技有限公司。硼酸(H3BO3,98%),六水合硝酸钴(Co(NO32·6H2O,98%)和无水碳酸钠(Na2CO3,99.5%)购于西陇科学股份有限公司。氢氧化钠(NaOH,99%)购于成都市科龙化工试剂厂。所有实验均采用超纯水。
实施例1
(1)BNMTs的制备:
将H3BO3(2 mmol)和C3H6N6(1 mmol)溶于离子水中。通过油浴加热至90℃并辅助搅拌6 h,形成无色透明溶液。将其冷却至室温,待白色沉淀析出后进行抽滤并干燥。管式炉反复抽真空,然后将上述白色沉淀在N2氛围下加热至1000℃并煅烧3 h,得到的白色粉末状产物即为BNMTs。
(2)BNMTs@CoFe2O4的制备:
在100 mL的去离子水中加入0.5 g BNMTs,2 mmol Co(NO32·6H2O和1 mmol Fe(NO33·9H2O搅拌30min使其均匀分散。用NaOH和Na2CO3的混合溶液调节上述溶液pH在10到10.5。它超声30 min后在65℃下搅拌4 h,趁热转入高压反应釜在140℃下反应12 h。然后用乙醇和去离子水反复清洗沉淀,-40℃冷冻干燥24 h。所得产物为BNMTs@CFLDH;将BNMTs@CFLDH在N2保护下于500℃的管式炉中煅烧2 h得到BNMTs@CoFe2O4
实施例2 H-BN@CoFe2O4的制备
在100 mL的去离子水中加入0.5 g H-BN,2 mmol Co(NO32·6H2O和1 mmol Fe(NO33·9H2O搅拌30min使其均匀分散。用NaOH和Na2CO3的混合溶液调节上述溶液pH在10到10.5。它超声30 min后在65℃下搅拌4 h,趁热转入高压反应釜在140℃下反应12 h。然后用乙醇和去离子水反复清洗沉淀,-40℃冷冻干燥24 h,所得产物为H-BN@CFLDH。将H-BN@CFLDH在N2保护下于 500℃的管式炉中煅烧 2 h 得到H-BN@CoFe2O4

Claims (5)

1.一种氮化硼类材料锚定铁酸钴复合催化剂在催化降解土霉素中的应用,其特征在于:在土霉素溶液中加入氮化硼类材料锚定铁酸钴复合催化剂和过氧单硫酸盐,氮化硼类材料锚定铁酸钴复合催化剂激活过氧单硫酸盐对土霉素进行降解;
氮化硼类材料锚定铁酸钴复合催化剂的制备方法,包括以下步骤:
(1)氮化硼纳米管的制备:将硼酸和三聚氰胺溶于去离子水中,加热至80~100℃并搅拌5~6 h,形成无色透明溶液,将其冷却至室温,待白色沉淀析出后进行抽滤并干燥;将得到的白色沉淀在N2氛围下加热至1000~1100℃煅烧2~4 h,得到的白色粉末状产物即为氮化硼纳米管BNMTs;
(2)氮化硼类材料锚定铁酸钴复合催化剂的制备:将氮化硼纳米管、Co(NO32·6H2O和Fe(NO33·9H2O加入去离子水中,搅拌分散均匀,用NaOH和Na2CO3的混合溶液调节pH至10~10.5,超声后在60~70℃下搅拌4~5 h,然后于 140~150℃下水热反应10~12 h,洗涤沉淀,冷冻干燥,得到BNMTs@CFLDH;将BNMTs@CFLDH在N2保护下,于 500~600℃下煅烧 1~3h ,得到氮化硼类材料锚定铁酸钴复合催化剂BNMTs@CoFe2O4;BNMTs@CoFe2O4中,氧元素在固定CoFe2O4方面起到主要作用。
2.根据权利要求1所述一种氮化硼类材料锚定铁酸钴复合催化剂在催化降解土霉素中的应用,其特征在于:步骤(1)中,所述硼酸和三聚氰胺的摩尔比为2:1。
3.根据权利要求1所述一种氮化硼类材料锚定铁酸钴复合催化剂在催化降解土霉素中的应用,其特征在于:步骤(2)中,所述氮化硼纳米管与Co(NO32·6H2O和Fe(NO33·9H2O投加总量的质量比为1:2~1: 4。
4.根据权利要求1所述一种氮化硼类材料锚定铁酸钴复合催化剂在催化降解土霉素中的应用,其特征在于:步骤(2)中,所述Co(NO32·6H2O和Fe(NO33·9H2O的摩尔比为1:1~4:1。
5.根据权利要求1所述一种氮化硼类材料锚定铁酸钴复合催化剂在催化降解土霉素中的应用,其特征在于:步骤(2)中,所述冷冻干燥是在-35~-45℃冷冻干燥20~24 h。
CN202210005053.7A 2022-01-05 2022-01-05 一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用 Active CN114471654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210005053.7A CN114471654B (zh) 2022-01-05 2022-01-05 一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210005053.7A CN114471654B (zh) 2022-01-05 2022-01-05 一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用

Publications (2)

Publication Number Publication Date
CN114471654A CN114471654A (zh) 2022-05-13
CN114471654B true CN114471654B (zh) 2024-03-29

Family

ID=81510463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210005053.7A Active CN114471654B (zh) 2022-01-05 2022-01-05 一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用

Country Status (1)

Country Link
CN (1) CN114471654B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870882B (zh) * 2022-06-13 2023-06-23 齐齐哈尔大学 一种基于微波快速活化过氧乙酸氧化降解抗生素废水催化剂及其制备和应用方法
CN115532264A (zh) * 2022-09-29 2022-12-30 兰州大学 一种复合型催化剂及其制备方法和在降解四环素中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189547A (ja) * 2002-12-11 2004-07-08 National Institute For Materials Science 水素吸蔵用材料としての窒化ホウ素(bn)ナノチューブとその製造方法
CN110102303A (zh) * 2019-04-25 2019-08-09 浙江大学 一种负载铁酸钴石墨烯气凝胶催化剂及其制备方法
CN110548514A (zh) * 2019-08-07 2019-12-10 广东工业大学 一种具有丰富氧空位的分级多孔钴/铁双金属氧化物纳米片催化剂及其制备方法和应用
CN111111741A (zh) * 2020-01-20 2020-05-08 湖南金旅环保股份有限公司 一种多孔氮化硼负载铁纳米材料及其制备方法与应用
CN112121798A (zh) * 2020-09-16 2020-12-25 中国科学院城市环境研究所 MIL-101(Fe/Co)衍生磁性铁酸钴催化降解水中氯霉素的方法及应用
CN112280248A (zh) * 2020-10-31 2021-01-29 嘉兴学院 一种铁酸钴/氮化硼/环氧树脂导热材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189547A (ja) * 2002-12-11 2004-07-08 National Institute For Materials Science 水素吸蔵用材料としての窒化ホウ素(bn)ナノチューブとその製造方法
CN110102303A (zh) * 2019-04-25 2019-08-09 浙江大学 一种负载铁酸钴石墨烯气凝胶催化剂及其制备方法
CN110548514A (zh) * 2019-08-07 2019-12-10 广东工业大学 一种具有丰富氧空位的分级多孔钴/铁双金属氧化物纳米片催化剂及其制备方法和应用
CN111111741A (zh) * 2020-01-20 2020-05-08 湖南金旅环保股份有限公司 一种多孔氮化硼负载铁纳米材料及其制备方法与应用
CN112121798A (zh) * 2020-09-16 2020-12-25 中国科学院城市环境研究所 MIL-101(Fe/Co)衍生磁性铁酸钴催化降解水中氯霉素的方法及应用
CN112280248A (zh) * 2020-10-31 2021-01-29 嘉兴学院 一种铁酸钴/氮化硼/环氧树脂导热材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Copper ferrite anchored on hexagonal boron nitride as peroxymonosulfate activator for ciprofloxacin removal;Zheng-Yi Choong et al.;《Materials Letters》;第285卷;第1-2页和Supplementary Information 第2-3页 *

Also Published As

Publication number Publication date
CN114471654A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Wang et al. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption
Cai et al. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull
Ho et al. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal
Luo et al. Hydrothermal carbonization of sewage sludge and in-situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb (II)
Yu et al. Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications
Zhang et al. Ultrathin gC 3 N 4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation
Zhang et al. Mechanism investigation of anoxic Cr (VI) removal by nano zero-valent iron based on XPS analysis in time scale
Karthikeyan et al. Mechanistic performance of polyaniline-substituted hexagonal boron nitride composite as a highly efficient adsorbent for the removal of phosphate, nitrate, and hexavalent chromium ions from an aqueous environment
Wang et al. Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb (II)
Lv et al. Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U (VI)
Chen et al. Simple hydrothermal synthesis of magnetic MnFe2O4-sludge biochar composites for removal of aqueous Pb2+
Li et al. Hierarchically porous MoS2/CoAl-LDH/HCF with synergistic adsorption-photocatalytic performance under visible light irradiation
Li et al. Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation
Feng et al. Cu-Doped Fe@ Fe 2 O 3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater
Deng et al. Synthesis of magnetic CoFe 2 O 4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B
Zhao et al. Seaweed-derived multifunctional nitrogen/cobalt-codoped carbonaceous beads for relatively high-efficient peroxymonosulfate activation for organic pollutants degradation
CN114471654B (zh) 一种氮化硼类材料锚定铁酸钴复合催化剂的制备及在催化降解土霉素中应用
Wang et al. Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal
Chen et al. La (OH) 3-modified magnetic CoFe2O4 nanocomposites: a novel adsorbent with highly efficient activity and reusability for phosphate removal
Yan et al. Construction of 3D/2D ZnFe2O4/g-C3N4 S-scheme heterojunction for efficient photo-Fenton degradation of tetracycline hydrochloride
Wang et al. Dual functional sites strategies toward enhanced heavy metal remediation: Interlayer expanded Mg-Al layered double hydroxide by intercalation with L-cysteine
CN114425340B (zh) 一种生物炭修饰钴铁双金属复合催化剂的制备及在催化降解四环素中应用
Shi et al. A novel heat-treated humic acid/MgAl-layered double hydroxide composite for efficient removal of cadmium: Fabrication, performance and mechanisms
Qu et al. Green synthesis of magnetic adsorbent using groundwater treatment sludge for tetracycline adsorption
Zainol et al. Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant