CN114459657A - 冲击荷载自动化识别方法、电子设备和存储介质 - Google Patents
冲击荷载自动化识别方法、电子设备和存储介质 Download PDFInfo
- Publication number
- CN114459657A CN114459657A CN202210386918.9A CN202210386918A CN114459657A CN 114459657 A CN114459657 A CN 114459657A CN 202210386918 A CN202210386918 A CN 202210386918A CN 114459657 A CN114459657 A CN 114459657A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- sensor
- nanotube composite
- impact load
- composite sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000003860 storage Methods 0.000 title claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 180
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 178
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 176
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 176
- 230000008859 change Effects 0.000 claims abstract description 37
- 230000004044 response Effects 0.000 claims abstract description 29
- 239000004568 cement Substances 0.000 claims description 32
- 238000011068 loading method Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000013136 deep learning model Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012549 training Methods 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 2
- 238000004513 sizing Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 description 21
- 239000002270 dispersing agent Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000002048 multi walled nanotube Substances 0.000 description 17
- 239000004567 concrete Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- 241000276425 Xiphophorus maculatus Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000011083 cement mortar Substances 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- -1 carbon nanotube ester Chemical class 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0052—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/18—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明实施例公开了一种冲击荷载自动化识别方法、电子设备和存储介质,方法包括:远程实时获取待监测结构表面一正方形区域四个顶角位置处四个碳纳米管复合传感器的电阻;如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置;其中,每个碳纳米管复合传感器的尺寸根据传感器泊松比确定,所述尺寸使得所述碳纳米管复合传感器对一个方向的冲击荷载的响应突出于其他方向。本实施例自动识别监测冲击荷载,简单易行,准确度高。
Description
技术领域
本发明实施例涉及结构健康监测领域,尤其涉及一种冲击荷载自动化识别方法、电子设备和存储介质。
背景技术
在土木工程中,混凝土材料凭借承载力高、抗震性能好、经济性好等优点,在大型结构中广泛应用,然而这些大型结构在其服役期间将受到复杂环境荷载的作用以及各类突发性外在因素如外来物冲击、振动等影响;其中,冲击荷载由于难以预测、荷载值高且作用时间短的特点,对大型结构的损伤尤为突出,因此如何实现对冲击荷载的识别监测是结构健康监测领域的热点问题。
目前,在冲击荷载识别监测技术研究中,由冲击荷载产生的结构响应信号是对冲击源进行识别的信息基础,因此结构响应信号的测量就是需要首先解决的问题。由于结构对冲击荷载的响应信号具有时间短、频带宽的特点,在结构健康监测中常用集中式或分布式压电应变测量方法测量结构的响应信号;压电式传感器具有灵敏度高、使用方便、测量信号频率高等优点,但其易受电磁环境干扰;而对于常规低速采样的光纤光栅传感模式,虽然精度相对较高,但在实际应用中由于解调仪采样频率较低,将会导致表征冲击响应特征的有效信息大量缺失,无法满足时差定位原理,导致定位精度大幅降低。
同时,由于实际工程环境复杂,传统监测技术使用的传感器容易受到外界环境尤其是温度的干扰,为了获得精度较高的结果需要进行多次滤波,无疑增加了工作量。此外,这几类传感器存在造价高、耐久性差以及与混凝土结构兼容性不好等问题。
随着材料相关领域的不断研究,碳纳米管作为一种新型高性能材料,被尝试添加到水泥基材料中来制作传感器;现有技术中有大量技术方案对碳纳米管传感器本身进行了改进创新,而如何使用碳纳米管传感器来实现对冲击荷载的监测,从而使碳纳米管传感器在实际工程领域中的使用具有可行性依据,该方面的技术方案相对匮乏。
发明内容
本发明实施例提供一种冲击荷载自动化识别方法、电子设备和存储介质,采用具有单向响应特性的碳纳米管复合传感器和简支梁的影响线理论,自动识别冲击荷载,简单易行,准确度高。
第一方面,本发明实施例提供了一种冲击荷载自动化识别方法,包括:
远程实时获取待监测结构表面一正方形区域四个顶角位置处四个碳纳米管复合传感器的电阻;
如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置;
其中,每个碳纳米管复合传感器为压阻式压力传感器,内置于所述待监测结构内侧;每个碳纳米管复合传感器包括:水泥基复合材料,以及分散在所述水泥基复合材料中的碳纳米管;每个碳纳米管复合传感器的尺寸根据传感器泊松比确定,所述尺寸使得所述碳纳米管复合传感器对一个方向的冲击荷载的响应突出于其他方向。
第二方面,本发明实施例还提供了一种电子设备,所述电子设备包括:
一个或多个处理器;
存储器,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现任一实施例所述的冲击荷载自动化识别方法。
第三方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现任一实施例所述的冲击荷载自动化识别方法。
本发明实施例的技术效果如下:
1. 本实施例根据传感器泊松比确定每个碳纳米管复合传感器的尺寸,所述尺寸使得所述碳纳米管复合传感器对一个方向的冲击荷载的响应突出于其他方向,从而可以忽略其他方向荷载响应,避免传感器对多方向的复杂荷载均产生敏感响应而产生各方向的高度耦合,为简支梁的影响线理论的延伸提供了基础。
2. 本实施例采用具有单向响应特性的碳纳米管复合传感器建立了待监测结构受到冲击荷载的分析模型,将四个碳纳米管复合传感器之间的结构简化并消除,使得待监测区域近似为具有四个支座的平面板状结构,从而将简支梁的影响线理论延伸到该平面板状结构,建立移动的冲击荷载对不同位置的碳纳米管复合感器的影响方程,确定待监测区域受到的冲击荷载的位置;定位方法简单易行,准确度高。
3. 本实施例远程监测正方形区域四个顶角位置处的传感器,就可以实时获取待监测结构受到的冲击荷载情况,无需进行现场实时监控。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种冲击荷载自动化识别方法的流程图;
图2是本发明实施例提供的四个碳纳米管复合传感器的一种布置形式的示意图;
图3是本发明实施例提供的简化结构的示意图。
图4是本发明实施例提供的一种碳纳米管复合传感器的结构示意图;
图5是本发明实施例提供的四个碳纳米管复合传感器的另一种布置形式的示意图;
图6为本发明实施例提供的碳纳米管复合传感器检测试验时的示意图;
图7为本发明中混凝土结构内置式碳纳米管复合传感器经万能试验机测试的压力与位移曲线图;
图8是本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
图1是本发明实施例提供的一种冲击荷载自动化识别方法的流程图,适用于通过碳纳米管传感器监测结构受到的冲击荷载的情况,本实施例由电子设备执行。结合图1,本实施例提供的方法具体包括:
S110、远程实时获取待监测结构表面一正方形区域四个顶角位置处的四个碳纳米管复合传感器的电阻。
待监测结构为将要对其受到的冲击荷载进行远程实时监测的物体结构。所述正方形区域为该结构表面可能受到冲击荷载的区域。本实施例将对该区域受到的冲击荷载进行监测。
本实施例使用的碳纳米管复合传感器包括:水泥基复合材料,以及分散在所述水泥基复合材料中的碳纳米管。碳纳米管复合传感器为压阻式压力传感器,其电阻随作用于传感器上压力而变化。因此,本实施例将碳纳米管复合传感器内置于待监测结构内侧,碳纳米管复合传感器的电阻用于反映结构表面受到的压力。
S120、如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置。
所述一定时长为极短的时长,例如30ms-100ms。如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生较大的变化,则说明结构表面在某一时刻受到了冲击荷载。由于冲击荷载的传递及碳纳米管复合传感器的电阻获取均需要一定时间,因此四个碳纳米管复合传感器的电阻变化时刻存在一定的时间差,该时间差的范围即为所述一定时长,即30ms-100ms。监测到电阻变化后,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域在所述某一时刻受到的冲击荷载的位置。
下面对位置识别的基本原理进行说明。本实施例中每个碳纳米管复合传感器的尺寸根据传感器泊松比确定,所述尺寸使得所述碳纳米管复合传感器对一个方向的冲击荷载的响应突出于其他方向。本实施例中将碳纳米管复合传感器的这一特性称为单向响应特性,单向响应特性是本实施例利用碳纳米管复合传感器进行冲击荷载位置识别的基础。
如图2所示,四个碳纳米管复合传感器分别布置于所述正方形区域的四个顶角位置。碳纳米管复合传感器对沿x轴方向的冲击荷载的响应异常敏感,而对沿y、z轴方向的冲击荷载产生的响应极其微弱。基于这一特性,实际工程中当冲击荷载作用在结构表面时,内置于内侧的各个碳纳米管复合传感器对传递到自身的沿x轴的荷载部分响应敏感,而对传递到自身的其它方向的荷载部分响应微弱,可以忽略不计。
因此在沿x轴方向的冲击荷载作用下,可以将四个碳纳米管复合传感器之间的结构(包括结构内部的其他碳纳米管复合传感器传感器)简化并消除。将四个碳纳米管复合传感器与受到冲击荷载的表面之间的结构近似为一块混凝土板,四个碳纳米管复合传感为支座,如图3所示。
可选地,如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,首先,根据所述四个碳纳米管复合传感器的电阻变化,计算所述正方形区域受到的冲击荷载对每个碳纳米管复合传感器的影响系数。所述影响系数表征所述正方形区域受到的冲击荷载的传递到每个碳纳米管复合传感器的荷载大小。
该影响系数本质上为一无量纲系数,与该冲击荷载传递到每个碳纳米管复合传感器的荷载大小有关。由于该荷载大小会引起碳纳米管复合传感器的电阻变化,因此可以通过电阻变化计算影响系数。
此外,根据影响线理论,该影响系数与冲击荷载与每个碳纳米管复合传感器的位置关系有关,因此该影响系数可以用于确定冲击荷载的位置。
可选地,得到每个碳纳米管复合传感器的影响系数后,根据以下公式,计算所述冲击荷载的位置:
F 1=[(L 12 - d 12)/L 12] ∙ [(L 13 - d 13)/L 13] (1)
F 2=[(L 21 - d 21)/L 21] ∙ [(L 24 - d 24)/L 24] (2)
F 3=[(L 34 - d 34)/L 34] ∙ [(L 31 - d 31)/L 31] (3)
F 4=[(L 43 - d 43)/L 43] ∙ [(L 42 - d 42)/L 42] (4)
其中,F i 分别表示所述冲击荷载对所述四个碳纳米管复合传感器中第i个传感器的荷载系数,i=1、2、3、4;L ij 表示从第i个传感器的位置到第j个传感器的位置的向量的长度,j=1、2、3、4,且j不等于i;d ij 表示从第i传感器的位置到所述冲击荷载的位置的向量在L ij 上的投影的长度。
具体来说,本实施例将图3的结构视为简支板状结构,每个碳纳米管复合传感器即为该简支板状结构的支座。将普通简支梁的影响线理论进行延伸,应用到图3的结构,建立移动的冲击荷载对不同位置的碳纳米管复合感器的影响方程,如方程(1)(2)(3)(4)所示。
此外,在正方形区域内,还满足以下方程:
d ij +d ji =L ij (6)
L 12 =L 34 =L 13 =L 24 (7)
L ij =L ji (8)
综上,计算得到F 1、F 2、F 3和F 4后,联立方程(1)-(4)、(6)-(8),即可求解出d ij ,从而确定冲击荷载的位置。
可选地,根据每个碳纳米管复合传感器的电阻变化,计算所述正方形区域受到的冲击荷载对每个碳纳米管复合传感器的影响系数,包括如下步骤:
步骤一、获取每个碳纳米管复合传感器的电阻变化与影响系数的关系的基本形式:
μ i F i = ΔR i / R i (5)
其中,ΔR i 表示第i个碳纳米管复合传感器的电阻变化,R i 表示第i个碳纳米管复合传感器的的初始电阻,F i 表示第i个碳纳米管复合传感器的影响系数;μ i 表示第i个碳纳米管复合传感器的传感器系数,用于反映第i个碳纳米管复合传感器的影响系数与电阻变化率之间的关系。
步骤二、通过第i个碳纳米管复合传感器在不同冲击荷载下的电阻变化,标定第i个碳纳米管复合传感器的传感器系数。
下面对碳纳米管复合传感器的特性进行细化。可选地,在碳纳米管复合传感器(以下简称为复合传感器)中,所述水泥基复合材料包括分散剂、减水剂、水泥、砂和去离子水。所述碳纳米管均匀分散于所述水泥基复合材料中。所述复合传感器具有压敏感知能力,可以内置于混凝土结构当中长期服役而不对结构产生较大影响,同时因为其构造特点可以对需要监测方向荷载进行特殊响应,也可以针对性地对结构受到的冲击荷载和压力荷载进行实时的监测。
在一些实施例中,按重量份配比,所述碳纳米管0.2~1份,所述水泥基复合材料包括分散剂0.2~1份、减水剂0.3~1份、水泥99~100份、砂200~300份和去离子水35~60份。
在一些实施例中,按重量份配比,所述碳纳米管0.4~0.7份,所述水泥基复合材料包括分散剂0.4~0.7份、减水剂0.5~0.8份、水泥99~100份、砂230~280份和去离子水45~50份。在一些实施例中,所述碳纳米管和分散剂的重量份比值为1:1。
所述碳纳米管是一种一维量子材料。所述碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持一定的距离,如0.3~0.4nm。根据所述同轴圆管的层数,所述碳纳米管可以是单壁碳纳米管或多壁碳纳米管。
所述碳纳米管的径向尺寸(管径)为纳米量级,轴向尺寸(管长)为微米量级。在一些实施例中,所述碳纳米管的管径为2~20nm,管长为10~40um,比表面积为230~280m²/g。在一些实施例中,所述碳纳米管的管径为3~15nm,管长为15~30um,比表面积为250~270m²/g。
在一些实施例中,所述碳纳米管为氨基化多壁碳纳米管。所述氨基化多壁碳纳米管由多壁碳纳米管制备而成。例如,所述氨基化多壁碳纳米管是由多壁碳纳米管,经自由基反应,制备氰基改性的多壁碳纳米管,然后采用Al-NiCl2∙6H20-THF体系还原生成氨基化多壁碳纳米管。氨基化多壁碳纳米管相对其他材料可分散性更强,在水泥基材料内部不易团聚,这种特性让氨基化多壁碳纳米管在水泥基材料中分散均匀,使传感器在大批量制作时各方面性能保持高度一致性成为可能。同时,所述氨基化多壁碳纳米管相比现有技术中外添的材料对水泥基复合材料的力学性能具有更好的增强作用,本技术方案中利用42.5硅酸盐水泥制作的复合传感器抗压强度为大约35MPa,比普通的42.5硅酸盐水泥砂浆块的32.5MPa抗压强度要高,避免了现有技术中由于外添材料导致传感器强度降低,内置于结构中会对结构强度产生负面影响的问题。
所述分散剂用于分散所述碳纳米管,防止所述碳纳米管团聚、沉积。所述分散剂可以包括,但不仅限于,碳纳米管水分散剂(TNWDIS)、碳纳米管醇分散剂(TNADIS)、碳纳米管酯分散剂(TNEDIS)等。
所述减水剂用于维持混凝土坍落度基本不变的条件下,减少拌合用水量的混凝土外加剂。所述减水剂可以增加混凝土拌合物的流动性和分散效果等。所述减水剂可以为木质素磺酸盐、萘磺酸盐甲醛聚合物等。
所述水泥可以为硅酸盐水泥、矾土水泥等。所述水泥的标号可以为32.5、32.5R、42.5、42.5R、52.5、52.5R等。
所述复合传感器还包括电极。所述电极以导电材料形成的网格的形式设置于所处复合传感器的两端。所述导电材料为铜、铝、银等导电金属材料和/或石墨等导电非金属材料。在一些实施例中,所述电极为两片铜网格,分别位于所述复合传感器的两端。由于铜网格与所述水泥基复合材料相容性好、接触电阻低且成本低廉易获取。
可选地,每个碳纳米管复合传感器为长方体;每个碳纳米管复合传感器的尺寸确定过程包括如下操作:确定一碳纳米管复合传感器的宽度和高度相等;根据传感器泊松比,确定所述碳纳米管复合传感器的长度和宽度的比值,使所述泊松比与所述比值的乘积大于或等于设定阈值(例如大于或等于10的任一常数)。优选地,设定阈值=10。
图4是本发明实施例提供的一种碳纳米管复合传感器的结构示意图。所述复合传感器的外形为,例如,宽高比为1,长宽比大于2。所述铜网格以半插入式垂直于长边的方式置于水泥基复合材料中,且排列方式为平行排列。所述碳纳米管为氨基化多壁碳纳米管。所述分散剂为碳纳米管水分散剂。所述碳纳米管和分散剂的重量份比值为1:1。
原本普通的水泥基复合材料是几乎不导电的,当掺入导电的碳纳米管(例如,所述氨基化多壁碳纳米管)后,由于碳纳米管上碳原子的P电子形成大范围的离域π键,共轭效应显著,使得碳纳米管具有良好的导电性能。导电的碳纳米管分散在水泥基复合材料中,其中相连的部分碳纳米管如同导线一般形成了导电通道,使得电子可以通过,而比较靠近但未相连的部分碳纳米管间由于隧穿效应的存在,也形成了导电通道(这种类型的导电通道效果不如碳纳米管直接相连产生的导电通道),这些导电通道的存在使得原本几乎不导电的水泥基复合材料整体具有了较强的导电性,这为其制作一种传感器提供了基础。
如图4所示,假设碳纳米管复合传感器的初始尺寸为:长L x 、宽L y 、高L z ,在受到沿x轴方向的轴向压力后,其几何尺寸变为:
由式(9)-(11)可知,当沿x方向产生一个压应变时,其他方向只产生0.1~0.2拉应变,这使得沿x轴方向碳纳米管间距减小明显,沿y轴与z轴方向碳纳米管间距增大相对并不明显;这样的变化使碳纳米管之间的相连接触点增多,宏观表现为碳纳米管复合传感器整体的电阻减小了,当一个荷载F作用在传感器yz面上时,根据材料力学有:
当相同的荷载作用在传感器xy面上时,有:
其中,E为弹性模量,A 0 、A 1 分别为yz面、xy面截面面积,ν为传感器泊松比,ε 0 、ε 1 分别为沿x轴、沿z轴方向应变,ε 2 为力作用在xy面上时沿x轴方向应变。
由于水泥基复合材料是传感器的主体材料,因此取传感器泊松比ν为0.2,接近于水泥基复合材料的泊松比;传感器宽L y 高L z 比为1,则当长L x 宽L y 比大于2时,可以得到ε 2 小于ε 0 一个数量级。
可选地,所述待监测结构为桥墩,所述冲击荷载来自于船舶碰撞,所述四个碳纳米管复合传感器安装于所述桥墩内;确定待监测结构表面的待检测正方形区域,包括:根据所述桥墩的通航环境,确定所述桥墩上发生船舶碰撞的区域范围;根据所述区域范围,确定所述正方形区域。
本实施例采用上述任一实施例提供的识别方法远程监测桥墩受到船舶碰撞的情况,首先确定船舶碰撞的基本区域,在该区域的四个顶角位置安装碳纳米管复合传感器,进而自动识别船舶碰撞的位置,实现了对桥墩结构的健康远程实时监测。
本实施例的技术效果:
1. 本实施例根据传感器泊松比确定每个碳纳米管复合传感器的尺寸,所述尺寸使得所述碳纳米管复合传感器对一个方向的冲击荷载的响应突出于其他方向,从而可以忽略其他方向荷载响应,避免传感器对多方向的复杂荷载均产生敏感响应而产生各方向的高度耦合,为简支梁的影响线理论的延伸提供了基础。
2. 本实施例采用具有单向响应特性的碳纳米管复合传感器建立了待监测结构受到冲击荷载的分析模型,将四个碳纳米管复合传感器之间的结构简化并消除,使得待监测区域近似为具有四个支座的平面板状结构,从而将简支梁的影响线理论延伸到该平面板状结构,建立移动的冲击荷载对不同位置的碳纳米管复合感器的影响方程,确定待监测区域受到的冲击荷载的位置;定位方法简单易行,准确度高。
3. 本实施例远程监测正方形区域四个顶角位置处的传感器,就可以实时获取待监测结构受到的冲击荷载情况,无需进行现场实时监控。
4. 现有技术中使用集中式或分布式压电应变测量方法测量结构的响应信号来对冲击荷载进行识别,但压电式传感器通过自身产生的电流反映压力变化,容易受到电磁环境干扰,在布线复杂设置大量装置的大型结构中对冲击荷载的监测识别精度差、不稳定。本申请采用碳纳米管复合传感器,通过传感器受到荷载发生形变产生电阻变化反映压力变化,本质是一种压阻传感器,输出信号为电阻变化值,不易受到外界电磁环境干扰,利用这一特性来对冲击荷载进行识别监测,解决了现有技术在电磁环境中传感效果不稳定的问题。
5. 现有技术中或使用光纤光栅传感模式,在实际应用中由于解调仪采样频率较低,而冲击荷载往往是瞬时的,将会导致表征冲击响应特征的有效信息大量缺失,无法满足时差定位原理,导致对冲击荷载的定位精度大幅降低。本申请不需要满足时差定位原理,对采集仪器的频率要求低,避免了现有技术中使用光纤光栅传感模式需要超高频率采集时程数据来进行定位的问题;此外,碳纳米管复合传感器敏感性好,与荷载几乎同步响应,使本技术方案克服了光纤光栅传感模式在解调仪频率低、冲击荷载瞬时发生的情况下冲击响应特征有效信息大量缺失的缺陷。
6. 传统监测技术使用的传感器容易受到外界环境尤其是温度的干扰,为了消除这类干扰对监测数据的影响需要专门进行多次滤波,而多次滤波使这类现有技术存在流程复杂、工作量大的问题。本申请的传感器对温度不敏感,水泥和碳纳米管自身对外界环境尤其是温度的干扰不敏感,且在监测过程中能长期服役于结构当中,避免了现有技术为了消除环境干扰需要多次滤波、在混凝土结构当中兼容性差、耐久性不佳的问题。
7. 传统传感器存在造价高、耐久性差以及与混凝土结构兼容性不好等问题,形成的监测方法难以满足大型结构服役期间耐久高、兼容好、寿命长的需求;本申请的传感器使用高强度材料,耐久性好;且水泥基材料本身也是混凝土的一种,与混凝土兼容性好;并内置于混凝土中,不容易损坏且能长期服役于结构当中,避免了现有技术在混凝土结构当中兼容性差、耐久性不佳的问题。
在上述实施例和下述实施例的基础上,本实施例对识别到的冲击荷载位置进行优化。可选地,如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置之后,还包括:将识别的位置输入训练好的深度学习模型,预测所述冲击荷载的最终位置。
所述训练好的深度学习模型用于减小所述冲击荷载的实际位置与所述识别的位置之间的误差。由于识别到的冲击荷载的位置与实际位置之间不可避免地存在一定误差,且该误差具有一定的随机性,难以通过理论推导进行消除,所以本实施例采用深度学习模型的形式来弥补这一误差,使预测到的最终位置更接近于冲击荷载的实际位置。
可选地,所述深度学习模型是通过如下方式训练好的:
步骤一、在所述正方形区域内依次加载多次冲击荷载。
在多正方形区域内部依次施加多次冲击荷载,并记录每次冲击荷载作用的实际位置。
步骤二、实时获取所述四个碳纳米管复合传感器的电阻。
步骤三、如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置。
通过本实施例提供的识别方法,自动识别每次冲击荷载的位置。具体过程与上述任一实施例相同,在此不再赘述。
步骤四、以识别的位置为训练样本输入深度学习模型进行训练,使所述深度学习模型的输出逼近所述冲击荷载的实际位置。
本实施例根据识别的冲击荷载位置与实际位置之间的误差特性,选取深度学习网络的形式减小该误差,合理减小位置误差,提高定位精度。
在上述实施例和下述实施例的基础上,本实施例对本发明实施例提供的识别方法的有效性进行验证。在一具体实施方式中,采用氨基化多壁碳纳米管复合传感器,碳纳米管含量为0.25%,传感器规格为4cm×4cm×16cm,电极数量2为铜电极,传感器数量为4。图5是本发明实施例提供的四个碳纳米管复合传感器的另一种布置形式的示意图。在图5的布置形式下,具体的验证方式包括如下过程:
(1)在待监测结构上划定一块正方形监测区域边长为110cm,该监测区域结构的厚度为20cm,考虑到材料各向异性问题,本具体实施方式中的结构使用素混凝土浇筑;在结构制造过程中将碳纳米管复合传感器一并浇筑于结构当中,所有传感器以长边(16cm)与结构表面垂直内置于结构当中,埋设深度为2cm,平面布置方式为监测区域内四角放置,传感器之间中心距离为96cm,传感器编号分别为1、2、3、4,浇筑过程中用导线连接传感器电极并引出,后续对结构进行标准养护28天。
(2)养护完成后,在室温环境下,通过导线将所有传感器连接数据采集仪器,采集仪器可以采集每个碳纳米管复合传感器的电阻与电阻变化。由于碳纳米管复合传感器的水泥基复合材料属于胶体复合材料,其电阻因为介电性质会产生漂移,为获得稳定的传感器电阻,在打开数据采集仪器电源后,需要对传感器进行6000s的极化至电阻值稳定。
(3)待所有传感器电阻值稳定后,在y-z平面内坐标(20,30)处施加冲击荷载,远程实时获取四个碳纳米管复合传感器的电阻。
(4)选取每个传感器电阻变化峰值,该值代表了传感器对冲击荷载的响应,根据传感器制作过程标定的系数,将所有传感器数据与位置代入影响方程,计算得到识别的荷载位置为(21.3,28.5),与实际荷载作用位置接近。
(5)在0摄氏度环境内,对结构施加过程(3)中相同位置与大小冲击荷载,通过过程(4)对荷载位置进行识别,位置为(21.3,28.5),与室温下识别的位置相同。
可以看出,识别的荷载位置与实际荷载位置接近,在环境温度改变的情况下识别的位置相同,抗环境温度干扰能力强,适用于实际工程中对冲击荷载的定位监测。
在上述实施例和下述实施例的基础上,本实施例对复合传感器(示例性地,碳纳米管含量0.25%)的制备方法进行细化。可选地,复合传感器的制备方法包括以下步骤:
S1.将2.5g分散剂充分溶解于450ml去离子水中,水分散剂为黏稠液体,加入水中呈透明胶状,经过缓慢均匀搅拌,分散剂完全溶于水中,称量2.5g氨基化多壁碳纳米管加入分散剂水溶液中,使用超声破碎装置使碳纳米管在溶液中分散均匀,超声每开启3秒(s)后暂停3s,总分散时间为10分钟(mins),期间由于分散剂为一种表面活性剂,会产生大量泡沫影响分散效果,期间可滴入0.3ml消泡剂对然纳米管液进行消泡。
S2.将分散好的碳纳米管液倒入搅拌锅中,倒入1000g的硅酸盐水泥,开启搅拌锅搅拌2mins,再倒入2000g标准砂,搅拌4mins,关停搅拌设备,静置2mins后再开启设备搅拌4mins。
S3.将水泥砂浆倒入40mm×40mm×160mm的胶砂标准模具中,插入金属网格,实施例使用的金属网格为铜制网格,网格规格为4mm×5mm方格,向试件内插入两片,排列方式为平行排列,两片间距14cm,通过振捣机将模具进行整体振捣,振捣60次,室温养护36小时(h)后拆模进行标准养护28天(d)。
对制备的复合传感器进行测试,如图6所示,具体测试过程包括:
S1.在上述养护完成的复合传感器垂直于加载方向(例如,加载方向为长度方向)的两个面上贴上应变片,用于测量所述复合传感器在加载过程中的应变值;
S2.用导线将复合传感器的电极与信号采集仪、应变片和应变仪分别进行连接,由于复合传感器为胶体复合材料,其电阻因介电性质会产生漂移,为获得稳定的传感器电阻,在连接好后打开信号采集仪电源,对所述复合传感器进行6000s的极化至电阻值稳定;
S3.将所述复合传感器置于万能试验机中,进行加载,加载速率为250N/s,最大的加载力为8MPa以保证加载是在弹性范围内的,在加载过程中,对应变数据和电阻变化值进行记录;
S4.通过应变片测值与电阻变化数据,对所述复合传感器的灵敏度进行标定,获得传感器弹性范围内的应变因子;
S5.对所述复合传感器进行单调加载直到试件破坏,获得所述复合传感器的抗压强度,万能试验机压力与位移曲线如图7所示,压力最大值为87.9KN,试件开始破坏,得到抗压强度为35.16MPa,其电性能,力学性能,应变因子测试数据如下表:
碳纳米管含量% | 电阻变化率 | 应变因子 | 28天后抗压强度 |
0.25% | 34% | 1600 | 35.16MPa |
由上述数据可以看出,只需0.25%含量的碳纳米管,所述复合传感器的力学性能相较于普通水泥砂浆便有所提升,同时达到1600的应变因子。
本方案中,只需要质量小于水泥材料两个数量级(0.2%-1%)的外添特殊材料(碳纳米管等),就可以实现极佳的效果,解决了现有技术需要添加较高含量的特殊材料同时效果一般,成本较高的问题。
本方案中,使用了氨基化多壁碳纳米管作为功能组分,制备出的复合传感器抗压强度达到了35.16MPa,高于普通42.5水泥砂浆的32.5MPa抗压强度,且传感器应变因子达到了1600,证明氨基化多壁碳纳米管具有对传感器的力学,电性能同时增强的优势。
另外,本方案中,基于上述方法制作的多个复合传感器之间电阻值差距非常小,实验数据表明,3组传感器之间电阻最大差值仅为13Ω,证明碳纳米管在所述复合传感器内部分散均匀,根据氨基化多壁碳纳米管疏水性较弱,不易团聚更易分散的特性,选择水分散剂与超声分散方法来制备碳纳米管分散液,制作出的多组复合传感器电阻值保持几乎一致,证明了此方法制备的碳纳米管分散液内部分散均匀,相比现有技术更佳的分散效果使制作出的传感器对外界荷载的变化有更加迅速良好的响应(能够在信号采集仪2HZ的频率下精准响应),且分散的操作过程更加安全简便,氨基化碳纳米管性能稳定,这使得用这种碳纳米管制作的传感器电阻具有非常强的可逆性,即卸载过程中传感器电阻会向加载前电阻恢复。
在本方案测试中,复合传感器在加载结束后电阻从初始值1588Ω恢复为1589Ω,与现有技术相比这种弱漂移,强可逆性的存在使所述复合传感器的耐久性更好,在内置于结构中长期服役时有更加突出的表现。
图8为本发明实施例提供的一种电子设备的结构示意图,如图8所示,该设备包括处理器50、存储器51、输入装置52和输出装置53;设备中处理器50的数量可以是一个或多个,图8中以一个处理器50为例;设备中的处理器50、存储器51、输入装置52和输出装置53可以通过总线或其他方式连接,图8中以通过总线连接为例。
存储器51作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的冲击荷载自动化识别方法对应的程序指令/模块。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的冲击荷载自动化识别方法。
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51可进一步包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置52可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置53可包括显示屏等显示设备。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现任一实施例的冲击荷载自动化识别方法。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案。
Claims (9)
1.一种冲击荷载自动化识别方法,其特征在于,包括:
远程实时获取待监测结构表面一正方形区域四个顶角位置处四个碳纳米管复合传感器的电阻;
如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置;
其中,每个碳纳米管复合传感器为压阻式压力传感器,内置于所述待监测结构内侧;每个碳纳米管复合传感器包括:水泥基复合材料,以及分散在所述水泥基复合材料中的碳纳米管;每个碳纳米管复合传感器的尺寸根据传感器泊松比确定,所述尺寸使得所述碳纳米管复合传感器对一个方向的冲击荷载的响应突出于其他方向。
2.根据权利要求1所述的方法,其特征在于,每个碳纳米管复合传感器为长方体;每个碳纳米管复合传感器的尺寸确定过程包括如下操作:
确定一碳纳米管复合传感器的宽度和高度相等;
根据传感器泊松比,确定所述碳纳米管复合传感器的长度和宽度的比值,使所述泊松比与所述比值的乘积大于或等于设定阈值。
3.根据权利要求1所述的方法,其特征在于,如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置,包括:
如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据每个碳纳米管复合传感器的电阻变化,计算所述正方形区域受到的冲击荷载对每个碳纳米管复合传感器的影响系数;
根据以下公式,计算所述冲击荷载的位置:
F 1=[(L 12 - d 12)/L 12] ∙ [(L 13 - d 13)/L 13](1)
F 2=[(L 21 - d 21)/L 21] ∙ [(L 24 - d 24)/L 24](2)
F 3=[(L 34 - d 34)/L 34] ∙ [(L 31 - d 31)/L 31](3)
F 4=[(L 43 - d 43)/L 43] ∙ [(L 42 - d 42)/L 42](4)
其中,F i 分别表示所述冲击荷载对所述四个碳纳米管复合传感器中第i个传感器的荷载系数,i=1、2、3、4;L ij 表示从第i个传感器的位置到第j个传感器的位置的向量的长度,j=1、2、3、4,且j不等于i;d ij 表示从第i传感器的位置到所述冲击荷载的位置的向量在L ij 上的投影的长度。
4.根据权利要求3所述的方法,其特征在于,根据每个碳纳米管复合传感器的电阻变化,计算所述正方形区域受到的冲击荷载对每个碳纳米管复合传感器的影响系数,包括:
获取每个碳纳米管复合传感器的电阻变化与影响系数的关系的基本形式:
μ i F i = ΔR i / R i (5)
其中,ΔR i 表示第i个碳纳米管复合传感器的电阻变化,R i 表示第i个碳纳米管复合传感器的的初始电阻,F i 表示第i个碳纳米管复合传感器的影响系数;μ i 表示第i个碳纳米管复合传感器的传感器系数,用于反映第i个碳纳米管复合传感器的影响系数与电阻变化率之间的关系;
通过第i个碳纳米管复合传感器在不同冲击荷载下的电阻变化,标定第i个碳纳米管复合传感器的传感器系数。
5.根据权利要求1所述的方法,其特征在于,如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置之后,还包括:
将识别的位置输入训练好的深度学习模型,预测所述冲击荷载的最终位置,所述训练好的深度学习模型用于减小所述冲击荷载的实际位置与所述识别的位置之间的误差。
6.根据权利要求5所述的方法,其特征在于,将识别的位置输入训练好的深度学习模型,预测所述冲击荷载的最终位置之前,还包括:
在所述正方形区域内依次加载多次冲击荷载;
实时获取所述四个碳纳米管复合传感器的电阻;
如果所述四个碳纳米管复合传感器的电阻在一定时长内均发生变化,根据所述四个碳纳米管复合传感器的电阻变化,识别所述正方形区域受到的冲击荷载的位置;
以识别的位置为训练样本输入深度学习模型进行训练,使所述深度学习模型的输出逼近所述冲击荷载的实际位置。
7.根据权利要求1-6任一所述的方法,其特征在于,所述待监测结构为桥墩,所述冲击荷载来自于船舶碰撞,所述四个碳纳米管复合传感器安装于所述桥墩内;
远程实时获取待监测结构表面一正方形区域四个顶角位置处四个碳纳米管复合传感器的电阻,包括:
根据所述桥墩的通航环境,确定所述桥墩上发生船舶碰撞的区域范围;
根据所述区域范围,确定所述正方形区域。
8.一种电子设备,其特征在于,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的冲击荷载自动化识别方法。
9.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一所述的冲击荷载自动化识别方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210386918.9A CN114459657B (zh) | 2022-04-14 | 2022-04-14 | 冲击荷载自动化识别方法、电子设备和存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210386918.9A CN114459657B (zh) | 2022-04-14 | 2022-04-14 | 冲击荷载自动化识别方法、电子设备和存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114459657A true CN114459657A (zh) | 2022-05-10 |
CN114459657B CN114459657B (zh) | 2022-07-01 |
Family
ID=81418578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210386918.9A Active CN114459657B (zh) | 2022-04-14 | 2022-04-14 | 冲击荷载自动化识别方法、电子设备和存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114459657B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2938283A1 (es) * | 2022-05-27 | 2023-04-05 | Thenextpangea S L | Dispositivo y sistema para monitorizar una deformacion de una estanteria |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5770791A (en) * | 1996-06-14 | 1998-06-23 | Manahan, Sr.; Michael Peter | Method and apparatus for accurate measurement of impact fracture behavior |
CN101000293A (zh) * | 2007-01-18 | 2007-07-18 | 南京航空航天大学 | 飞行器层合结构冲击位置的监测方法及其监测装置 |
US20100255303A1 (en) * | 2008-12-03 | 2010-10-07 | Massachusetts Institute Of Technology | Multifunctional composites based on coated nanostructures |
US20110094315A1 (en) * | 2003-09-22 | 2011-04-28 | Mark Anthony Darty | Method and apparatus for sensing applied forces |
CN102680943A (zh) * | 2012-05-16 | 2012-09-19 | 常州第二电子仪器有限公司 | 爆心投影点定位系统 |
CN202453128U (zh) * | 2012-03-14 | 2012-09-26 | 山东科技大学 | 一种碳纳米管水泥基复合材料传感器 |
CN102924020A (zh) * | 2012-10-26 | 2013-02-13 | 青岛理工大学 | 压阻/压电复合材料及制法及采用该材料的传感器及制法 |
CN103853885A (zh) * | 2014-02-24 | 2014-06-11 | 昆明理工大学 | 一种多壁碳纳米管非线性振动特性预测方法 |
CN104019739A (zh) * | 2014-05-08 | 2014-09-03 | 南京航空航天大学 | 基于分布式光纤光栅传感网络的板结构冲击载荷定位方法 |
CN104483049A (zh) * | 2014-12-12 | 2015-04-01 | 南京航空航天大学 | 基于ar模型与马氏距离的光纤光栅传感动态载荷辨识方法 |
CN104517036A (zh) * | 2014-12-22 | 2015-04-15 | 华中科技大学 | 一种基于应变统计矩的简支件损伤识别方法 |
CN107228724A (zh) * | 2017-05-24 | 2017-10-03 | 中南大学 | 桥梁动力冲击系数提取方法 |
CN107462479A (zh) * | 2017-08-02 | 2017-12-12 | 中国地震局工程力学研究所 | 用于落锤试验机的测试平台以及落锤试验方法 |
US20180045588A1 (en) * | 2016-08-12 | 2018-02-15 | The Hong Kong Polytechnic University | Coated Nanofiller/Polymer Composite Sensor Network for Guided-Wave-Based Structural Health Monitoring |
CN108051322A (zh) * | 2017-11-30 | 2018-05-18 | 北京航空航天大学 | 一种混凝土疲劳冲击试验装置及其试验方法 |
US20180224352A1 (en) * | 2016-06-30 | 2018-08-09 | Southeast University | Bridge inspection and evaluation method based on impact vibration |
CN109000876A (zh) * | 2018-04-28 | 2018-12-14 | 南京航空航天大学 | 基于自动编码器深度学习的sns光纤冲击识别方法 |
CN110399683A (zh) * | 2019-07-27 | 2019-11-01 | 哈尔滨工业大学 | 基于频域幅值谱相似性滤波技术的桥梁冲击系数提取方法 |
CN110489920A (zh) * | 2019-08-28 | 2019-11-22 | 湘潭大学 | 损伤状态挠度曲率的等截面梁损伤识别方法 |
CN110619106A (zh) * | 2019-07-25 | 2019-12-27 | 中际物联科技(深圳)有限公司 | 一种桥梁损伤定位方法及其定量方法 |
CN111353228A (zh) * | 2020-02-28 | 2020-06-30 | 山东大学 | 一种复合材料层合板冲击响应建模方法 |
CN112464337A (zh) * | 2020-11-20 | 2021-03-09 | 西安近代化学研究所 | 一种近场爆炸下简支钢筋混凝土梁弯曲动抗力计算方法 |
CN112666261A (zh) * | 2020-12-11 | 2021-04-16 | 河海大学 | 一种基于声模态叠加的铝板冲击载荷的定位分析方法 |
CN213715902U (zh) * | 2020-09-30 | 2021-07-16 | 深圳纽迪瑞科技开发有限公司 | 压力触摸板 |
CN114137587A (zh) * | 2021-12-01 | 2022-03-04 | 西南交通大学 | 一种运动对象的位置估计与预测方法、装置、设备及介质 |
CN114323365A (zh) * | 2021-12-21 | 2022-04-12 | 青岛理工大学 | 静动态三维微裂纹扩展传感器制备方法、传感器及设备 |
-
2022
- 2022-04-14 CN CN202210386918.9A patent/CN114459657B/zh active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5770791A (en) * | 1996-06-14 | 1998-06-23 | Manahan, Sr.; Michael Peter | Method and apparatus for accurate measurement of impact fracture behavior |
US20110094315A1 (en) * | 2003-09-22 | 2011-04-28 | Mark Anthony Darty | Method and apparatus for sensing applied forces |
CN101000293A (zh) * | 2007-01-18 | 2007-07-18 | 南京航空航天大学 | 飞行器层合结构冲击位置的监测方法及其监测装置 |
US20100255303A1 (en) * | 2008-12-03 | 2010-10-07 | Massachusetts Institute Of Technology | Multifunctional composites based on coated nanostructures |
CN202453128U (zh) * | 2012-03-14 | 2012-09-26 | 山东科技大学 | 一种碳纳米管水泥基复合材料传感器 |
CN102680943A (zh) * | 2012-05-16 | 2012-09-19 | 常州第二电子仪器有限公司 | 爆心投影点定位系统 |
CN102924020A (zh) * | 2012-10-26 | 2013-02-13 | 青岛理工大学 | 压阻/压电复合材料及制法及采用该材料的传感器及制法 |
CN103853885A (zh) * | 2014-02-24 | 2014-06-11 | 昆明理工大学 | 一种多壁碳纳米管非线性振动特性预测方法 |
CN104019739A (zh) * | 2014-05-08 | 2014-09-03 | 南京航空航天大学 | 基于分布式光纤光栅传感网络的板结构冲击载荷定位方法 |
CN104483049A (zh) * | 2014-12-12 | 2015-04-01 | 南京航空航天大学 | 基于ar模型与马氏距离的光纤光栅传感动态载荷辨识方法 |
CN104517036A (zh) * | 2014-12-22 | 2015-04-15 | 华中科技大学 | 一种基于应变统计矩的简支件损伤识别方法 |
US20180224352A1 (en) * | 2016-06-30 | 2018-08-09 | Southeast University | Bridge inspection and evaluation method based on impact vibration |
US20180045588A1 (en) * | 2016-08-12 | 2018-02-15 | The Hong Kong Polytechnic University | Coated Nanofiller/Polymer Composite Sensor Network for Guided-Wave-Based Structural Health Monitoring |
CN107228724A (zh) * | 2017-05-24 | 2017-10-03 | 中南大学 | 桥梁动力冲击系数提取方法 |
CN107462479A (zh) * | 2017-08-02 | 2017-12-12 | 中国地震局工程力学研究所 | 用于落锤试验机的测试平台以及落锤试验方法 |
CN108051322A (zh) * | 2017-11-30 | 2018-05-18 | 北京航空航天大学 | 一种混凝土疲劳冲击试验装置及其试验方法 |
CN109000876A (zh) * | 2018-04-28 | 2018-12-14 | 南京航空航天大学 | 基于自动编码器深度学习的sns光纤冲击识别方法 |
CN110619106A (zh) * | 2019-07-25 | 2019-12-27 | 中际物联科技(深圳)有限公司 | 一种桥梁损伤定位方法及其定量方法 |
CN110399683A (zh) * | 2019-07-27 | 2019-11-01 | 哈尔滨工业大学 | 基于频域幅值谱相似性滤波技术的桥梁冲击系数提取方法 |
CN110489920A (zh) * | 2019-08-28 | 2019-11-22 | 湘潭大学 | 损伤状态挠度曲率的等截面梁损伤识别方法 |
CN111353228A (zh) * | 2020-02-28 | 2020-06-30 | 山东大学 | 一种复合材料层合板冲击响应建模方法 |
CN213715902U (zh) * | 2020-09-30 | 2021-07-16 | 深圳纽迪瑞科技开发有限公司 | 压力触摸板 |
CN112464337A (zh) * | 2020-11-20 | 2021-03-09 | 西安近代化学研究所 | 一种近场爆炸下简支钢筋混凝土梁弯曲动抗力计算方法 |
CN112666261A (zh) * | 2020-12-11 | 2021-04-16 | 河海大学 | 一种基于声模态叠加的铝板冲击载荷的定位分析方法 |
CN114137587A (zh) * | 2021-12-01 | 2022-03-04 | 西南交通大学 | 一种运动对象的位置估计与预测方法、装置、设备及介质 |
CN114323365A (zh) * | 2021-12-21 | 2022-04-12 | 青岛理工大学 | 静动态三维微裂纹扩展传感器制备方法、传感器及设备 |
Non-Patent Citations (6)
Title |
---|
MADHUR GUPTA.: "Smart damping of a simply supported laminated CNT-based hybrid composite plate using FE approach", 《THIN-WALLED STRUCTURES》 * |
薛婷等: "基于一阶剪切变形理论的CNTRC板的自由振动分析", 《机械工程学报》 * |
许锋等: "基于小波变换的冲击载荷定位研究", 《中国机械工程》 * |
谢龙等: "构造应力作用下巷道底板冲击破坏的原因分析", 《煤矿安全》 * |
郭健等: "基于柔度矩阵的跨海大桥非通航孔桥船撞损伤识别", 《桥梁建设》 * |
陈强等: "跨既有铁路桥梁施工的固定式防护结构抗碰撞性能分析", 《铁道建筑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2938283A1 (es) * | 2022-05-27 | 2023-04-05 | Thenextpangea S L | Dispositivo y sistema para monitorizar una deformacion de una estanteria |
Also Published As
Publication number | Publication date |
---|---|
CN114459657B (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chung | Self-sensing concrete: from resistance-based sensing to capacitance-based sensing | |
Ding et al. | Development of sensing concrete: Principles, properties and its applications | |
Cosoli et al. | Electrical resistivity and electrical impedance measurement in mortar and concrete elements: A systematic review | |
Materazzi et al. | Carbon nanotube cement-based transducers for dynamic sensing of strain | |
Downey et al. | Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives | |
Azhari et al. | Carbon fiber-reinforced cementitious composites for tensile strain sensing | |
Han et al. | Sensing properties of CNT-filled cement-based stress sensors | |
Reddy et al. | Structural health monitoring methods, dispersion of fibers, micro and macro structural properties, sensing, and mechanical properties of self‐sensing concrete—A review | |
CN114459657B (zh) | 冲击荷载自动化识别方法、电子设备和存储介质 | |
Cassese et al. | Applications of cement-based smart composites to civil structural health monitoring: a review | |
Galao et al. | Carbon nanofiber cement sensors to detect strain and damage of concrete specimens under compression | |
He et al. | A passive and wireless sensor based on RFID antenna for detecting mechanical deformation | |
Shi et al. | Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling | |
Ramachandran et al. | A review on principles, theories and materials for self sensing concrete for structural applications | |
D’Alessandro et al. | Smart infrastructure monitoring through self-sensing composite sensors and systems: A study on smart concrete sensors with varying carbon-based filler | |
D’Alessandro et al. | Strain measurement in a reinforced concrete beam using embedded smart concrete sensors | |
Sha et al. | Mechanical sensing properties of embedded smart piezoelectric sensor for structural health monitoring of concrete | |
Jiang et al. | Resistance measurement for monitoring bending cracks in steel fiber concrete beams test | |
Maier | The effect of moisture and reinforcement on the self-sensing properties of hybrid-fiber-reinforced concrete | |
Li et al. | Self-sensing cement-based sensors for structural health monitoring toward smart infrastructure | |
Pieper et al. | Embedded FSS sensing for structural health monitoring of bridge columns | |
Yang et al. | Dispersion and pressure sensitivity of carbon nanofiber-reinforced polyurethane cement | |
Ogunniyi et al. | Investigation of electrically isolated capacitive sensing skins on concrete to reduce structure/sensor capacitive coupling | |
Wang et al. | Intrinsic self-sensing concrete to energize infrastructure intelligence and resilience: A review | |
Monteiro et al. | Carbon nanoparticles cement-based materials for service life monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |