CN114471520B - 一种zif-8基多孔碳材料及其制备方法和应用 - Google Patents

一种zif-8基多孔碳材料及其制备方法和应用 Download PDF

Info

Publication number
CN114471520B
CN114471520B CN202210132390.2A CN202210132390A CN114471520B CN 114471520 B CN114471520 B CN 114471520B CN 202210132390 A CN202210132390 A CN 202210132390A CN 114471520 B CN114471520 B CN 114471520B
Authority
CN
China
Prior art keywords
zif
porous carbon
based porous
carbon material
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210132390.2A
Other languages
English (en)
Other versions
CN114471520A (zh
Inventor
于馨凝
许德军
姜欣彤
张军
倪章松
王茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Fluid Power Innovation Center
Original Assignee
Chengdu Fluid Power Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Fluid Power Innovation Center filed Critical Chengdu Fluid Power Innovation Center
Priority to CN202210132390.2A priority Critical patent/CN114471520B/zh
Publication of CN114471520A publication Critical patent/CN114471520A/zh
Application granted granted Critical
Publication of CN114471520B publication Critical patent/CN114471520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于环境催化材料技术领域,公开了一种ZIF‑8基多孔碳材料及其制备方法和应用,所述ZIF‑8基多孔碳材料以原位负载金属盐的ZIF‑8材料为原料,通过热解自活化的方法制备得到,其光谱吸收范围拓展至可见光波段,吸附‑光催化降解亚甲基蓝的效率达到90%以上,可应用于吸附‑光催化降解有机污染物领域。本发明提出的制备方法工艺简单、环保性能好,无需额外添加活化剂,利用热解产物的活化作用和负载金属盐在热解过程中的催化作用,构筑微孔‑介孔多级孔隙结构,在吸附‑光催化降解有机污染物领域具有良好的应用前景。

Description

一种ZIF-8基多孔碳材料及其制备方法和应用
技术领域
本发明涉及环境催化材料技术领域,具体涉及一种ZIF-8基多孔碳材料及其制备方法和应用。
背景技术
随着社会经济的发展,环境问题逐渐成为人类不可回避的现实问题,以环境保护为目的的催化化学在解决环境污染问题中起到重要的作用。光催化是最有前景的催化化学技术之一,在环境修复领域应用广泛。光催化材料作为光催化领域的核心,也引起了人们的广泛关注。通常来讲,光催化材料需要具有无毒、热稳定性、化学稳定性好等特点,同时具有较高的光吸收能力和光生载流子分离效率,从而实现较好的光催化效果。
ZIFs即沸石咪唑酯骨架结构材料,是由有机咪唑酯交联连接到金属离子中心上形成的四面体框架多孔晶体材料。ZIFs作为一种新型的MOFs(金属-有机骨架)材料,既具有无机沸石材料的高稳定特性,也具有MOFs材料的高孔隙率和结构可调特性,这些特点有利于其在高效催化和分离过程等领域中的应用。在ZIFs系列材料中,ZIF-8由咪唑酯配体与Zn2+中心通过配位作用形成,广泛应用于光电、传感、吸附、气体储存与分离等领域。但由于ZIF-8的带隙能量较宽、光谱吸收范围窄,只能在紫外光波段激发,而紫外光能量仅占太阳光的5%,因此在实际应用中受到极大的限制。
通过在惰性气氛下进行高温碳化,可以得到纳米碳包裹ZnO的ZIF-8基多孔碳材料。在《ZIF-8基多孔碳的制备及吸附性能》(王春宇,张晶等.ZIF-8基多孔碳的制备及吸附性能.化工进展,2017,36(1):299-303)一文中报道了通过高温碳化使ZIF-8转化为ZnO-C复合多孔材料,并指出将ZIF-8置于氮气氛围中煅烧,当煅烧温度达到800℃以上时会形成多孔碳,且煅烧温度越高,煅烧样品的比表面积越高,多孔碳中介孔和大孔所占比例越大,1000℃碳化所形成的多孔碳的亚甲基蓝脱除效果优于市售的活性炭,主要与高的表面积及多的介孔及大孔相关。因此采用高温条件下直接碳化的方法,要想达到较好的光催化降解效果,需要较高的煅烧温度(至少1000℃),制备所需能耗较高。
发明内容
有鉴于此,针对目前直接高温碳化方式制备得到的ZIF-8基多孔碳材料的不足,本发明提供了一种新的ZIF-8基多孔碳材料及其制备方法,解决了现有ZIF-8基多孔碳材料存在的高温碳化反应能耗高的问题并将ZIF-8基多孔碳材料的光谱响应波段拓展至可见光范围,同时提供了该材料在吸附-光催化降解有机污染物领域中的应用,提供了一种效果优异的光催化材料。
为解决以上技术问题,本发明的技术方案首先提供了一种ZIF-8基多孔碳材料,它是以原位负载金属盐的ZIF-8材料为原料,通过热解自活化的方法制备得到,所述ZIF-8基多孔碳材料具有微孔-介孔多级孔隙结构;其中,所述原位负载金属盐的ZIF-8材料通过将金属盐溶解在含有锌前驱体和有机配体的甲醇溶液中,采用溶剂热合成的方法制备得到。
通过上述制备方法得到的ZIF-8基多孔碳材料的微孔-介孔多级孔隙结构的所述微孔与所述介孔的比例为70%~80%:30%~20%,比表面积≥600m2/g,光谱响应波段可拓展至400~700nm的可见光范围,从而拓展了ZIF-8基多孔碳材料作为光催化材料的吸收光谱范围,提升了多孔碳材料的吸附-光催化反应性能。
然后,本发明还提供了一种ZIF-8基多孔碳材料的制备方法的技术方案,它具体包括下述步骤:
(1)制备负载金属盐的ZIF-8材料:
将锌前驱体溶解在甲醇中,配置成浓度为0.15~0.3mol/L的溶液,然后加入金属盐和2-甲基咪唑并搅拌溶解得混合溶液,搅拌1~6h后将混合溶液转移至高压反应釜中,在90~130℃的温度下保持1~12h,自然冷却至室温后进行洗涤、离心分离和干燥,得到负载金属盐的ZIF-8材料;其中,金属盐中的金属阳离子和锌前驱体中的Zn2+的摩尔比为(0.05~0.5)︰1,2-甲基咪唑与锌前驱体中的Zn2+的摩尔比为(2~4)︰1;
(2)制备ZIF-8基多孔碳材料:
将步骤(1)制备得到的负载金属盐的ZIF-8材料置于管式炉中,管式炉抽至真空后密闭出口阀门升温至600~900℃,热解自活化1~5h得到产物为ZIF-8基多孔碳材料。
优选的是,上述锌前驱体选自硝酸锌、乙酸锌、硫酸锌、氯化锌中的一种或多种。
优选的是,上述金属盐中的金属阳离子为K+、Na+、Ca2+、Mg2+、Fe3+、Co2+、Cu2+中的一种或多种,阴离子为Cl-、Br-、NO3 -、CO3 2-、HCO3 -、SO4 2-、HSO4 -、PO4 3-、CH3COOH-、OH-中的一种或多种。上述金属阳离子对于ZIF-8热解过程有较好的促进和催化作用。
优选的是,上述离心分离的转速为2000~4000rpm/min,离心时间为3~5min,所述干燥的干燥温度为80~110℃。
优选的是,上述管式炉升温的升温速率为1~20℃/min。过快的升温速率容易使热解反应剧烈而造成孔道的坍塌。
优选的是,在热解自活化过程中将管式炉的炉内压力控制在0.12~0.15MPa。
最后,本发明提供了上述的ZIF-8基多孔碳材料或者通过上述制备方法得到的ZIF-8基多孔碳材料在吸附-光催化降解有机污染物中的应用。
与现有技术相比,本发明采用溶剂热合成的方法,通过原位引入方式得到原位负载金属盐的ZIF-8材料,再在管式炉中进行热解自活化反应,得到ZIF-8基多孔碳材料。与现有技术中常规采用高温碳化ZIF-8材料获得多孔碳的传统工艺相比,本发明创造性地将通常用于制备生物质基微孔型活性炭的热解自活化方法来制备ZIF-8基多孔碳,并且通过原位负载的金属盐在孔道内原位形成纳米金属氧化物,从而促进部分通过热解自活化形成的微孔结构向介孔结构的转化,最终形成含有微孔-介孔的多级孔隙结构,既通过微孔提高材料的比表面积,又通过介孔提高材料的扩散传质能力,从而能在降解污染物的应用场景中达到更好的光催化效果。具体地说,本发明所提供的ZIF-8基多孔碳材料具有微孔-介孔多级孔隙结构,其中微孔与介孔的比例能达到70%~80%:30%~20%,这既保证污染物能够在孔道内扩散传质,还促进光生载流子的传导和运输以及微孔光催化污染物的降解;且ZIF-8基多孔碳材料的比表面积≥600m2/g,光谱响应波段拓展至400-700nm的可见光范围,这既解决了现有的ZIF-8基多孔碳材料孔隙结构不够发达的问题,也提升了吸附-光催化尤其是可见光范围降解污染物方面的性能。
综上,相较传统的高温碳化方法,本发明制备方法所需温度低、能耗小,解决了传统高温碳化存在的反应能耗高的问题。同时本发明制备方法有效利用热解产物的活化作用和负载金属盐在热解过程中的催化作用,无需额外添加活化剂,环保性能好。
本发明提供的ZIF-8基多孔碳材料对有机染色剂亚甲基蓝的降解效率可以达到90%以上,应用在吸附-光催化降解有机污染物领域的光催化效果优异。
综上所述,本发明制备方法工艺简单、环保性能好,无需额外添加活化剂,制备得到的ZIF-8基多孔碳材料具有微孔-介孔多级孔隙结构,比表面积≥600m2/g,光谱响应波段可拓展至400~700nm的可见光范围,吸附-光催化降解亚甲基蓝的降解效率可以达到90%以上,在吸附-光催化降解有机污染物领域具有良好的应用前景,适于应用推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是实施例1~3和对比实施例1~3制备得到样品的扫描电镜图;
图2是实施例1~3和对比实施例1~3制备得到样品在77K温度下N2吸附-脱附等温线图;
图3是实施例1~3和对比实施例1~3制备得到样品的紫外-可见吸收光谱图;
图4是实施例1~3和对比实施例1~3制备得到样品的吸附-光催化降解亚甲基蓝活性测试图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
如在本说明书中使用的,术语“大约”,典型地表示为所述值的+/-5%,更典型的是所述值的+/-4%,更典型的是所述值的+/-3%,更典型的是所述值的+/-2%,甚至更典型的是所述值的+/-1%,甚至更典型的是所述值的+/-0.5%。
在本说明书中,某些实施方式可能以一种处于某个范围的格式公开。应该理解,这种“处于某个范围”的描述仅仅是为了方便和简洁,且不应该被解释为对所公开范围的僵化限制。因此,范围的描述应该被认为是已经具体地公开了所有可能的子范围以及在此范围内的独立数字值。例如,范围
Figure BDA0003503165870000071
的描述应该被看作已经具体地公开了子范围如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及此范围内的单独数字,例如1,2,3,4,5和6。无论该范围的广度如何,均适用以上规则。
实施例1
将3.56g六水合硝酸锌溶解在50mL甲醇中,加入0.39g硝酸钙和2.62g 2-甲基咪唑并搅拌溶解,继续搅拌1h;将上述混合溶液转移至高压反应釜中,在105℃的温度下保持1h,自然冷却至室温后离心分离并洗涤3次,离心转速3000rpm/min,时间3min;在105℃干燥4h后得到Ca/ZIF-8材料;将Ca/ZIF-8材料置于管式炉中部,抽至真空后,密闭出口阀门,以5℃/min的速率升温至800℃热解自活化2h,热解自活化过程中控制管式炉内压力为0.14MPa,得到产物为ZIF-8基多孔碳光催化剂C-Ca/ZIF-8。
实施例2
将3.56g六水合硝酸锌溶解在50mL甲醇中,加入0.70g六水硝酸钴和2.62g 2-甲基咪唑并搅拌溶解,继续搅拌1h;将上述混合溶液转移至高压反应釜中,在105℃的温度下保持1h,自然冷却至室温后离心分离并洗涤3次,离心转速3000rpm/min,时间3min;在105℃干燥4h后得到Co/ZIF-8材料;将Co/ZIF-8材料置于管式炉中部,抽至真空后,密闭出口阀门,以5℃/min的速率升温至800℃热解自活化2h,热解自活化过程中控制管式炉内压力为0.14MPa,得到产物为ZIF-8基多孔碳光催化剂C-Co/ZIF-8。
实施例3
将3.56g六水合硝酸锌溶解在50mL甲醇中,加入0.97g九水合硝酸铁和2.62g 2-甲基咪唑并搅拌溶解,继续搅拌1h;将上述混合溶液转移至高压反应釜中,在105℃的温度下保持1h,自然冷却至室温后离心分离并洗涤3次,离心转速3000rpm/min,时间3min;在105℃干燥4h后得到Fe/ZIF-8材料;将Fe/ZIF-8材料置于管式炉中部,抽至真空后,密闭出口阀门,以5℃/min的速率升温至800℃热解自活化2h,热解自活化过程中控制管式炉内压力为0.14MPa,得到产物为ZIF-8基多孔碳光催化剂C-Fe/ZIF-8。
对比实施例1
将3.56g六水合硝酸锌溶解在50mL甲醇中,加入2.62g 2-甲基咪唑并搅拌溶解,继续搅拌1h;将上述混合溶液转移至高压反应釜中,在105℃的温度下保持1h,自然冷却至室温后离心分离并洗涤3次,离心转速3000rpm/min,时间3min;在105℃干燥4h后得到ZIF-8。
对比实施例2
将3.56g六水合硝酸锌溶解在50mL甲醇中,加入2.62g 2-甲基咪唑并搅拌溶解,继续搅拌1h;将上述混合溶液转移至高压反应釜中,在105℃的温度下保持1h,自然冷却至室温后离心分离并洗涤3次,离心转速3000rpm/min,时间3min;在105℃干燥4h后得到ZIF-8;将ZIF-8材料置于管式炉中部,抽至真空后,密闭出口阀门,以5℃/min的速率升温至800℃热解自活化2h,热解自活化过程中控制管式炉内压力为0.14MPa,得到产物为ZIF-8基多孔碳光催化剂C/ZIF-8。
对比实施例3
将3.56g六水合硝酸锌溶解在50mL甲醇中,加入2.62g 2-甲基咪唑并搅拌溶解,继续搅拌1h;将上述混合溶液转移至高压反应釜中,在105℃的温度下保持1h,自然冷却至室温后离心分离并洗涤3次,离心转速3000rpm/min,时间3min;在105℃干燥4h后得到ZIF-8;将ZIF-8材料置于管式炉中部,通入100ml/min氮气,以5℃/min的速率升温至800℃热解2h,得到产物为ZIF-8基多孔碳光催化剂N-C/ZIF-8。
应用例
将实施例1~3和对比实施例1~3制备得到的样品在2k和10k放大倍数下采用钨灯丝扫描电子显微镜观察微观形貌,结果如图1所示。
将实施例1~3和对比实施例1~3制备得到的样品在77K温度下测量N2吸附-脱附等温线,如图2所示。根据BET(Brunauer-Emmet-Teller)公式计算比表面积,由相对压力p/p0=0.99时的N2吸附量得到总孔容,采用t-Plot法计算微孔比表面积,孔隙结构参数总结在表1中。
将实施例1~3和对比实施例1~3制备得到的样品在200-900nm的扫描波长范围内进行紫外-可见吸收光谱测试,采用BaSO4作为漫反射光谱测试的基线校正,得到样品在紫外-可见光波段的光谱吸收曲线,结果如图3所示。
将实施例1~3和对比实施例1~3制备得到的样品应用于吸附-光催化降解亚甲基蓝实验。将0.2g样品加入100mL的亚甲基蓝水溶液中,亚甲基蓝初始浓度为10mg/L;在暗处搅拌30min后,打开氙灯光源进行亚甲基蓝的光催化脱除;每隔10min取样一次,在6000r/min转速下离心3min后用紫外分光光度计测试吸光度,计算得到亚甲基蓝浓度随时间的变化曲线,结果如图4所示。
结果分析
如图1所示,本发明对比实施例1制备的ZIF-8呈现规则的十二面体结构,颗粒尺寸大小均匀。对比实施例2~3制备的未负载金属盐ZIF-8基多孔碳的规则十二面体结构遭到一定程度的破坏。实施例1~3制备的负载金属盐ZIF-8基多孔碳的规则十二面体结构破坏程度加深,呈疏松多孔结构,说明金属掺杂和热解自活化过程破坏了ZIF-8咪唑酯骨架,转化为多孔碳包裹金属组分的复合材料。
如图2和表1所示,本发明对比实施例1制备的ZIF-8和对比实施例2~3制备的未负载金属盐ZIF-8基多孔碳呈I型等温吸附线,孔隙基本为微孔结构,微孔比例高于95%。实施例1~3制备的负载金属盐ZIF-8基多孔碳呈II型等温吸附线且存在回滞环,说明除了微孔外还存在一定的介孔结构,微孔比例在70%~80%之间,而介孔比例在20%~30%之间,这种微孔-介孔多级孔隙结构不仅有利于对物质的吸附,还有利于被吸附的物质在孔道中的扩散传输,进而实现对该物质的催化与降解等。
表1:样品的孔隙结构参数
Figure BDA0003503165870000111
/>
Figure BDA0003503165870000121
如图3所示,本发明实施例1~3制备的负载金属盐ZIF-8基多孔碳在紫外-可见光区域的吸收信号高于对比实施例1制备的ZIF-8和对比实施例2~3制备的未负载金属盐ZIF-8基多孔碳,说明金属掺杂和热解自活化过程提高了ZIF-8的光吸收能力,有利于提升光催化反应性能。
如图4所示,本发明实施例1~3制备的负载金属盐ZIF-8基多孔碳对亚甲基蓝的降解性能优于对比实施例1制备的ZIF-8和对比实施例2~3制备的未负载金属盐ZIF-8基多孔碳,光催化反应60min后的亚甲基蓝降解效率达到90%以上,在吸附-光催化降解有机污染物领域具有良好的应用潜力。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种ZIF-8基多孔碳材料,其特征在于:所述ZIF-8基多孔碳材料以原位负载金属盐的ZIF-8材料为原料,通过热解自活化的方法制备得到,所述ZIF-8基多孔碳材料具有微孔-介孔多级孔隙结构;所述原位负载金属盐的ZIF-8材料通过将金属盐溶解在含有锌前驱体和有机配体的甲醇溶液中,采用溶剂热合成的方法制备得到,其中所述金属盐中的金属阳离子为K+、Na+、Ca2+、Mg2+、Fe3+、Co2+、Cu2+中的一种或多种。
2.根据权利要求1所述的一种ZIF-8基多孔碳材料,其特征在于:所述ZIF-8基多孔碳材料的所述微孔与所述介孔的比例为70%~80%:30%~20%。
3.一种ZIF-8基多孔碳材料的制备方法,其特征在于:包括下述步骤:
(1)制备负载金属盐的ZIF-8材料:
将锌前驱体溶解在甲醇中,配置成浓度为0.15~0.3 mol/L的溶液,然后加入金属盐和2-甲基咪唑并搅拌溶解得混合溶液,搅拌1~6 h后将混合溶液转移至高压反应釜中,在90~130℃的温度下保持1~12 h,自然冷却至室温后进行洗涤、离心分离和干燥,得到负载金属盐的ZIF-8材料;其中,金属盐中的金属阳离子和锌前驱体中的Zn2+的摩尔比为(0.05~0.5)︰1,2-甲基咪唑与锌前驱体中的Zn2+的摩尔比为(2~4)︰1;所述金属阳离子为K+、Na+、Ca2+、Mg2+、Fe3+、Co2+、Cu2+中的一种或多种;
(2)制备ZIF-8基多孔碳材料:
将步骤(1)制备得到的负载金属盐的ZIF-8材料置于管式炉中,管式炉抽至真空后密闭出口阀门升温至600~900℃,热解自活化1~5 h得到产物为ZIF-8基多孔碳材料。
4.根据权利要求3所述的一种ZIF-8基多孔碳材料的制备方法,其特征在于:所述锌前驱体选自硝酸锌、乙酸锌、硫酸锌、氯化锌中的一种或多种。
5.根据权利要求3所述的一种ZIF-8基多孔碳材料的制备方法,其特征在于:所述金属盐中的阴离子为Cl-、Br-、NO3 -、CO3 2-、HCO3 -、SO4 2-、HSO4 -、PO4 3-、CH3COOH-、OH-中的一种或多种。
6.根据权利要求3所述的一种ZIF-8基多孔碳材料的制备方法,其特征在于:所述离心分离的转速为2000~4000 rpm/min,离心时间为3~5 min,所述干燥的干燥温度为80~110℃。
7.根据权利要求3所述的一种ZIF-8基多孔碳材料的制备方法,其特征在于:所述管式炉升温的升温速率为1~20℃/min。
8.根据权利要求3所述的一种ZIF-8基多孔碳材料的制备方法,其特征在于:在热解自活化过程中将管式炉的炉内压力控制在0.12~0.15 MPa。
9.权利要求1或权利要求2所述的ZIF-8基多孔碳材料在吸附-光催化降解有机污染物中的应用。
10.权利要求3至8中任一项所述的制备方法得到的ZIF-8基多孔碳材料在吸附-光催化降解有机污染物中的应用。
CN202210132390.2A 2022-02-14 2022-02-14 一种zif-8基多孔碳材料及其制备方法和应用 Active CN114471520B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210132390.2A CN114471520B (zh) 2022-02-14 2022-02-14 一种zif-8基多孔碳材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210132390.2A CN114471520B (zh) 2022-02-14 2022-02-14 一种zif-8基多孔碳材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114471520A CN114471520A (zh) 2022-05-13
CN114471520B true CN114471520B (zh) 2023-06-13

Family

ID=81480709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210132390.2A Active CN114471520B (zh) 2022-02-14 2022-02-14 一种zif-8基多孔碳材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114471520B (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079550A2 (en) * 2015-11-07 2017-05-11 Entegris, Inc. Adsorbents and fluid supply packages and apparatus comprising same
CN107362789B (zh) * 2016-05-11 2020-05-05 武汉理工大学 一种多孔碳改性的ZnO光催化材料及其制备方法
CN107497377A (zh) * 2017-10-19 2017-12-22 山东大学 一种形貌均一金属有机骨架化合物/氧化石墨烯复合微球的制备方法
CN108686705A (zh) * 2018-05-04 2018-10-23 大连理工大学 一种碳量子点-zif-67吸附-光催化剂及其制备方法
WO2021000217A1 (zh) * 2019-07-01 2021-01-07 青岛科技大学 基于zif-8的镍铁氮掺杂碳材料三功能电催化剂及其制备方法和应用
SG10202007819XA (en) * 2019-08-15 2021-03-30 Agency Science Tech & Res Free-standing porous carbon fibrous mats and applications thereof
CN110841622B (zh) * 2019-11-19 2022-07-08 北京工业大学 一种基于MOF模板可控制备In2O3@ZnO纳米异质节光催化材料的方法
CN111111638B (zh) * 2019-12-05 2021-07-27 山西大学 一种粉煤灰光催化材料的制备方法
CN111468165B (zh) * 2020-05-22 2021-10-22 丁道其 一种氮掺杂纳米CoS2/石墨烯光催化材料的制备方法及应用
CN113101896B (zh) * 2021-04-19 2023-09-12 山东建筑大学 一种正负微压变换改性MOFs疏水特性的装置及疏水性MOFs制备方法和应用
CN113769783B (zh) * 2021-10-15 2023-09-15 河北工业大学 一种竹节状核壳光热催化剂的制备方法

Also Published As

Publication number Publication date
CN114471520A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity
Hu et al. Surfactant-assisted synthesis of hierarchical NH 2-MIL-125 for the removal of organic dyes
CN108855150B (zh) 一种光催化降解苯酚的复合光催化剂的制备方法
Hou et al. Preparation of Cu 2 O@ TiOF 2/TiO 2 and its photocatalytic degradation of tetracycline hydrochloride wastewater
Zhou et al. Hollow porous zinc cobaltate nanocubes photocatalyst derived from bimetallic zeolitic imidazolate frameworks towards enhanced gaseous toluene degradation
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
Li et al. Three dimensional MOF–sponge for fast dynamic adsorption
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
CN113072673A (zh) 一种共价有机骨架材料的加热回流制备方法及应用
Chen et al. ZnO@ ZIF-8 core–shell heterostructures with improved photocatalytic activity
CN110876953A (zh) 一种p,s共掺杂氮化碳同型异质结复合光催化剂
CN111151285A (zh) 一种氮掺杂多孔碳负载ZnS纳米复合材料及其制备方法和应用
Lu et al. Bimetallic CoCu-ZIF material for efficient visible light photocatalytic fuel denitrification
CN114849651A (zh) 一种活性炭封装羧酸类金属有机骨架复合材料及其制备和气体吸附分离应用
Guo et al. Precise regulation of defect concentration in MOF and its influence on photocatalytic overall water splitting
CN111185152A (zh) 一种多功能耦合的PAC/Bi2O3/TiO2复合材料制备方法
CN114797942A (zh) 一种多孔金属(铁、镍、钴)掺杂石墨相氮化碳光催化剂及其制备方法和应用
CN114471520B (zh) 一种zif-8基多孔碳材料及其制备方法和应用
CN116212966B (zh) 一种间接z型多组分铋基mof异质结及其制备方法和应用
Wang et al. Fe Doped MIL-101/Graphene Nanohybrid for Photocatalytic Oxidation of Alcohols Under Visible-Light Irradiation
CN114849652A (zh) 一种具有高气体分离选择性的活性炭封装咪唑类金属有机骨架复合材料及其制备方法
Yu et al. Efficient removal of tetracycline hydrochloride through novel Fe/BiOBr/Bi2WO6 photocatalyst prepared by dual-strategy under visible-light irradiation
CN111617806B (zh) 柠檬酸钠为基质的g-C3N4/MOFs复合型光催化材料及其制备方法和应用
Xu et al. Synthesis of CoxZn1-x zeolitic imidazolate frameworks (ZIFs) as efficient photocatalyst with high stability
CN114452986B (zh) 一种草状氮化碳/花状硫化镍复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant