CN114450304A - 抗苗勒管抑制物质抗体及其用途 - Google Patents

抗苗勒管抑制物质抗体及其用途 Download PDF

Info

Publication number
CN114450304A
CN114450304A CN202080066663.7A CN202080066663A CN114450304A CN 114450304 A CN114450304 A CN 114450304A CN 202080066663 A CN202080066663 A CN 202080066663A CN 114450304 A CN114450304 A CN 114450304A
Authority
CN
China
Prior art keywords
mis
seq
antibody
sequence shown
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080066663.7A
Other languages
English (en)
Other versions
CN114450304B (zh
Inventor
A·佩勒格林
B·罗伯特
P·马蒂诺
M·肖万
M·申图夫
N·迪克莱门特-贝斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Montpellier I
Institut National de la Sante et de la Recherche Medicale INSERM
Sorbonne Universite
Institut Regional du Cancer de Montpellier
Original Assignee
Universite de Montpellier I
Institut National de la Sante et de la Recherche Medicale INSERM
Sorbonne Universite
Institut Regional du Cancer de Montpellier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Montpellier I, Institut National de la Sante et de la Recherche Medicale INSERM, Sorbonne Universite, Institut Regional du Cancer de Montpellier filed Critical Universite de Montpellier I
Publication of CN114450304A publication Critical patent/CN114450304A/zh
Application granted granted Critical
Publication of CN114450304B publication Critical patent/CN114450304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/26Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

在卵巢癌中,苗勒管抑制物质(MIS)II型受体(MISRII)和MIS/MISRII信号传导通路是潜在的治疗靶标。相应地,三种MIS I型受体(MISR1;ALK2、ALK3和ALK6)在该癌症中的作用需要阐明。使用四种卵巢癌细胞系和分离自患者肿瘤腹水的卵巢癌细胞,发明人发现ALK2和ALK3是分别在低和高MIS浓度下参与MIS信号传导的两个主要的MISRI。此外,高MIS浓度与细胞凋亡和克隆源性存活下降有关,而低MIS浓度则提高癌细胞活力。最后,发明人表明抗MIS抗体B10抑制MIS的促存活作用。这些最终结果为抑制MIS增殖效应的创新治疗方法的开辟新的途径,而非施用高剂量的MIS以诱导癌细胞凋亡。

Description

抗苗勒管抑制物质抗体及其用途
技术领域
本发明涉及抗苗勒管抑制物质(MIS)抗体及其在有需要的受试者中治疗MIS或MISRII阳性癌症,并且更特别地,治疗妇科癌症、肺癌或结直肠癌中的用途。
背景技术
苗勒管抑制物质(MIS)是TGFβ家族成员,通过结合其募集I型受体(MISRI:ALK2、ALK3和ALK6)的特异性受体(MIS II型受体;MISRII)而发挥作用。MISRI磷酸化诱导SMAD 1/5/8磷酸化及其迁移到细胞核中,其中通过SMAD4,它们调节不同的相应基因,这取决于靶组织(di Clemente等,2010;Josso和Clemente,2003)。临床前体外和体内研究结果以及来自临床样品的数据(Bakkum-Gamez等,2008;Masiakos等,1999;Meirelles等,2012;Pépin等,2015;Renaud等,2005;Wei等,2010)已经证明,MISRII和MIS/MISRII信号传导通路是妇科肿瘤,特别是卵巢癌的潜在治疗靶标(Kim等,2014)。该信号级联可使用重组MIS或抗MISRII抗体被靶向。然而,重组MIS的使用受到与生产足够数量的生物活性MIS及其在肿瘤部位的递送相关的阻碍(Donahoe等,2003)。最近,Pépin等人描述了使用基因治疗的原始生产策略和替代输送方法(尚未进入临床阶段)(Pépin等人,2013,2015)。在抗MISRII抗体(Salhi等,2004)和抗体片段(Yuan等,2006,2008)中,单克隆抗体(MAb)12G4及其人源化版本已经在临床前研究中得到广泛的评估(Bougherara等,2017;Estupina等,2017;Gill等人,2017;Kersual等,2014),并且人源化抗体(GM-102或莫伦妥单抗)目前正在临床试验进行测试(NCT02978755、NCT03799731)。糖工程化的莫伦妥单抗的作用机制涉及抗体依赖性细胞介导的细胞毒性和抗体依赖性细胞的吞噬作用,但几乎没有细胞凋亡,这表明该效应与MIS信号传导通路不直接相关(Bougherara等,2017;Estupina等,2017)。事实上,在MISRII阳性的癌细胞中,MIS抑制增殖并诱导细胞凋亡。
为了理解为什么MIS信号传导通路与该抗MISRII MAb的作用机制不相关,发明人分析了三种MISRI(ALK2、ALK3和ALK6)在卵巢癌细胞系和从分离自卵巢癌患者腹水样品的癌细胞中的作用。事实上,尽管ALK2、ALK3和ALK6在几种细胞类型中的作用已经在发育过程中和其他生理条件下被研究(Belville等,2005;Clarke等,2001;Josso等,1998;Orvis等,2008;Sèdes等,2013;Visser等,2001;Zhan等,2006),但很少有数据可用于癌症。Basal等人证明MISRII、ALK2、ALK3和ALK6在上皮性卵巢癌中表达(262个样品的免疫组化分析),但未评估其具体作用(Basal等,2016)。
在本文中,发明人发现ALK2和ALK3是四个卵巢癌细胞系(源自两种上皮性卵巢肿瘤和两种性索间质肿瘤,包括一个颗粒细胞肿瘤)中用于MIS信号传导的两个主要MISRI,并且它们根据MIS浓度具有不同的作用。他们随后表明,使用MIS siRNA和新的抗MIS抗体B10可以抑制低浓度(低于0.5至13nM)下MIS对癌细胞活力的促进。这一观察开辟了抑制MIS增殖作用的创新治疗方法的途径,而不是施用高剂量的MIS以诱导细胞凋亡。
发明概述
在卵巢癌中,苗勒管抑制物质(MIS)II型受体(MISRII)和MIS/MISRII信号传导通路是潜在的治疗靶标。使用四种卵巢癌细胞系和分离自患者肿瘤腹水的卵巢癌细胞,发明人发现ALK2和ALK3分别是在低和高MIS浓度下参与MIS信号传导的两个主要的MISRI。此外,高MIS浓度与细胞凋亡和降低的克隆源性存活相关,而低MIS浓度提高癌细胞活力。最后,本发明人表明MIS siRNA和抗MIS抗体B10抑制MIS促存活作用。这些最终结果开辟了抑制MIS增殖作用的创新治疗方法的途径,而不是施用高剂量的MIS以诱导癌细胞凋亡。
因此,本发明涉及苗勒管抑制物质(MIS)抗体及其在有需要的受试者中治疗MIS或MISRII阳性癌症中的用途。更特别地,本发明由其权利要求书限定。
发明详述
定义
如本文所用,术语“苗勒管抑制物质”或“MIS”,也称为“抗苗勒管激素”或是“AMH”,具有其在本领域的一般含义,且指结构上与来自转化生长因子β(TGFβ)超家族的抑制素和活化素相关的糖蛋白激素,其在生长分化和卵泡生成中起关键作用。MIS是由人染色体19p13.3上的AMH基因编码的140kDa二聚糖蛋白。其entrez参考号为268并且其Uniprot参考号为P03971。MIS通过结合其募集I型受体(MISR1或AMHR1)的特异性MIS II型受体(MISRII或AMHR2)而发挥作用。
如本文所用,术语“苗勒管抑制物质II型受体”或“MISRII”(也称为“AMHR2”)具有其在本领域中的一般含义。MISRII由人染色体12q13.13上的AMHR2基因编码。其entrez参考号为269,并且其Uniprot参考号为Q16671。
如本文所用,术语“苗勒管抑制物质I型受体”或“MISR1”(也称为“AMHR1”)具有其在本领域中的一般含义。ALK2、ALK3和ALK6是MISRI的三种变体。MISRI磷酸化诱导SMAD 1/5/8磷酸化并通过SMAD4调节不同的响应基因,这取决于靶组织。
如本文所用,术语“ALK2”指“活化受体样激酶2”,也称为“活化A I型受体”,具有其在本领域中的一般含义,并且是指由人染色体2q24.1上的ACVR1基因编码的蛋白质。其entrez参考号为90,并且其Uniprot参考号为Q04771。
如本文所用,术语“ALK3”指“活化受体样激酶3”,也称为“人骨形成蛋白1A型受体”(BMPR-1A),具有其在本领域中的一般含义,并且是指由人染色体10q23.2上的BMPR1A基因编码的蛋白质。其entrez参考号为657,并且其Uniprot参考号为P36894。
如本文所用,术语“ALK6”指“活化受体样激酶6”,也称为“人骨形成蛋白1B型受体”,具有其在本领域中的一般含义,并且指由人染色体4q22.3上的BMPR1B基因编码的蛋白质。其entrez参考号为658,并且其Uniprot参考号为O00238。
如本文所用,术语“抗体”或“免疫球蛋白”具有相同的含义,且将在本发明中同等使用。如本文所用,术语“抗体”是指免疫球蛋白分子和免疫球蛋白分子的免疫活性部分,即,含有免疫特异性结合抗原的抗原结合位点的分子。因此,术语抗体不仅涵盖完整抗体分子,还涵盖抗体片段以及抗体和抗体片段的变体(包括衍生物)。在天然抗体中,两条重链通过二硫键相互连接,并且每条重链通过二硫键与轻链连接。有两种类型的轻链,lambda(1)和kappa(κ)。有五种主要的重链类别(或同种型),其决定抗体分子的功能活性:IgM、IgD、IgG、IgA和IgE。每条链含有不同的序列结构域。轻链包括两个结构域,可变结构域(VL)和恒定结构域(CL)。重链包括四个结构域,可变结构域(VH)和三个恒定结构域(CH1、CH2和CH3,统称为CH)。轻链(VL)和重链(VH)的可变结构域决定了对抗原的结合识别和特异性。轻链(CL)和重链(CH)的恒定区结构域赋予重要的生物学特性,例如抗体链结合、分泌、经胎盘移动、补体结合和与Fc受体(FcR)结合。Fv片段是免疫球蛋白的Fab片段的N-末端部分,并且由一条轻链和一条重链的可变部分组成。抗体的特异性在于抗体结合位点和抗原决定簇之间的结构互补性。抗体结合位点由主要来自高变区或互补决定区(CDR)的残基组成。偶尔,来自非高变区或框架区(FR)的残基可参与抗体结合位点或影响整个结构域的结构并因此影响结合位点。互补决定区或CDR是指一起定义天然免疫球蛋白结合位点的天然Fv区的结合亲和力和特异性的氨基酸序列。免疫球蛋白的轻链和重链各自具有三个CDR,分别称为L-CDR1、L-CDR2、L-CDR3和H-CDR1、H-CDR2、H-CDR3。因此,抗原结合位点典型地包括六个CDR,其包含来自重链和轻链V区的每一个的CDR组。框架区(FR)是指插入CDR之间的氨基酸序列。
在本发明的上下文中,本发明抗体的氨基酸残基根据IMGT编号系统编号。已定义IMGT独特编号以比较可变结构域,无论抗原受体、链类型或物种为何(Lefranc M.-P.,"Unique database numbering system for immunogenetic analysis"Immunology Today,18,509(1997);Lefranc M.-P.,"The IMGT unique numbering for Immunoglobulins,Tcell receptors and Ig-like domains"The Immunologist,7,132-136(1999).;Lefranc,M.-P.,Pommié,C.,Ruiz,M.,Giudicelli,V.,Foulquier,E.,Truong,L.,Thouvenin-Contet,V.and Lefranc,G.,"IMGT unique numbering for immunoglobulinand T cell receptor variable domains and Ig superfamily V-like domains"Dev.Comp.Immunol.,27,55-77(2003))。在IMGT独特编号中,保守氨基酸总是具有相同的位置,例如半胱氨酸23、色氨酸41、疏水氨基酸89、半胱氨酸104、苯丙氨酸或色氨酸118。IMGT独特编号提供以下的标准化划界:框架区(FR1-IMGT:位置1-26,FR2-IMGT:39-55,FR3-IMGT:66-104和FR4-IMGT:118-128)和互补决定区:CDR1-IMGT:27-38,CDR2-IMGT:56-65和CDR3-IMGT:105-117。如果CDR3-IMGT长度小于13个氨基酸,则以111、112、110、113、109、114等的顺序从环的顶部产生空位。如果CDR3-IMGT长度超过13个氨基酸,则在CDR3-IMGT环顶部的位置111和112之间以112.1、111.1、112.2、111.2、112.3、111.3等的顺序产生额外的位置(http://www.imgt.org/IMGTScientificChart/Nomenclature/IMGT-FRCDRdefinition.html)。
如本文所用,术语“氨基酸序列”具有其一般含义并且是赋予蛋白质其一级结构的氨基酸序列。根据本发明,可以用一个、两个或三个保守氨基酸取代来修饰氨基酸序列,而相互作用结合能力没有明显损失。“保守氨基酸取代”是指一个氨基酸可以被另一个具有相似侧链的氨基酸替换。本领域已经定义了具有相似侧链的氨基酸家族,包括碱性侧链(例如赖氨酸、精氨酸、组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、不带电荷的极性侧链(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸)、非极性侧链(例如甘氨酸、半胱氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸)、β-支链侧链(例如苏氨酸、缬氨酸、异亮氨酸)和芳族侧链(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)。
根据本发明,第一氨基酸序列与第二氨基酸序列具有至少70%的同一性意味着第一序列与第二氨基酸序列具有70;71;72;73;74;75;76;77;78;79;80;81;82;83;84;85;86;87;88;89;90;91;92;93;94;95;96;97;98;或99%的同一性。氨基酸序列同一性典型地使用合适的序列比对算法和默认参数确定,例如BLAST P(Karlin and Altschul,1990)。
根据本发明的含义,“同一性”通过在比较窗口中比较两个比对序列来计算。序列比对允许测定比较窗口中两个序列的共同位置(核苷酸或氨基酸)数。因此,将共同位置数除以比较窗口中的总位置数,再乘以100即可获得同一百分比。序列的同一性百分比的测定可以手动进行,也可以借助众所周知的计算机程序进行。
如本文所用,术语“纯化的”和“分离的”涉及本发明的抗体或多肽,并且是指抗体或多肽在基本上不存在相同类型的其他生物大分子的情况下存在。如本文所用,术语“纯化的”优选是指与存在的大分子的总重量相比,至少75重量%,更优选至少85重量%,甚至更优选至少95重量%,更优选至少98重量%的抗体。
如本文所用,术语“特异性”是指抗体可检测地结合抗原(如MIS)上呈递的表位,同时与非MIS蛋白具有相对较小的可检测反应性的能力。如本文其他地方所述,使用例如Biacore仪器通过结合或竞争性结合测定可以相对测定特异性。特异性可以通过例如与其他无关分子的非特异性结合相比,与特异性抗原结合的约10:1、约20:1、约50:1、约100:1、10,000:1或更高比例的亲和力/亲合力来表现(在这种情况下,特异性抗原是MIS)。
如本文所用,术语“亲和力”是指抗体与表位结合的强度。抗体的亲和力由解离常数Kd给出,定义为[Ab]x[Ag]/[Ab-Ag],其中[Ab-Ag]是抗体-抗原复合物的摩尔浓度,[Ab]是未结合抗体的摩尔浓度,[Ag]是未结合抗原的摩尔浓度。亲和常数Ka定义为1/Kd。测定mAb亲和力的优选方法可参见Harlow等,Antibodies:A Laboratory Manual,Cold SpringHarbor Laboratory Press,Cold Spring Harbor,N.Y.,1988),Coligan等,eds.,CurrentProtocols in Immunology,Greene Publishing Assoc.and Wiley Interscience,N.Y.,(1992,1993),和Muller,Meth.Enzymol.92:589-601(1983),其通过引用整体并入本文。本领域熟知的用于测定mAb亲和力的优选标准方法是使用Biacore仪器。
如本文所用,术语“单克隆抗体”、“单克隆Ab”、“单克隆抗体组合物”、“mAb”等是指单分子组合物的抗体分子的制剂。单克隆抗体组合物显示对特定表位的单一结合特异性和亲和力。
如本文所用,术语“核酸分子”具有其在本领域中的一般含义并且是指DNA或RNA分子。
抗体
本申请中的目标序列如下表1所示:
Figure BDA0003559438070000071
Figure BDA0003559438070000081
本发明的第一方面涉及抗苗勒管抑制物质(MIS)抗体,特别是以纯化形式或分离形式。
因此,本发明人涉及分离的抗苗勒管抑制物质(MIS)抗体,其包含:
(a)重链,其中可变结构域包含具有SEQ ID NO:1所示序列的H-CDR1;具有SEQ IDNO:2或SEQ ID NO:3所示序列的H-CDR2;具有SEQ ID NO:4所示序列的H-CDR3;和
(b)轻链,其中可变结构域包含具有SEQ ID NO:5所示序列的L-CDR1;具有SEQ IDNO:6所示序列的L-CDR2;具有SEQ ID NO:7所示序列的L-CDR3(“B10衍生物”)。
因此,本发明提供包含B10的VL区、VH区或一个或多个CDR的功能性变体的抗体。在本发明的单克隆抗体的上下文中使用的VL、VH或CDR的功能性变体仍允许抗体保留亲本抗体(即B10抗体)的至少相当大比例(至少约50%、60%、70%、80%、90%、95%或更多)的亲和力/亲合力和/或特异性/选择性,并且在某些情况下,本发明的这种单克隆抗体可具有比亲本Ab更高的亲和力、选择性和/或特异性。这种变体可以通过多种亲和力成熟方案获得,包括突变CDR(Yang等,J.Mol.Biol.,254,392-403,1995)、链替换(Marks等,Bio/Technology,10,779-783,1992)、使用大肠杆菌的突变菌株(Low等,J.Mol.Biol.,250,359-368,1996)、DNA改组(Patten等,Curr.Opin.Biotechnol.,8,724-733,1997)、噬菌体展示(Thompson等,J.Mol.Biol.,256,77-88,1996)和有性PCR(Crameri等,Nature,391,288-291,1998)。Vaughan等(以上)讨论了这种亲和力成熟的方法。这种功能性变体典型地保留显著的与亲本Ab的序列同一性。CDR变体的序列可通过大多数保守性替换与亲本抗体序列的CDR序列不同,例如变体中至少约35%、约50%或更多、约60%或更多、约70%或更多、约75%或更多、约80%或更多、约85%或更多、约90%或更多(例如,约65%-95%,例如约92%、93%或94%)的替换是保守性氨基酸残基替代。CDR变体的序列可通过大多数保守性替换与亲本抗体序列的CDR序列不同,例如变体中至少10个,例如至少9个、8个、7个、6个、5个、4个、3个、2个或1个替换是保守性氨基酸残基替代。在本发明上下文中,保守性替换可以定义为如下所反映的氨基酸类别内的替换:
脂族残基I、L、V和M。
环烯基相关残基F、H、W和Y。
疏水性残基A、C、F、G、H、I、L、M、R、T、V、W和Y。
带负电荷的残基D和E。
极性残基C、D、E、H、K、N、Q、R、S和T。
带正电荷的残基H、K和R。
小残基A、C、D、G、N、P、S、T和V。
非常小的残基A、G和S。
涉及转角的残基A、C、D、E、G、H、K、N,Q、R、S、P和涉及形成的残基T。
柔性残基Q、T、K、S、G、P、D、E和R。
更多的保守性替换分组包括:缬氨酸-亮氨酸-异亮氨酸、苯丙氨酸-酪氨酸、赖氨酸-精氨酸、丙氨酸-缬氨酸和天冬酰胺-谷氨酰胺。与B10的CDR相比,变体CDR中基本上保留了在亲水(hydropathic)/亲水性质和残基重量/大小方面的保守性。本领域通常理解亲水氨基酸指数在赋予蛋白质相互作用的生物学功能方面的重要性。已经接受的是,氨基酸的相对亲水特性有助于所得蛋白质的二级结构,这又限定了蛋白质与其他分子(例如酶、底物、受体、DNA、抗体、抗原等)的相互作用。根据它们的疏水性和电荷特征,为每种氨基酸指定了亲水指数,它们是:异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);蛋氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5);谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9)和精氨酸(-4.5)。类似残基的保留也可以或替代地通过相似性得分来测量,如使用BLAST程序来测定(例如,可通过NCBI获得的BLAST 2.2.8,使用标准设置BLOSUM62,Open Gap=11和Extended Gap=1)。合适的变体典型地表现出与亲本肽至少约70%的同一性。
因此,在一些实施方案中,分离的抗MIS抗体包含:
(a)可变重链,其与SEQ ID NO:8或SEQ ID NO:9所示序列具有至少70%的同一性;和
(b)可变轻链,其与SEQ ID NO:10所示序列具有至少70%的同一性。
在一些实施方案中,分离的抗MIS抗体包含:
(a)可变重链,其与SEQ ID NO:8所示序列具有至少70%的同一性,其中可变结构域包含具有SEQ ID NO:1所示序列的VH-CDR1;具有SEQ ID NO:2所示序列的VH-CDR2;具有SEQ ID NO:4所示序列的VH-CDR3;和
(b)可变轻链,其与SEQ ID NO:10所示序列具有至少70%的同一性,其中可变结构域包含具有SEQ ID NO:5所示序列的VL-CDR1;具有SEQ ID NO:6所示序列的VL-CDR2;具有SEQ ID NO:7所示序列的VL-CDR3(“天然B10”)。
在一些实施方案中,分离的抗MIS抗体包含:
(c)可变重链,其与SEQ ID NO:9所示序列具有至少70%的同一性,其中可变结构包含具有SEQ ID NO:1所示序列的VH-CDR1;具有SEQ ID NO:3所示序列的VH-CDR2;具有SEQID NO:4所示序列的VH-CDR3;和
(d)可变轻链,其与SEQ ID NO:10所示序列具有至少70%的同一性,其中可变结构包含具有SEQ ID NO:5所示序列的VL-CDR1;具有SEQ ID NO:6所示序列的VL-CDR2;具有SEQID NO:7所示序列的VL-CDR3(“B10衍生物”)。
在一些实施方案中,分离的抗MIS抗体包含具有SEQ ID NO:8所示序列的可变重链:和具有SEQ ID NO:10所示序列的可变轻链(“天然B10”)。
在一些实施方案中,分离的抗MIS抗体包含具有SEQ ID NO:9所示序列的可变重链和具有SEQ ID NO:10所示序列的可变轻链(“B10衍生物”)。
在一些实施方案中,分离的抗MIS抗体阻断MIS I型受体MISRI(即ALK2、ALK3或ALK6)被复合物MISRII/MIS募集。
本发明的抗体通过本领域已知的任何技术产生,例如但不限于单独或组合的任何化学、生物学、遗传学或酶学技术。典型地,已知所需序列的氨基酸序列的情况下,本领域技术人员可通过产生多肽的标准技术容易地产生所述抗体。例如,可以使用公知的固相方法合成它们,优选使用可商购的肽合成装置(例如由Applied Biosystems,Foster City,California制造的那种)并按照制造商的说明书。或者,可以通过本领域熟知的重组DNA技术合成本发明的抗体。例如,在将编码抗体的DNA序列整合入表达载体并将这些载体引入将表达所需抗体的合适的真核或原核宿主中后,可以获得作为DNA表达产物的抗体,之后可以使用已知技术分离它们。
在一些实施方案中,本发明的抗体是单克隆抗体。
在另一个实施方案中,本发明的单克隆抗体是人源化抗体。特别地,在所述人源化抗体中,可变结构域包含人受体框架区,和当存在时任选的人恒定结构域,和非人供体CDR,例如小鼠CDR。
根据本发明,术语“人源化抗体”是指具有来自人抗体的可变结构域框架和恒定区但保留先前非人抗体的CDR的抗体。
本发明的人源化抗体可以通过以下来制备:如前所述获得编码CDR结构域的核酸序列,通过将它们插入用于动物细胞的表达载体来构建人源化抗体表达载体,所述动物细胞具有编码(i)与人抗体相同的重链恒定区和(ii)与人抗体相同的轻链恒定区的基因,和通过将表达载体引入动物细胞来表达基因。人源化抗体表达载体可以是以下任一类型:编码抗体重链的基因和编码抗体轻链的基因存在于不同的载体上,或两个基因存在于相同载体上(串联型)。就构建人源化抗体表达载体的容易性、引入动物细胞的容易性和动物细胞中抗体H链和L链的表达水平之间的平衡而言,优选串联型的人源化抗体表达载体。串联型人源化抗体表达载体的实例包括pKANTEX93(WO97/10354)、pEE18等。基于常规重组DNA和基因转染技术产生人源化抗体的方法是本领域熟知的(参见例如,Riechmann L.等1988;Neuberger MS.等1985)。可以使用本领域已知的多种技术将抗体人源化,包括例如CDR-移植(EP 239,400;PCT公开WO91/09967;美国专利号5,225,539;5,530,101;和5,585,089)、镶饰(veneering)或表面重塑(resurfacing)(EP 592,106;EP 519,596;Padlan EA(1991);Studnicka GM等(1994);Roguska MA等(1994))和链替换(美国专利号5,565,332)。用于制备此类抗体的一般重组DNA技术也是已知的(参见欧洲专利申请EP 125023和国际专利申请WO96/02576)。
在一些实施方案中,本发明的单克隆抗体是人抗体。
本文所用的术语“人抗体”旨在包括具有衍生自人免疫球蛋白序列的可变结构域和恒定区的抗体。本发明的人抗体可包括不由人免疫球蛋白序列编码的氨基酸残基(例如,通过体外随机或位点特异性诱变或通过体内体细胞突变引入的突变)。然而,本文所用的术语“人抗体”不旨在包括其中衍生自另一哺乳动物物种(如小鼠)的种系的CDR序列已经移植到人构架序列上的抗体。
可以使用本领域已知的各种技术产生人抗体。人抗体一般描述于van Dijk和vande Winkel,cur.Opin.Pharmacol.5;368-74(2001)and lonberg,cur.Opin.Immunol.20;450-459(2008)。可以通过向转基因动物施用免疫原来制备人抗体,所述转基因动物已经被修饰以产生完整的人抗体或具有响应于抗原攻击的人可变结构域的完整抗体。这些动物典型地含有全部或部分人免疫球蛋白基因座,或存在于染色体外或随机整合到动物染色体中。在这种转基因小鼠中,内源性免疫球蛋白基因座通常已经失活。关于从转基因动物获得人抗体的方法的综述,参见Lonberg,Nat.Biotech.23;1117-1125(2005)。还参见例如描述XENOMOUSETM技术的美国专利号6,075,181和6,150,584;描述
Figure BDA0003559438070000131
技术的美国专利号No.5,770,429;描述K-M
Figure BDA0003559438070000132
技术的美国专利号7,041,870,和描述
Figure BDA0003559438070000133
技术的美国专利申请公开号US2007/0061900。可以进一步修饰由这些动物产生的完整抗体的人可变结构域,例如通过与不同的人恒定区组合。也可以通过基于杂交瘤的方法制备人抗体。已经描述了用于生产人单克隆抗体的人骨髓瘤和小鼠-人异源骨髓瘤细胞系。(参见例如Kozbor J.Immunol.,13:3001(1984);Brodeur et al.,Monoclonal Antibody Production Techniques and Applications,pp.51-63(MarcelDekker,Inc.,New York,1987);和Boerner et al.,J.Immunol.,147:86(1991))。通过人B细胞杂交瘤技术产生的人抗体也描述于Li et al.,Proc.Natl.Acad.Sci.USA,103:3557-3562(2006)。其他方法包括例如在美国专利号7,189,826(描述了从杂交瘤细胞系生产单克隆人IgM抗体)和Ni,Xiandai Mianyixue,26(4):265-268(2006)(描述人-人杂交瘤)中描述的那些。人杂交瘤技术(Trioma技术)也描述于Vollmers和Brandlein,,Histology andHistopathology,20(3):927-937(2005)以及Vollmers和Brandlein,Methods andFindings in Experimental and Clinical Pharmacology,27(3):185-91(2005)。完全人抗体也可以来自噬菌体展示文库(描述于Hoogenboom et al.,1991,J.Mol.Biol.227:381;and Marks et al.,1991,J.Mol.Biol.222:581)。噬菌体展示技术通过在丝状噬菌体表面展示抗体谱来模拟免疫选择,并随后通过与所选抗原的结合来选择噬菌体。在PCT公开号WO99/10494中描述了一种这样的技术。本文所述的人抗体也可使用SCID小鼠制备,其中人免疫细胞已被重建,使得可在免疫后产生人抗体应答。这种小鼠描述于例如Wilson等人的美国专利5,476,996和5,698,767中。
在一个实施方案中,本发明抗体是选自下组的抗原结合片段:Fab、F(ab)'2、单结构域抗体、ScFv、Sc(Fv)2、双抗体、三抗体、四抗体、单抗体、小抗体、大抗体、小模块免疫药物(SMIP)、由将抗体的高变区模拟为分离的互补决定区(CDR)的氨基酸残基组成的最小识别单位、和包含以下或由以下组成的片段:VL以及与选自下组的序列具有至少70%同一性的氨基酸序列:SEQ ID NO:7、SEQ ID NO:16、SEQ ID NO:25和SEQ ID NO:34;或VH链以及与选自下组的序列具有至少70%同一性的氨基酸序列:SEQ ID NO:8、SEQ ID NO:17、SEQ IDNO:26和SEQ ID NO:35。
本文所用的术语抗体的“抗原结合片段”是指一个完整抗体的一个或多个片段,该片段保留特异性结合给定抗原(例如MIS)的能力。抗体的抗原结合功能可以通过完整抗体的片段进行。术语抗体的抗原结合片段涵盖的结合片段的实例包括Fab片段,由VL、VH、CL和CH1结构域组成的单价片段;Fab'片段,由VL、VH、CL、CH1结构域和铰链区组成的单价片段;F(ab')2片段,包含通过铰链区的二硫键连接的两个Fab'片段的二价片段;由抗体单臂的VH结构域组成的Fd片段;单结构域抗体(sdAb)片段(Ward等,1989Nature 341:544-546),其由VH结构域或VL结构域组成;和分离的互补决定区(CDR)。此外,虽然Fv片段的两个结构域VL和VH由不同的基因编码,但可以使用重组方法通过人工肽接头将它们连接,所述接头使得它们能够作为其中VL和VH区配对形成单价分子的单个蛋白质链制备(称为单链Fv(ScFv);参见例如Bird等,1989Science 242:423-426;和Huston等,1988proc.Natl.Acad.Sci.85:5879-5883)。“dsFv”是通过二硫键稳定的VH::VL异二聚体。二价和多价抗体片段可以通过单价scFv的结合自发形成,或可以通过肽接头偶联单价scFv产生,例如二价sc(Fv)2。此类单链抗体包括一个或多个抗原结合部分或抗体片段。使用本领域技术人员已知的常规技术获得这些抗体片段,并以与完整抗体相同的方式筛选片段以供使用。单抗体是另一种缺乏IgG4抗体铰链区的抗体片段。铰链区的缺失导致分子基本上是传统IgG4抗体的一半大小并且具有单价结合区而不是IgG4抗体的二价结合区。抗原结合片段可以整合入单结构域抗体、SMIP、巨抗体、微抗体、胞内抗体、双抗体、三抗体和四抗体中(参见,例如,Hollinger和Hudson,2005,Nature Biotechnology,23,9,1126-1136)。术语“双抗体”、“三抗体”或“四抗体”是指具有多价抗原结合位点(2、3或4)的小抗体片段,该片段包含在相同多肽链(VH-VL)中与轻链可变结构域(VL)连接的重链可变结构域(VH)。通过使用太短而不允许相同链上的两个结构域之间配对的接头,该结构域被迫与另一条链的互补结构域配对并产生两个抗原结合位点。抗原结合片段可以整合入包含一对串联的Fv区段(VH-CH1-VH-CH1)的单链分子中,所述串联的Fv区段与互补的轻链多肽一起形成一对抗原结合区(Zapata等,1995Protein Eng.8(10);1057-1062和美国专利号5,641,870)。
本发明的Fab可以通过用蛋白酶(木瓜蛋白酶)处理与MIS特异性反应的抗体而获得。此外,可以通过以下来生产Fab:将编码抗体Fab的DNA插入用于原核表达系统或用于真核表达系统的载体,并将载体引入原核生物或真核生物(视情况而定)以表达Fab。
本发明的F(ab')2可以通过用蛋白酶(胃蛋白酶)处理与MIS特异性反应的抗体而获得。此外,F(ab')2可以通过用硫醚键或二硫键结合下述Fab'来制备。
本发明的Fab'可以通过用还原剂二硫苏糖醇处理与MIS特异性反应的F(ab')2而获得。此外,可以通过以下来生产Fab':将编码抗体的Fab'片段的DNA插入原核生物的表达载体或真核生物的表达载体中,并将载体引入原核生物或真核生物(视情况而定)以进行表达。
可以通过以下来生产本发明的scFv:获得如前所述编码VH和VL结构域的cDNA,构建编码scFv的DNA,将DNA插入原核生物的表达载体或真核生物的表达载体,然后将表达载体引入原核生物或真核生物(视情况而定)以表达scFv。为制备人源化scFv片段,可以使用称为CDR移植的公知技术,其涉及从供体scFv片段选择互补决定区(CDR),并将它们移植到已知三维结构的人scFv片段框架上(参见例如,WO98/45322、WO87/02671、US5,859,205、US5,585,089、US4,816,567、EP0173494)。
结构域抗体(dAb)是抗体的最小功能性结合单元-分子量约为13kDa-且对应于抗体的重链(VH)或轻链(VL)的可变结构域。结构域抗体及其制备方法的更多细节可发现于US6,291,158;6,582,915;6,593,081;6,172,197和6,696,245;US 2004/0110941;EP1433846,0368684和0616640;WO 2005/035572、2004/101790、2004/081026、2004/058821、2004/003019和2003/002609,其每一个通过整体引用并入本文。
单抗体是另一种基于去除IgG4抗体的铰链区的抗体片段技术。铰链区的缺失导致分子基本上是传统IgG4抗体的一半大小并且具有单价结合区而不是二价结合区。此外,由于单抗体较小,它们在较大实体瘤中显示更好的分布,具有潜在有利的功效。可以参考其通过整体引用并入本文的WO 2007/059782获得单抗体的更多细节。
本发明的抗体可以是任何同种型。同种型的选择典型地由所需效应子功能来引导,如ADCC诱导。示例性同种型是IgG1、IgG2、IgG3和IgG4。可以使用人轻链恒定区中的任一个,κ或λ。如果需要,可以通过已知方法转换本发明的单克隆抗体的类别。典型地,类别转换技术可用于将一个IgG亚类转换成另一个,例如从IgG1转变为IgG2。因此,为各种治疗用途,本发明的人单克隆抗体的效应子功能可以通过同种型转换为例如IgG1、IgG2、IgG3、IgG4、IgD、IgA、IgE或IgM抗体来改变。
在一些实施方案中,本发明的抗体是全长抗体。
在一些实施方案中,全长抗体是IgG1抗体。
在一些实施方案中,全长抗体是IgG4抗体。
在一些实施方案中,IgG4抗体是稳定化IgG4抗体。合适的稳定化IgG4抗体的实例是其中人IgG4重链恒定区中第409位(其在Kabat等人的EU索引中指定)的精氨酸被赖氨酸、苏氨酸、甲硫氨酸或亮氨酸,优选赖氨酸取代(描述于WO2006033386)和/或其中铰链区包含Cys-Pro-Pro-Cys序列的抗体。其它合适的稳定化IgG4抗体公开于WO 2008145142中,其通过引用以其整体并入本文。
在一些实施方案中,本发明的单克隆抗体是非IgG4类型的抗体,例如IgG1、IgG2或IgG3,其已被突变使得介导效应子功能(例如ADCC)的能力降低或甚至消除。这种突变例如描述于Dall'Acqua WF et al.,J Immunol.177(2):1129-1138(2006)and Hezareh M,JVirol.75(24):12161-12168(2001)。
本发明的进一步的方面涉及交叉竞争抗体,其与和本发明抗体交叉竞争结合MIS。
如本文所用,在抗体结合预定抗原或表位的上下文中,术语“结合”典型地是指当例如在BIAcore 3000仪器中通过表面等离子体共振(SPR)技术,使用可溶形式的抗原作为配体并且抗体作为分析物(反之亦然)进行测定时,结合的亲和力对应于约10-7M或更低、例如约10-8M或更低、例如约10-9M或更低、约10-10M或更低,或约10-11M或甚至更低的KD。其它方法如使用放射性抗体或MIS的Scatchard图,或ELISA可用于测定这种亲和力或通过EC50来评估。
Figure BDA0003559438070000171
(GE Healthcare,Piscaataway,NJ)是多种表面等离子体共振测定形式之一,其常规用于单克隆抗体的表位区组。典型地,抗体结合预定抗原的亲和力的KD比结合与预定抗原不相同也不紧密相关的非特异性抗原(例如BSA、酪蛋白)的KD低至少十倍、例如低至少100倍、例如低至少1,000倍、例如低至少10,000倍、例如低至少100,000倍。当抗体的KD非常低(即,抗体具有高亲和力)时,其结合抗原的KD典型地比非特异性抗原的KD低至少10,000倍。如果这种结合是不可检测的(例如,在BIAcore 3000仪器中使用等离子体共振(SPR)技术,使用可溶形式的抗原作为配体并且抗体作为分析物),或这种结合比检测到的该抗体和具有不同化学结构或氨基酸序列的抗原或表位的结合低100倍、500倍、1000倍或1000倍以上,则称该抗体基本上不结合抗原或表位。
可以通过本领域已知的任何方法测定本发明抗体的特异性结合。对于表位结合可使用许多不同的竞争性结合测定形式。可以使用的免疫测定包括但不限于使用诸如蛋白质印迹、放射免疫测定、ELISA、“夹心”免疫测定、免疫沉淀测定、沉淀素测定、凝胶扩散沉淀素测定、免疫放射测定、荧光免疫测定、蛋白质A免疫测定和补体固定测定等技术的竞争测定系统。此类测定是常规的并且是本领域熟知的(参见例如Ausubel等,eds,1994CurrentProtocols in Molecular Biology,Vol.1,John Wiley&sons,Inc.,New York)。
可以基于它们在标准MIS结合测定中与本发明其他抗体的交叉竞争(例如,以统计学上显著的方式竞争性抑制结合)的能力来鉴定另外的抗体。测试抗体抑制本发明抗体与MIS结合的能力表明测试抗体可以与该抗体竞争结合MIS;根据非限制性理论,这种抗体可以与与其竞争的抗体结合到MIS上相同或相关(例如,结构上相似或空间上接近)的表位。因此,本发明的另一方面提供与本文公开的抗体结合相同抗原并与之竞争的抗体。如本文所用,当在等摩尔浓度的竞争抗体存在下,竞争抗体抑制本发明的抗体或抗原结合片段与MIS的结合超过50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98或99%时,则抗体“竞争”结合。
在其他实施方案中,本发明的抗体或抗原结合片段结合MIS的一个或多个表位。在一些实施方案中,本发明抗体或抗原结合片段结合的表位是线性表位。在其他实施方案中,本发明抗体或抗原结合片段结合的表位是非线性构象表位。
在一些实施方案中,本发明的交叉竞争抗体与包含以下的抗体交叉竞争结合MIS:
(a)重链,其中可变结构域包含具有SEQ ID NO:1所示序列的VH-CDR1;具有SEQ IDNO:2或SEQ ID NO:3所示序列的VH-CDR2;具有SEQ ID NO:4所示序列的VH-CDR3;和
(b)轻链,其中可变结构域包含具有SEQ ID NO:5所示序列的VL-CDR1;具有SEQ IDNO:6所示序列的VL-CDR2;具有SEQ ID NO:7所示序列的VL-CDR3。
在一些实施方案中,本发明的交叉竞争抗体与包含具有SEQ ID NO:8或SEQ IDNO:9所示序列的可变重链;和具有SEQ ID NO:10所示序列的可变轻链的抗体交叉竞争结合MIS。
在一些实施方案中,本发明的交叉竞争性抗体保留包含具有SEQ ID NO:8或SEQID NO:9所示序列的可变重链;和具有SEQ ID NO:10所示序列的可变轻链的抗MIS抗体的活性。
本发明的工程化抗体包括其中对VH和/或VL内的框架残基进行修饰,以例如改善抗体性质的抗体。典型地,进行这样的框架修饰以降低抗体的免疫原性。例如,一种方法是将一个或多个框架残基“回复突变”到相应的种系序列。更具体地,已经历体细胞突变的抗体可以含有与衍生抗体的种系序列不同的框架残基。可以通过将抗体框架序列与衍生抗体的种系序列进行比较来鉴定这些残基。为了使框架区序列恢复其种系构型,可以通过例如定点诱变或PCR介导的诱变将体细胞突变“回复突变”至种系序列。这种“回复突变”抗体也涵盖在本发明中。另一种类型的框架修饰涉及突变框架区内或甚至一个或多个CDR区内的一个或多个残基,以去除T细胞表位,从而降低抗体的潜在免疫原性。该方法也称为“去免疫化”,并且进一步详细描述于Carr等的美国专利公开号20030153043中。
在一些实施方案中,修饰抗体的糖基化。例如,可以改变糖基化以在增加抗体对抗原的亲和力。这种碳水化合物修饰可以通过例如改变抗体序列内的一个或多个糖基化位点来实现。例如,可以进行一个或多个氨基酸替换,其导致消除一个或多个可变结构域框架糖基化位点,从而消除该位点的糖基化。这种糖基化可以增加抗体对抗原的亲和力。该方法进一步详细描述于Carr等的美国专利号5,714,350和6,350,861中。
在一些实施方案中,对位于第一CDR(CDR1)内及其附近的聚集“热点”中的氨基酸进行一些突变以降低抗体对聚集的易感性(参见Joseph M.Perchiacca et al.,Proteins2011;79:2637–2647)。
在另一个实施方案中,修饰抗体以增加其生物半衰期。各种方法都是可行的。例如,如Ward的美国专利No.6,277,375中所述,可以引入一种或多种下列突变:T252L、T254S、T256F。或者,为了增加生物半衰期,如Presta等的美国专利号5,869,046和6,121,022所述,可以改变抗体的CH1或CL区,以包含取自IgG的Fc区的CH2结构域的两个环的补救受体结合表位。US2005/0014934A1(Hinton等)描述了具有增加的半衰期和改进的与新生儿Fc受体(FcRn,负责将母体IgG转移至胎儿)的结合的抗体(Guyer等,J.Immunol.117:587(1976)和Kim等,J.immunol.24:249(1994))。那些抗体包含具有一个或多个替换的Fc区,所述替换改进Fc区与FcRn的结合。此类Fc变体包括在一个或多个Fc区残基处具有替换的那些:238、256、265、272、286、303、305、307、311、312、317、340、356、360、362、376、378、380、382、413、424或434,例如,Fc区残基434的替换(美国专利号7,371,826)。
本发明预期的本发明抗体的另一种修饰是聚乙二醇化。可以将抗体聚乙二醇化以例如增加抗体的生物(例如血清)半衰期。为了使抗体聚乙二醇化,典型地在其中一个或多个PEG基团与抗体或抗体片段连接的条件下,将抗体或其片段与聚乙二醇(PEG),例如PEG的反应性酯或醛衍生物反应。聚乙二醇化可以通过与反应性PEG分子(或类似的反应性水溶性聚合物)的酰化反应或烷基化反应来进行。如本文所用,术语“聚乙二醇”旨在涵盖用于衍生其他蛋白质的PEG的任何形式,例如单(C1-C10)烷氧基-或芳氧基-聚乙二醇或聚乙二醇-马来酰亚胺。在一些实施方案中,待聚乙二醇化的抗体是无糖基化的抗体。使蛋白质聚乙二醇化的方法是本领域已知的,并且可以应用于本发明的抗体。参见例如Nishimura等的EP0154316和Ishikawa等的EP0401384。
本发明预期的抗体的另一种修饰是将至少本发明抗体的抗原结合区与血清蛋白(例如人血清白蛋白)或其片段偶联或蛋白融合,以增加所得分子的半衰期。例如Balance等的EP0322094描述了这种方法。另一种可能性是将至少本发明抗体的抗原结合区与能够结合血清蛋白(例如人血清白蛋白)的蛋白质融合,以增加所得分子的半衰期。如Nygren等的EP0486525描述了这种方法。
聚唾液酸化是另一种技术,它使用天然聚合物聚唾液酸(PSA)来延长治疗性肽和蛋白质的活性寿命并提高稳定性。PSA是唾液酸(糖)的聚合物。当用于蛋白质和治疗性肽药物递送时,聚唾液酸在偶联时提供保护性微环境。这增加了治疗性蛋白质在循环中的活性寿命,并防止其被免疫系统识别。PSA聚合物天然存在于人体中。它被某些细菌所采用,这些细菌已经进化了数百万年以用它来涂覆它们的细胞壁。然后,这些天然的聚唾液酸化细菌凭借分子模拟能够阻止身体的防御系统。PSA,大自然的终极秘密技术,可以很容易地从这些细菌中大量生产并具有预定的物理特性。即使与蛋白质偶联,细菌PSA也是完全无免疫原性的,因为它在化学上与人体中的PSA相同。
另一种技术包括使用与抗体连接的羟乙基淀粉(“HES”)衍生物。HES是一种衍生自蜡质玉米淀粉的改性天然聚合物,可以通过机体的酶代谢。通常施用HES溶液以替代不足的血液体积并改进血液的流变学特性。抗体的羟乙基化能够通过增加分子的稳定性以及通过降低肾清除率来延长循环半衰期,从而导致生物活性增加。通过改变不同的参数,例如HES的分子量,可以定制多种HES抗体偶联物。
核酸、载体、重组宿主细胞及其用途
本发明的另一个方面涉及编码根据本发明的抗MIS抗体的核酸分子。更特别地,核酸分子编码本发明抗MIS抗体的重链或轻链。
典型地,所述核酸是DNA或RNA分子,其可以包含于任何合适的载体,例如质粒、粘粒、附加体、人工染色体、噬菌体或病毒载体。如本文所用,术语“载体”、“克隆载体”和“表达载体”是指可以将DNA或RNA序列(例如外源基因)引入宿主细胞,以转化宿主并促进引入序列的表达(例如转录和翻译)的介质。因此,本发明的另一方面涉及包含本发明的核酸的载体。此类载体可包含调控元件,例如启动子、增强子、终止子等,以在施用于受试者时引起或指导所述抗体的表达。用于动物细胞表达载体的启动子和增强子的实例包括SV40的早期启动子和增强子(Mizukami T.等1987)、莫洛尼小鼠白血病病毒的LTR启动子和增强子(Kuwana Y等1987)、免疫球蛋白H链的启动子(Mason JO等,1985)和增强子(Gillies SD等,1983)等。可以使用任何用于动物细胞的表达载体,只要可以插入和表达编码人抗体C区的基因。合适载体的实例包括pAGE107(Miyaji H等1990)、pAGE103(Mizukami T等1987)、pHSG274(Brady G等1984)、pKCR(O'Hare K等1981)、pSG1βd2-4-(Miyaji H等,1990)等。质粒的其他实例包括包含复制起点的复制质粒或整合质粒,例如pUC、pcDNA、pBR等。病毒载体的其他实例包括腺病毒、逆转录病毒、疱疹病毒和AAV载体。此类重组病毒可通过本领域已知的技术产生,例如通过转染包装细胞或通过辅助质粒或病毒的瞬时转染产生。病毒包装细胞的典型实例包括PA317细胞、PsiCRIP细胞、GPenv+细胞、293细胞等。用于产生这种复制缺陷型重组病毒的详细方案可以在例如WO 95/14785、WO 96/22378、US 5,882,877、US 6,013,516、US 4,861,719、US 5,278,056和WO 94/19478中找到。
本发明的另一方面涉及用根据本发明的核酸和/或载体转染、感染或转化的宿主细胞。
多种表达载体/宿主系统可用于包含和表达肽或蛋白质编码序列。这些包括但不限于:微生物,例如用重组细菌噬菌体、质粒或粘粒DNA表达载体转化的细菌;用酵母表达载体转化的酵母(Giga-Hama等,1999);用病毒表达载体感染的昆虫细胞系统(例如,杆状病毒,参见Ghosh等,2002);用病毒表达载体转染(例如,花椰菜花叶病毒CaMV;烟草花叶病毒TMV)或用细菌表达载体转化(例如Ti或pBR322质粒;参见例如Babe等,2000)的植物细胞系统;或动物细胞系统。本领域技术人员已知用于优化哺乳动物的蛋白质表达的各种技术,参见例如Kaufman,2000;Colosimo等,2000。用于重组蛋白生产的哺乳动物细胞包括但不限于VERO细胞、HeLa细胞、中国仓鼠卵巢(CHO)细胞系、COS细胞(例如COS-7)、W138、BHK、HepG2、3T3、RIN、MDCK、A549、PC12、K562和293细胞。在细菌、酵母和其他无脊椎动物中重组表达肽底物或融合多肽的实验方案是本领域技术人员已知的,且简要描述如下。表达重组蛋白的哺乳动物宿主系统也是本领域技术人员已知的。可以选择具有特定能力的宿主细胞菌株以加工所表达的蛋白或产生可用于提供蛋白活性的一些翻译后修饰。多肽的这种修饰包括但不限于乙酰化,羧化,糖基化,磷酸化,脂化和酰化。切割蛋白质的“预制”形式的翻译后加工对于正确的插入、折叠和/或功能也可能是重要的。不同的宿主细胞(例如CHO、HeLa、MDCK、293、WI38等)具有针对这种翻译后活性的特殊的细胞机器和特征机制,且可以选择以确保引入的外源蛋白的正确修饰和加工。
在本发明的抗体和多肽的重组生产中,需要使用包含编码本发明的抗体和多肽的多核苷酸分子的载体。制备这种载体以及产生用这种载体转化的宿主细胞的方法是本领域技术人员已知的。
用于表达本发明抗体的合适表达载体的选择当然取决于所使用的特定宿主细胞,并且在普通技术人员的技术范围内。表达需要在载体中提供适当的信号,例如可以用于在宿主细胞中驱动目标核酸表达的来自病毒和哺乳动物来源两者的增强子/启动子。通常,被表达的核酸是在启动子的转录控制下。“启动子”是指被细胞的合成机器或引入的合成机器识别,需要启动基因的特定转录的DNA序列。当调控序列与编码目标蛋白(例如单克隆抗体)的DNA功能相关时,核苷酸序列可操作连接。因此,如果启动子核苷酸序列指导序列转录,则启动子核苷酸序列与给定DNA序列可操作地连接。
术语“转化”是指将“外源”(即外源或细胞外)基因、DNA或RNA序列引入宿主细胞,使得宿主细胞将表达引入的基因或序列以产生所需物质,典型地是通过引入的基因或序列编码的蛋白质或酶。接受并表达引入的DNA或RNA的宿主细胞被“转化”。
本发明的核酸可用于在合适的表达系统中产生本发明的抗体。术语“表达系统”是指在(例如,用于表达由载体携带的外源DNA编码的蛋白质并引入宿主细胞的)合适条件下的宿主细胞和相容载体。常见的表达系统包括大肠杆菌宿主细胞和质粒载体、昆虫宿主细胞和杆状病毒载体,以及哺乳动物宿主细胞和载体。宿主细胞的其他实例包括但不限于原核细胞(例如细菌)和真核细胞(例如酵母细胞、哺乳动物细胞、昆虫细胞、植物细胞等)。具体实例包括大肠杆菌、克鲁维酵母或酵母菌酵母、哺乳动物细胞系(例如Vero细胞、CHO细胞、3T3细胞、COS细胞等)以及原代或已建立的哺乳动物细胞培养物(例如由淋巴母细胞、成纤维细胞、胚胎细胞、上皮细胞、神经细胞、脂肪细胞等产生)。实例还包括小鼠SP2/0-Ag14细胞(ATCC CRL1581)、小鼠P3X63-Ag8.653细胞(ATCC CRL1580)、其中二氢叶酸还原酶基因(下文称为“DHFR基因”)缺陷型的CHO细胞(Urlaub G等;1980)、大鼠YB2/3HL.P2.G11.16Ag.20细胞(ATCC CRL1662,下文称为“YB2/0细胞”)等。本发明还涉及产生表达根据本发明的抗体的重组宿主细胞的方法,所述方法包括以下步骤:(i)将如上所述的重组核酸或载体体外或离体引入感受态宿主细胞,(ii)体外或离体培养获得的重组宿主细胞和(iii)任选地,选择表达和/或分泌所述抗体的细胞。这些重组宿主细胞可用于产生本发明的抗体。
通过常规免疫球蛋白纯化方法,例如蛋白A-Sepharose、羟磷灰石层析、凝胶电泳、透析或亲和层析适当地从培养基分离本发明的抗体。
治疗方法和用途
本发明的抗体用作MIS的抑制剂。本发明的抗体特别适用于治疗MIS或MISRII阳性癌症。
因此,本发明涉及本发明的抗体,其用于治疗MIS或MISRII阳性癌症。
换言之,本发明涉及在有需要的受试者中治疗MIS或MISRII阳性癌症的方法。
如本文所用,术语“受试者”是指任何哺乳动物,如啮齿动物、猫科动物、犬科动物、灵长类动物或人。在本发明的一些实施方案中,受试者是指患有或易患MIS或MISRII阳性癌症的任何受试者。特别地,在优选实施方案中,受试者是患有或易患妇科癌症、肺癌或结肠直肠癌的人。
在一些实施方案中,受试者是患有或易患卵巢癌的人。
如本文所用,术语“治疗”是指预防或预防性治疗以及治愈性或疾病改善性治疗,包括治疗处于患病风险或怀疑患有该疾病的受试者以及生病或被诊断为患有疾病或医学病症的受试者,包括抑制临床复发。可以向患有医学病症或最终可能患有病症的受试者施用治疗,以预防、治愈、延迟病症或复发病症的一种或多种症状的发作、降低病症或复发病症的一种或多种症状的严重程度或缓解病症或复发病症的一种或多种症状,或者为了延长受试者的存活期超过在没有这种治疗的情况下预期的存活期。“治疗方案”是指疾病的治疗模式,例如治疗期间使用的剂量模式。治疗方案可包括诱导方案和维持方案。短语“诱导方案”或“诱导期”是指用于疾病初始治疗的治疗方案(或治疗方案的一部分)。诱导方案的一般目标是在治疗方案的初始阶段向受试者提供高水平的药物。诱导方案可以采用(部分或全部)“加载方案”,其可以包括施用比医生在维持方案期间使用的更大剂量的药物,比医生在维持方案期间更频繁地施用药物,或两者。短语“维持方案”或“维持期”是指用于在治疗疾病期间维持受试者,例如使受试者长期(数月或数年)保持缓解的治疗方案(或治疗方案的一部分)。维持方案可以采用连续治疗(例如以规律的间隔(例如每周、每月、每年等)施用药物)或间歇治疗(例如中断治疗、间歇治疗、复发治疗或实现特定的预定标准[例如疼痛、疾病表现等]时的治疗)。
本文所用的“MIS或MISRII阳性癌症”是指表达MIS的癌症。在一些实施方案中,MIS或MISRII阳性癌症选自下组:乳腺癌、前列腺癌、肺癌、结肠直肠癌或妇科癌症(参见Kim等,2014)。
在一些实施方案中,MIS或MISRII阳性癌症是肺癌、结肠直肠癌或妇科癌症。
如本文所用,术语“肺癌”(也称为“肺部癌症”)包括公认的医学定义,其将肺癌定义为特征在于肺组织中不受控制的细胞生长的医学病症。肺癌的主要类型是肺癌样肿瘤、小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)(如鳞状细胞癌)、腺癌和大细胞癌。另外,术语“肺癌”包括所有进展阶段的所有类型的肺癌。最常用于肺癌的分期系统是美国癌症联合委员会(AJCC)TNM系统,其基于肿瘤的大小、向附近淋巴结的扩散和向远处部位的扩散(转移)。
如本文所用,术语“结肠直肠癌”或“CRC”包括公认的医学定义,其将结肠直肠癌定义为特征在于小肠(即大肠(结肠),包括盲肠、升结肠、横结肠、降结肠、乙状结肠和直肠)以下的肠道细胞的癌症的医学病症。另外,本文所用的术语“结肠直肠癌”还包括特征在于十二指肠和小肠(空肠和回肠)细胞的癌症的医学病症。另外,术语“结肠直肠癌”包括所有进展阶段的所有类型的结肠直肠癌。最早阶段的结肠直肠癌称为0期(非常早期和浅表的癌症),然后从I至IV期变化。在IV期结肠直肠癌(也称为转移性结肠直肠癌)中,癌症已扩散超过结肠或直肠到达远端器官,如肝或肺。最常用于CRC的分期系统是美国癌症联合委员会(AJCC)TNM系统,其基于肿瘤的大小、向附近淋巴结的扩散和向远处部位的扩散(转移)。
如本文所用,术语“妇科癌症”具有其在本领域中的一般含义并且是指在女性生殖道中发展的癌症。妇科癌症的类型是子宫颈癌、子宫癌(也称为子宫癌或子宫内膜癌)、卵巢癌、阴道癌、外阴癌、原发性腹膜癌、妊娠滋养细胞疾病和输卵管癌。子宫颈癌发生于子宫颈细胞异常生长,侵入机体其他组织器官,包括鳞状细胞癌、腺癌、腺鳞癌、小细胞癌、神经内分泌肿瘤、玻璃状细胞癌、腺泡腺癌、宫颈黑色素瘤和宫颈淋巴瘤。子宫癌是指发生在子宫中的任何类型的癌症,包括子宫内膜癌如子宫内膜腺癌、子宫内膜腺鳞癌、乳头状浆液性癌、子宫透明细胞癌、子宫内膜粘液性癌、子宫内膜粘液性腺癌和子宫内膜鳞状细胞癌、子宫内膜移行细胞癌、子宫内膜间质肉瘤、恶性混合性苗勒管瘤、子宫纤维瘤以及子宫肉瘤如子宫癌肉瘤、子宫腺肉瘤和子宫平滑肌肉瘤。阴道癌是发生在阴道中的罕见癌症,包括阴道鳞状细胞癌、阴道黑色素瘤、和阴道肉瘤。外阴癌是一种发生在女性生殖器外表面区域的癌症,包括外阴鳞状细胞癌、外阴黑素瘤、外阴基底细胞癌、前庭大腺腺癌、外阴腺癌和外阴肉瘤。卵巢癌是在卵巢中或卵巢上形成的癌症,包括卵巢上皮性肿瘤,如卵巢粘液性癌、高级浆液性癌、卵巢子宫内膜样癌、卵巢透明细胞癌、卵巢低恶性潜能肿瘤和原发性腹膜癌;生殖细胞肿瘤,如畸胎瘤、无性细胞瘤卵巢生殖细胞癌、绒毛膜癌肿瘤和内胚层窦肿瘤;性索间质肿瘤,如颗粒细胞肿瘤、颗-膜肿瘤、卵巢纤维瘤、睾丸细胞肿瘤、支持细胞肿瘤、Sertoli-Leydig细胞瘤和腺母细胞瘤;卵巢肉瘤如卵巢癌肉瘤、卵巢腺肉瘤、卵巢平滑肌肉瘤和卵巢纤维肉瘤;克鲁肯伯格肿瘤;和卵巢囊肿。
在一些实施方案中,MIS或MISRII阳性癌症是卵巢癌。
如本文所用,“治疗有效量”是指赋予患者治疗益处所必需的活性剂的最小量。例如,对患者的“活性剂的治疗有效量”是诱导、改善或引起与影响患者的疾病相关的病理学症状、疾病进展或身体状况的改进的活性剂的量。
本文所用的术语“施用”是指将存在于机体外的物质(例如本发明的抗体)注射或以其它方式物理递送至受试者的行为,例如通过粘膜、皮内、静脉内、皮下、肌内递送和/或本文所述或本领域已知的任何其它物理递送方法。当治疗疾病或其症状时,物质的施用典型地发生在疾病或其症状发作之后。当预防疾病或其症状时,物质的施用典型地发生在疾病或其症状发作之前。
本发明的抗体可以与MIS或MISRII阳性癌症的经典治疗联合施用。
因此,本发明还涉及i)根据本发明的抗苗勒管抑制物质抗体和ii)用于治疗MIS或MISRII阳性癌症的经典治疗。
换言之,本发明涉及在有需要的受试者中治疗MIS或MISRII阳性癌症的方法,其包括向所述受试者施用治疗有效量的根据本发明的抗MIS抗体和MIS或MISRII阳性癌症的经典治疗。
如本文所用,术语“经典治疗”是指用于治疗MIS或MISRII阳性癌症的任何天然或合成的化合物。
在一个具体实施方案中,经典治疗是指放疗、免疫疗法或化疗。
根据本发明,用于MIS或MISRII阳性癌症的经典治疗的化合物可以选自下组:EGFR抑制剂,如西妥昔单抗、帕尼单抗、贝伐单抗和雷莫芦单抗;激酶抑制剂,如埃罗替尼、吉非替尼、阿法替尼、瑞戈非尼和拉罗替尼;免疫检查点抑制剂;化疗剂和放疗剂。
如本文所用,术语“化疗”是指使用一种或多种化疗剂的癌症治疗。
本文所用的术语“化疗剂”是指有效抑制肿瘤生长的化合物。化疗剂的实例包括:烷化剂,例如噻替派和环磷酰胺;烷基磺酸盐,例如白消安、英丙舒凡和哌泊舒凡;氮杂环丙烷,例如苯佐替派、卡波醌、美妥替派和乌瑞替派;乙烯亚胺和甲基蜜胺,包括六甲蜜胺、三乙烯蜜胺、三乙烯磷酰胺、三乙烯硫代磷酰胺和三羟甲基蜜胺;番茄枝内酯类(尤其是布拉他辛和布拉他辛酮);喜树碱(包括合成类似物拓扑替康和伊立替康);苔藓抑素;卡利他汀(callystatin);CC-1065(包括其阿多来新、卡折来新和比折来新合成类似物);隐藻素类(特别是隐藻素1和隐藻素8);多拉司他丁;倍癌霉素(duocarmycin,包括合成类似物,KW-2189和CB1-TM1);艾榴塞洛素;水鬼蕉碱(pancratistatin);匍枝珊瑚醇(sarcodictyin);海绵抑素;氮芥,诸如氯丁酸氮芥、萘氮芥、胆磷酰胺、磷雌氮芥、异磷酰胺、双氯乙基甲胺、盐酸氧氮芥、美法仑、新氮芥、苯芥胆甾醇、松龙苯芥、三芥环磷酰胺、尿嘧啶氮芥;硝基脲类,诸如卡莫司汀、氯脲菌素、福莫司汀、洛莫司汀、尼莫司汀、雷莫司汀;抗生素,诸如烯二炔类抗生素(如加利车霉素,尤其是加利车霉素11和加利车霉素211,参见例如Agnew,Chem.Intl.Ed.Engl.33183-186,1994);蒽环类抗生素,包括达内霉素A(dynemicin A);埃斯波霉素;以及新抑癌菌素发色团和相关色蛋白烯二炔类抗生素发色团)、阿克拉霉素类、放线菌素、氨茴霉素、氮丝氨酸、博来霉素类、放线菌素C、卡柔比星(carabicin)、洋红霉素、嗜癌霉素、色霉素类、更生霉素、柔红霉素、地托比星、6-重氮基-5-氧-L-正亮氨酸、阿霉素(包括吗啉阿霉素、氰吗啉阿霉素、2-吡咯啉阿霉素和脱氧阿霉素)、表柔比星、依索比星、依达比星、麻西罗霉素、丝裂霉素、霉酚酸、诺加霉素、橄榄霉素类、培来霉素、泼非霉素(potfiromycin)、嘌呤霉素、三铁阿霉素、罗多比星、链黑霉素、链脲霉素、杀结核菌素、乌苯美司、净司他丁、佐柔比星;抗代谢物,诸如甲氨蝶呤和5-氟尿嘧啶(5-FU);叶酸类似物,诸如二甲叶酸、甲氨蝶呤、蝶酰三谷氨酸、曲麦克特;嘌呤类似物,诸如氟达拉滨、6-巯基嘌呤、硫咪嘌呤、硫鸟嘌呤;嘧啶类似物,诸如安西他滨、氮杂胞苷、6-氮尿苷、卡莫氟、阿糖胞苷、双脱氧尿苷、脱氧氟尿苷、三氟尿苷、三氟尿嘧啶、依诺他滨、氟尿苷、5-FU;雄激素类,诸如卡鲁睾酮、羟甲雄酮丙酸酯、表硫雄醇、美雄烷、睾内酯;抗肾上腺类,诸如氨鲁米特、曼托坦、曲洛司坦;叶酸补充剂,诸如亚叶酸;醋葡内酯;醛磷酰胺糖苷;氨基酮戊酸;蒽尿嘧啶;氨苯吖啶;贝斯布西(bestrabucil);比生群;依达曲沙;地磷酰胺(defofamine);秋水仙胺;地吖醌;依洛尼塞(eifornithine);依利醋铵;埃博霉素(epothilone);环氧甘醚;硝酸镓;羟脲;蘑菇多糖;氯尼达明;美登木素生物碱类,诸如美登素和美坦西醇类;丙米腙;米托蒽醌;莫匹达谋;二胺硝吖啶(nitraerine);喷司他丁;蛋氨氮芥;吡柔比星;足叶草酸;2-乙基酰肼;甲基苄肼;
Figure BDA0003559438070000291
丙亚胺;根霉素;西作非兰;螺旋锗;细格孢氮杂酸;三亚胺醌;2,2',2"-三氯三乙胺;单端孢菌素类(尤其是T-2毒素、粘液霉素A(verracurin A)、杆孢菌素A和蛇形菌素);乌拉坦;长春地辛;达卡巴嗪;甘露醇氮芥;二溴甘露醇;二溴卫矛醇;哌泊溴烷;加西托星(gacytosine);阿糖胞苷(“Ara-C”);环磷酰胺;硫替哌;类紫杉醇,如紫杉醇(paclitaxel)(
Figure BDA0003559438070000301
Bristol-Myers Squibb Oncology,Princeton,N.J.)和多西他塞(
Figure BDA0003559438070000302
Rhone-Poulenc Rorer,Antony,France);苯丁酸氮芥;吉西他滨;6-硫鸟嘌呤;巯基嘌呤;甲氨蝶呤;铂类似物,诸如顺铂和卡铂;长春碱;铂如奥沙利铂、顺铂和卡铂;依托泊苷(VP-16);异磷酰胺;丝裂霉素C;米托蒽醌;长春新碱;长春瑞滨;诺维本;诺安托;替尼泊苷;道诺霉素;氨基蝶呤;希罗达;伊本膦酸盐;CPT-11;拓扑异构酶抑制剂RFS 2000;二氟甲基鸟氨酸(DMFO);视黄酸;卡培他滨;阿柏西普;及上述任何的药学上可接受的盐、酸或衍生物。该定义还包括用于调节或抑制激素对肿瘤作用的抗激素剂,例如抗雌激素,包括例如他莫昔芬、雷洛昔芬、抑制4(5)-咪唑的芳香酶、4-羟基他莫昔芬、曲奥昔芬、那洛昔芬、LY117018、奥那斯酮、和托瑞米芬(Fareston);和抗雄激素,如氟他米特、尼鲁米特、比卡米特、亮丙瑞林和戈舍瑞林;以及上述任何的药学上可接受的盐、酸或衍生物。
“药学上”或“药学上可接受的”是指当适当地施用于哺乳动物(尤其是人)时不产生不利、过敏或其它不良反应的分子实体和组合物。药学上可接受的载体或赋形剂是指无毒的固体、半固体或液体填充剂、稀释剂、包封材料或任何类型的制剂助剂。
如本文所用,术语“放疗”具有其在本领域中的一般含义并且是指用电离辐射治疗MIS或MISRII阳性癌症。电离辐射沉积的能量通过破坏它们的遗传物质而损伤或破坏待治疗区域(靶组织)中的细胞,使得这些细胞不能继续生长。通常使用的一种类型的放疗包括光子,例如X射线。根据其所具有的能量,射线可用于破坏机体表面或更深部位的癌细胞。X射线束的能量越高,X射线进入靶组织的深度就越深。线性加速器和电子感应加速器产生能量越来越大的X射线。使用机器将辐射(例如X射线)聚焦在结肠直肠癌部位被称为外部射束放疗。γ射线是放疗中使用的光子的另一种形式。当某些元素(例如镭、铀和钴60)在分解或衰变时释放辐射时,自发产生γ射线。在一些实施方案中,所述放疗是外部放疗。外部放疗的实例包括但不限于常规外部射束放疗;三维适形放疗(3D-CRT),其从不同方向递送成形光束以紧密地适配肿瘤的形状;强度调制放疗(IMRT),例如螺旋断层治疗,其将放射束成形为与肿瘤的形状紧密适配,并且还根据肿瘤的形状改变辐射剂量;适形质子束放疗;图像引导放疗(IGRT),其结合扫描和辐射技术来提供肿瘤的实时图像以引导放疗;术中放疗(IORT),其在手术期间将辐射直接递送至肿瘤;立体定向放射外科,其在单个疗程中向小肿瘤区域递送大的精确的辐射剂量;超分割放疗,例如连续超分割加速放疗(CHART),其中每天向受试者给予超过一种放疗治疗(次数);以及低分割放疗,其中每次给予较大剂量,但给予较少的次数。
如本文所用,术语“免疫检查点抑制剂”是指完全或部分减少、抑制、干扰或调节一种或多种免疫检查点蛋白的分子。
如本文所用,术语“免疫检查点蛋白”具有其在本领域中的一般含义,并且是指由T细胞表达的分子,其或者上调信号(刺激性检查点分子)或者下调信号(抑制性检查点分子)。
刺激检查点的实例包括CD27、CD28、CD40、CD122、CD137、OX40、GITR和ICOS。抑制性检查点分子的实例包括A2AR、B7-H3,B7-H4、BTLA、CTLA-4、CD277、IDO、KIR、PD-1、PD-L1、LAG-3、TIM-3和VISTA。
根据本发明,MIS抑制剂和经典治疗可用作组合治疗。
如本文所用,术语“组合治疗”、“组合疗法”或“疗法组合”是指使用一种以上药物的治疗。组合治疗可以是双重治疗或双治疗。在根据本发明的组合治疗中使用的药物同时、分开或依次向受试者施用。
如本文所用,术语“同时施用”是指通过相同途径且同时或基本上同时施用两种活性成分。术语“分开施用”是指通过不同途径同时或基本上同时施用两种活性成分。术语“依次施用”是指在不同时间施用两种活性成分,施用途径相同或不同。
药物组合物
本发明的抗MIS抗体可以在药物组合物中使用或制备。
在一个实施方案中,本发明涉及包含本发明的抗MIS抗体和药用可接受载体的药物组合物,其用于治疗MIS或MISRII阳性癌症的。
在一些实施方案中,MIS或MISRII阳性癌症选自下组:妇科癌症,肺癌和结肠直肠癌。
典型地,本发明的抑制剂可与药学上可接受的赋形剂和任选的缓释基质(例如生物可降解聚合物)组合以形成治疗组合物。
如本文所用,术语“药学上”或“药学上可接受的”是指当适当地施用于哺乳动物,尤其是人时不产生不利、过敏或其它不良反应的分子实体和组合物。药学上可接受的载体或赋形剂是指任何类型的无毒固体、半固体或液体填充剂、稀释剂、包封材料或制剂助剂。
在用于口服、舌下、皮下、肌内、静脉内、经皮、局部或直肠施用的本发明的药物组合物中,活性成分(单独或与另一种活性成分组合)可作为与常规药物载体的混合物以单位施用形式向动物和人施用。合适的单位施用形式包括口服途径形式,如片剂、凝胶胶囊、粉末、颗粒剂和口服悬浮液或溶液、舌下和口腔施用形式、喷雾剂、植入物、皮下、透皮、局部、腹膜内、肌内、静脉内、真皮下、透皮、鞘内和鼻内施用形式和直肠施用形式。
优选地,药物组合物包含对于能够被注射的制剂而言药学上可接受的介质。这些特别可以是等渗、无菌的盐水溶液(磷酸一钠或磷酸钠、氯化钠、氯化钾、氯化钙或氯化镁等或这些盐的混合物),或干燥、尤其是冷冻干燥的组合物,其根据情况,当加入无菌水或生理盐水时允许构成可注射溶液。
适用于可注射用途的药物形式包括无菌水溶液或分散体;制剂包括芝麻油、花生油或水性丙二醇;和用于临时制备无菌可注射溶液或分散体的无菌粉末。在所有情况下,形式必须无菌,且必须具有易于注射的程度的流动性。它在制备和储存条件下必须稳定,且必须防止微生物,例如细菌和真菌的污染作用。
含有本发明的抑制剂作为游离碱或药学上可接受的盐的溶液可以在与表面活性剂,例如羟丙基纤维素适当混合的水中制备。也可以在甘油、液体聚乙二醇及其混合物和在油中制备分散体。在储存和使用的一般条件下,这些制剂包含防腐剂以防止微生物生长。
本发明的抑制剂可以中性或盐形式配制成组合物。药学上可接受的盐包括酸加成盐(与蛋白质的游离氨基形成),其是用无机酸(例如盐酸或磷酸)、或有机酸(如乙酸、草酸、酒石酸、扁桃酸等)形成。用游离羧基形成的盐也可以衍生自无机碱,例如氢氧化钠、氢氧化钾、氢氧化铵、氢氧化钙或氢氧化铁,或有机碱,例如异丙胺、三甲胺、组氨酸、普鲁卡因等。
载体也可以是含有例如水、乙醇、多元醇(例如甘油、丙二醇和液体聚乙二醇等)、其合适的混合物和植物油的溶剂或分散体介质。例如,可以通过使用包衣(例如卵磷脂),在分散体的情况下通过维持所需的粒径和通过使用表面活性剂来维持适当的流动性。防止微生物的作用可以通过各种抗细菌剂和抗真菌剂来获得,例如对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸、硫柳汞等。在很多情况下,优选包括等渗剂,例如糖或氯化钠。可以通过在组合物中使用延迟吸收的试剂,例如单硬脂酸铝和明胶来获得可注射组合物的延迟吸收。
通过以下来制备无菌可注射溶液:根据需要将所需量的活性化合物和数种以上列举的其他成分引入合适的溶液中,随后过滤灭菌。通常,通过以下制备分散体:将各种灭菌的活性成分引入无菌介质中,所述无菌介质包含基础的分散体介质和所需的来自以上列举的其他成分。在用于制备无菌可注射溶液的无菌粉末的情况下,优选的制备方法是真空干燥和冷冻干燥技术,其从之前无菌过滤的溶液产生活性成分加上任何额外的所需成分的粉末。
一旦配制,溶液将以与剂量配方相容的方式并以治疗有效的这种量施用。制剂容易以各种剂型施用,例如上述可注射溶液的类型,但也可以使用药物释放胶囊等。
例如,为了水溶液中的肠胃外施用,如果需要,溶液应适当缓冲,并且液体稀释剂首先用足够的盐水或葡萄糖等渗。这些特定的水溶液尤其适用于静脉内、肌内、皮下和腹腔内施用。在这方面,可以使用的无菌水性介质是本领域技术人员基于本公开将知晓的。取决于被治疗的受试者的情况,剂量将必然发生一些变化。在任何情况下,负责施用的人将确定用于个体受试者的合适剂量。
除了配制用于肠胃外施用,例如静脉内或肌肉内注射的本发明MIS抑制剂之外,其他药学上可接受的形式包括,例如,用于口服施用的片剂或其他固体;脂质体制剂;定时释放胶囊;以及当前使用的任何其他形式。
本发明的药物组合物可包括用于治疗癌症的任何其它活性剂,其中所述癌症选自下组:妇科癌症、肺癌或结肠直肠癌。
在一个实施方案中,所述另外的活性剂可以包含在同一组合物中或分开施用。
在另一个实施方案中,本发明的药物组合物涉及用于同时、分开或依次使用以治疗MIS或MISRII阳性癌症的组合制剂。
在一些实施方案中,MIS或MISRII阳性癌症选自下组:妇科癌症、肺癌或结肠直肠癌。
本发明还提供了包含本发明的抗MIS抗体的试剂盒。含有本发明的抗MIS抗体的试剂盒可用于治疗方法。
本发明将通过以下附图和实施例进一步说明。然而,这些实施例和附图不应以任何方式解释为限制本发明的范围。
附图说明
图1:苗勒管抑制物质(MIS)在卵巢癌中的反常效应以及建议的MIS抑制治疗策略的图解摘要。
图2:重组MIS(LRMIS)在COV434-MISRII和SKOV3-MISRII细胞中诱导MIS信号传导。A.用1.6-25nM LRMIS孵育6小时促进细胞凋亡(半胱天冬酶3/7活性)。B.在1.6-2.5nMLRMIS存在下培养11天后,通过直接克隆计数(COV434-MISRII细胞)或通过细胞裂解后595nm处的OD值估计克隆数(SKOV3-MISRII细胞)来量化克隆的存活。
图3:ALK2、ALK3和ALK6参与COV434-MISRII和SKOV3-MISRII细胞的MIS效应。在将siALK2、siALK3或siALK6转染的COV434-MISRII或SKOV3-MISRII细胞与25nM MIS一起孵育6小时(在siRNA转染后48小时开始)后分析细胞凋亡起始(半胱天冬酶3/7活性)。
图4:抗MIS抗体B10在COV434-MISRII、SKOV3-MISRII、OVCAR8和KGN细胞中诱导生长抑制。在与或不与333nM B10一起孵育11天后,在COV434-MISRII细胞(直接克隆计数)和在SKOV3-MISRII、OVCAR8和KGN细胞(使用Celigo成像系统测量细胞汇合度)中的克隆源性存活。
图5:抗MIS抗体B10诱导卵巢癌腹水样品中的肿瘤细胞生长抑制。A.用330nM B10孵育48小时或不孵育(NT)后的细胞生长抑制(用Celigo成像系统测量的细胞汇合)。B.用渐增浓度的B10孵育或不孵育后的细胞凋亡诱导(半胱天冬酶3/7活性)。
图6:抗AMH抗体B10降低体内COV434-MISRII肿瘤生长。将携带COV434-MISRII细胞肿瘤的裸鼠用B10(抗AMH抗体)、12G4(抗AMHRII抗体)(两者均10mg/kg/注射)或载体(NaCl;对照)处理,每周两次共4周。A.肿瘤生长曲线(平均值+95%置信区间),和B.Kaplan-Meier生存曲线(肿瘤体积低于1,500mm3的小鼠的百分比作为移植后时间的函数)。
具体实施方式
材料和方法
细胞系
人COV434(性索间质瘤)(Chan-Penebre等,2017;Zhang等,2000)和KGN(颗粒细胞肿瘤)(Nishi等,2001)细胞系分别来自PI Schrier博士(Department of ClinicalOncology,Leiden University Medical Center,Nederland)和T Yanase博士(KyushuUniversity,Fukuoka,Japan)的馈赠。人卵巢上皮癌细胞系SKOV3和NIH-OVCAR8分别来自ATCC(
Figure BDA0003559438070000361
HTB-77)和来自美国马里兰州弗雷德里克市NCI癌症治疗和诊断部门。使细胞在含有10%热灭活胎牛血清(FBS)的不含红酚的DMEM F12培养基中生长。COV434-MISRII和SKOV3-MISRII细胞补充有0.33mg/ml遗传霉素(InvivoGen,ant-gn-1)。使细胞在37℃下在具有5%CO2的湿润环境中生长,并且每周更换培养基两次。用0.5mg/ml胰蛋白酶/0.2mg/ml EDTA收获细胞。所有培养基和补充物购自Life Technologies.Inc.(Gibco BRL)。在含有10%热灭活FBS的具有酚红的DMEMF12中生长用于在IRCM通过GenAc平台产生抗体的HEK293K细胞。
COV434-MISRII和SKOV3-MISRII细胞系是通过转染编码全长人MISRII的cDNA产生的(Kersual等,2014)。pCMV6质粒中编码全长人MISRII的cDNA来自J Teixeira(PediatricSurgical Research Laboratories,Massachusetts General Hospital,Harvard MedicalSchool)的馈赠。首先使用EcoRI和XhoI限制性内切酶(来自New England BioLabs的酶)将MISRII cDNA亚克隆到pcDNA3.1.myc-His载体(Invitrogen)中,然后使用EcoRI和SalI位点将其亚克隆到pIRES1-EGFP载体(来自F Poulat(IGH-UPR1142 CNRS)的馈赠)中。转染前24小时,将COV434细胞以80%汇合度接种在10cm细胞培养皿中。根据制造商的方案,使用Fugene转染试剂盒转染MISRII构建体。48小时后,用含有0.5mg/ml遗传霉素的新鲜培养基替换转染培养基,然后每周更换两次,持续两周。然后,使用FACSAria细胞仪(BectonDickinson)在96孔板中收获细胞并进行分选。对于每个细胞系,选择强烈表达MISRII的克隆,并且设计为COV434-MISRII和SKOV3-MISRII。
来自患者腹水的原发性肿瘤细胞
根据法国法律并在知情同意后从“Institut Cancer Montpellier,ICM”获得来自两名卵巢癌患者的腹水样品。选择这两名患者是因为他们从未接受过任何化疗并且正在ICM-Vald'Aurelle医院等待手术干预。将新鲜获得的腹水等分到50ml锥形离心管中并以1300rpm旋转5min。将细胞沉淀重悬于氯化铵-钾缓冲液(ACK裂解缓冲液:NH4Cl 150nM;KHCO3 10nM;Na2EDTA 0.1nM)在冰上裂解红细胞(RBC)5min。重复该过程直到RBC裂解完成。然后,将细胞沉淀铺板在含有20ml DMEM F12-Glutamax(Gibco)和10%FBS的150mm细胞培养皿上。同日,收获100,000个细胞以通过FACS评估MISRII表达。然后,将细胞在DMEM F12/10%FBS中铺板30分钟以快速消除粘附的成纤维细胞(O Donnell等,2014)。将未粘附的细胞转移到含有DMEM F12/10%FBS的新培养皿中。低传代细胞用于实验或在液氮中冷冻。
苗勒管抑制物质质(MIS)的产生和测定
我们的研究使用了D Pépin等人(Pépin等,2013,2015)工作中描述的活性重组MIS(LRMIS)。它包含(i)白蛋白的24AA前导序列,而非MIS前导序列,以提高产量和分泌;(ii)RARR/S furin/kex2共识位点,而非第423-428位的天然MIS RAQR/S序列,以改进切割。MIS剂量是用罗氏公司的
Figure BDA0003559438070000371
AMH(抗苗勒管激素)测定法进行的。所有涉及LRMIS的实验都在含有1%FBS的培养基中进行,因为牛MIS可以通过人MISRII发出信号(Cate等,1986)。在这些实验条件下,内源性MIS浓度从新鲜培养基中的5-10pM到细胞培养5天后的约10-15pM不等。为了测定细胞培养上清液中的内源性MIS浓度,将100万个细胞置于10ml DMEMF12/1%FBS中的100mm细胞培养皿中。每隔24小时,取出300μl培养基用于测定MIS剂量。
siRNA转染和测定
siRNA序列用Rosetta算法设计,并由Sigma-Aldrich预先设计的siRNA确保支持。我们对每个ALK受体和MIS都使用了一组三个siRNA。将细胞铺板于24孔板中,达到60-80%的汇合度。根据供应商(Thermofisher cat#13778-150),使用在Opti-MEM培养基中稀释的Lipofectamine RNAiMax转染试剂在含1%FBS的培养基中进行转染。将siRNA在Opti-MEM中稀释到300ng/ml(针对ALK2、ALK3和ALK6的siRNA)和1μg/ml(针对MIS的siRNA),并将siRNA-Lipofectamine(1:1)混合物添加到细胞中6小时。将细胞洗涤并在DMEM F12/1%FBS中培养。转染后24小时(COV434-MISRII细胞)和48小时(SKOV3-MISRII细胞)对siRNA转染的细胞进行实验。
抗MIS B10抗体开发和生产
在使用Ala453-Arg560 MIS cTER结构域(R&D)进行顺序平移后,通过噬菌体展示从人scFv噬菌体展示库Husc I(Philibert等,2007;Robin和Martineau,2012)中选择三种抗MIS人scFv抗体。首先以小鼠Ig2Ga形式表达抗体。选择MAb B10进行进一步的实验,因为如通过ELISA所测定,其显示了与全长MIS的最佳结合(Pépin等,2013)。
MAb B10抗体在HEK293T细胞(ATCC CRL1573)中产生。将HEK293T细胞在150mm2培养皿中生长至70%汇合度。将30μg编码B10的质粒和240μg转染剂聚乙烯亚胺PEI(Polyscience)的1:1混合物在室温下保持10分钟,然后添加到细胞中6小时。然后,用不含FBS的DMEM替换转染培养基。五天后,收集上清液并用40mM磷酸钠缓冲液(pH 8)稀释(1:1),通过0.22μm过滤器过滤并在1ml蛋白A柱上纯化24小时。将抗体在酸性pH(甘氨酸pH值为3)下洗脱,立即用pH为9的Tris缓冲液稳定。用截止值为50kDa的Centricon滤膜浓缩PBS中的抗体。200ml细胞培养液提供约1mg纯化抗体。
蛋白质印迹分析
用PBS洗涤细胞并立即在RIPA裂解缓冲液(Santa Cruz)中刮擦,所述RIPA裂解缓冲液包含200mM PMSF溶液、100mM原钒酸钠溶液和蛋白酶抑制剂混合物。使用BCA测定蛋白质定量试剂盒(Interchim)测定蛋白质浓度。将细胞提取物在95℃下加热5分钟,在10%SDS-PAGE上在还原条件(5%2β-巯基乙醇)下分离(50μg蛋白质/孔),并转移至PVDF膜(Biorad)。使膜在含有0.1%吐温20和5%脱脂奶粉的Tris缓冲盐水中饱和,并在室温下用相关的一抗探测1h。洗涤后,在室温下添加过氧化物酶缀合的IgG二抗(1/10,000)1h。洗涤后,使用化学发光底物(Merck)检测抗体-抗原相互作用。为了验证相同的载荷,还用抗GAPDH单克隆抗体(Cell Signaling)探测免疫印迹。
MIS通路分析
将细胞在DMEM F12/1%FBS培养基中培养过夜,然后与LRMIS(0-25nM)在37℃下孵育6小时。使用抗磷酸化SMAD1/5、抗磷酸化AKT、抗裂解胱天蛋白酶3、抗裂解PARP和抗GAPDH一级抗体(1:1.000;Cell Signaling)、抗ALK2和抗ALK3抗体(1μg/ml;R&Dsystem)在4℃下进行蛋白质印迹过夜,然后是抗兔和抗山羊IgG HRP二抗(1:10.000;Sigma)在室温下进行1小时。
克隆源性存活
将细胞铺板于DMEM F12/1%FBS培养基中D 24孔板(50个细胞/孔)中过夜。然后,添加LRMIS(0-25nM)或抗MIS Mab B10(333nM)培养11天。对于作为清楚个体化克隆生长的COV434-MISRII细胞,将菌落用甲醇/乙酸溶液(3:1)在4℃固定20min,用10%Giemsa染色,并计数。对于SKOV3-MISRII、OVCAR8、KGN细胞和来自患者腹水的细胞,在用Hoechst 33342三盐酸盐(Invitrogen H1399,0.25μg/ml 15min)染色细胞后,使用celigo成像系统测定从汇合区域估计克隆数。
细胞凋亡测定
使用Caspase-Glos-3/7测定(Promega)测量细胞凋亡起始。将细胞铺板在白色96孔板上并与LRMIS(0-25nM)一起孵育6小时。添加发光的Caspase-3/7DEVD-氨基荧光素底物后,Caspase-3/7产生游离的氨基荧光素,其被荧光素酶消耗,产生与Caspase-3/7活性成比例的发光信号。添加底物30分钟后,用PHERASTAR酶标仪定量发光信号。
为了更完整地分析细胞凋亡,使用Annexin V-FITC细胞凋亡检测试剂盒(BeckmanCoulter IM3614)。将约100,000个细胞/孔接种在24孔板中,并与或不与50μg/ml Mab B10,25nM LRMIS或150nM星形孢菌素(阳性对照)一起孵育24小时。收集粘附和分离的细胞并以900rpm离心5分钟。用PBS洗涤后,将细胞用130μl在100μl膜联蛋白缓冲液中含有10μlFITC-标记的膜联蛋白V和20μl 7AAD的混合物在冰上在黑暗中染色15分钟。添加400μl膜联蛋白缓冲液后,在30分钟内通过流式细胞术获得荧光信号数据,并用Kaluza流式分析软件(Beckman Coulter)分析数据。
免疫荧光
对于每个测定,使30000个细胞在DMEM F12/10%FBS中在35mm培养皿中在22mm正方形玻璃盖玻片上生长过夜。然后,将细胞用1%FBS培养基饥饿24小时,然后与25nM LRMIS一起孵育1小时30分钟。然后,将细胞在3.7%多聚甲醛/PBS中固定20min并在丙酮中在-20℃下透化30s。用PBS/0.1%BSA洗涤细胞两次,并与P3X63(无关抗体)(
Figure BDA0003559438070000401
et al.,1976)、抗MISRII 12G4和抗-ALK2、抗-ALK3、抗-ALK6(R&D)一抗在黑暗中孵育1h。再次洗涤后,将细胞与山羊-FITC-标记的二抗在PBS/0.1%BSA中孵育1h。然后,用PBS/0.1%BSA洗涤三次并用PBS洗涤一次。用DAPI(Biotium,Inc.,Fremont,CA)以EverBriteTM HardestMounting固定,并在第二天用Zeiss Axioplan 2Imaging显微镜分析。
细胞活力测定
对于细胞活力/增殖测试,根据制造商的说明书使用CellTiter 96AQueous OneSolution Cell Proliferation Assay system(Promega)。将5000个细胞铺板于96孔板的每个孔中,并在50μl DMEM F12/1%FBS培养基中培养过夜。然后,将细胞与LRMIS(0-25nM)或抗MIS B10抗体(0-333nM)孵育3天。然后,每孔添加10μl CellTiter 96AQueous OneSolution试剂,并将板在潮湿的5%CO2环境中孵育直至阳性对照孔变成棕色(1-2小时,取决于细胞系)。然后,使用PHERASTAR酶标仪在490nm处测量吸光度。每种条件使用三个重复孔。
ELISA分析
使用ELISA测定B10抗体的EC50。将多克隆抗AMH抗体(Abcam ab 84952)包被在96孔高蛋白质结合能力板(Nunc MaxiSorp)上过夜。然后,将板洗涤3次并用PBS-Tween0.01%-BSA2%溶液饱和2小时。在每个步骤后,用PBS-Tween0.01%洗涤板3次。添加重组AMH(25nM)并在37℃孵育2小时。然后,添加抗体B10(666-0nM)并在37℃孵育1个半小时。将第二抗Fc小鼠过氧化物酶(HRP)抗体孵育30分钟并添加底物酶(Thermofisher,TMB)。添加硫酸终止酶反应后,在450nm处读取吸光度。
使用卵巢癌细胞异种移植物的体内研究
所有动物实验均按照法国政府的指导方针和实验动物研究的Inserm法规(D34-172-27)进行。对于所有体内实验,在第0天(D0),将体积为150μl的在BD Matrigel中的7.106个人COV434-MISRII细胞39(比例1:1)皮下(sc)移植到雌性无胸腺裸Hsd小鼠(6-8周龄)(ENVIGO,France)的右胁。在D12-D13当肿瘤体积达到60-150mm3时,将小鼠随机化(n=5-7只小鼠/组)。所有处理均通过腹膜内(ip)注射施用,每周两次,持续4周。将抗AMH MAbB10(IgG2a形式,在HEK296T细胞中产生)和抗AMHRII MAb 12G4(嵌合IgG1形式,在CHO细胞中产生)以10mg/kg注射。未处理组接受生理盐水(载体)。每周用卡尺测量肿瘤尺寸一次,并使用以下公式计算肿瘤体积:D1 x D2 x D3/2。结果也用适应的Kaplan-Meier存活曲线表示,使用肿瘤达到1,500mm3体积所需的时间。中值存活定义为50%的小鼠具有1,500mm3的肿瘤的时间。
统计分析
用Prism软件和ANOVA(Tukey多重比较检验)进行关于Caspase-Glos-3/7活性和细胞活力/增殖差异的统计分析。
使用线性混合回归模型确定肿瘤生长和移植后天数之间的关系。模型的固定部分包括对应于移植后天数和不同组的变量。将交互项构建到模型中。包括随机截距和随机斜率以考虑时间效应。通过最大似然估计模型的系数并认为在0.05水平上是显著的。使用Kaplan-Meier法从异种移植日期直至肿瘤达到1,500mm3体积的日期估计存活率。中位存活期为95%置信区间。使用对数秩检验比较存活曲线。使用STATA16.0软件(StataCorp,College Station,TX)进行统计分析。
结果
重组MIS在COV434-MISRII和SKOV3-MISRII细胞中诱导MIS信号传导
在评价不同MISRI的参与之前,我们分析了两种MISRII阳性卵巢癌细胞系中的MIS/MISRII信号传导:COV434-MISRII(Kersual等,2014)和SKOV3-MISRII细胞。事实上,我们和其他作者发现,衍生自卵巢癌和卵巢癌腹水的细胞系中的MISRII表达在长期培养后迅速且逐渐降低(Estupina等人,2017;Pépin等人,2015),从而限制了实验再现性。对于本研究中描述的所有实验,我们使用根据专利WO2014/164891在CHO细胞(Evitria AG,Zürich,Switzerland)中产生的人重组AMH(LR-AMH;[10])(数据未显示)。LR-AMH具有被完全切割同时是全长激素的优点,因此结合了效率和稳定性(Pépin等,2013;Wilson等,1993)。我们在含有1%FBS的培养基中用LR-AMH进行了所有实验,因为据报道牛AMH可通过人AMHRII发信号(Cate等,1986)。在这些实验条件下,培养基中的AMH浓度从新鲜培养基中的5-10pM变至培养5天后的约10-15pM。
在两种细胞系中,在所有测试的LRMIS浓度(1.6-25nM)下诱导SMAD1/5磷酸化。通过测量Caspase-Glos-3/7活性评估的细胞凋亡从在COV434-MISRII细胞中的12.5nM LRMIS和在SKOV3-MISRII细胞中的6.3nM LRMIS开始被显著诱导(图2A)。我们通过切割的Caspase-3/7和切割的PARP的蛋白质印迹分析证实了细胞凋亡诱导(数据未显示)。此外,流式细胞仪分析表明,与未处理的细胞(12.5%VS.3.6%的膜联蛋白V-阳性细胞,和16.3%VS.5.3%的膜联蛋白V/7AAD-阳性细胞)相比,用25nM LRMIS孵育24小时在COV434-MISRII细胞中强烈诱导细胞凋亡,并且在SKOV3-MISRII细胞中也较低程度地诱导细胞凋亡(4.5%VS.5.4%的膜联蛋白V-阳性细胞,和11.3%VS.1.7%的膜联蛋白V/7AAD-阳性细胞)(数据未显示)。最后,在所有测试的LRMIS浓度下,两种细胞系的克隆源性存活减少(图2B)。这些结果证实COV434-MISRII和SKOV3-MISRII细胞是研究MIS信号传导的相关模型。
在卵巢癌细胞中,ALK3是参与MIS信号传导的主要MISRI
为了分析MISRI参与卵巢癌细胞中的MIS信号传导,我们用靶向ALK2、ALK3和ALK6的siRNA转染COV434-MISRII和SKOV3-MISRII细胞。由于这些受体在不同信号传导通路中的作用,它们的shRNA介导的沉默在这些细胞中是致死的。PCR和蛋白质印迹分析表明三种抗ALK2的siRNA(siAlk2)的混合物和三种抗ALK6的siRNA(siAlk6)的混合物有效地抑制它们的表达(数据未显示)。相反,ALK3沉默(siAlk3)效率较低,特别是在COV434-MISRII细胞中。与LRMIS(25nM,6小时)孵育在siAlk2和siAlk6中诱导SMAD1/5磷酸化,但在siAlk3 COV434-MISRII和SKOV3-MISRII细胞中不诱导SMAD1/5磷酸化(数据未显示)。在siAlk2和siAlk6COV434-MISRII和SKOV3-MISRII细胞中以及在用对照siRNA转染的COV434-MISRII和SKOV3-MISRII细胞中,Caspase-Glos-3/7活性和切割没有显著差异(图3)。相反,与对照相比,siAlk3COV434-MISRII和SKOV3-MISRII细胞的凋亡减少约25%。这些结果通过PARP和Caspase-3/7切割的蛋白质印迹分析证实(数据未显示)。这些发现表明,尽管沉默不完全,但MIS信号传导主要在siAlk3COV434-MISRII和SKOV3-MISRII细胞中减少,表明ALK3是卵巢癌细胞中MIS信号传导的优选MISRI受体。
在卵巢癌细胞中,MIS调节ALK2和ALK3表达
然后,我们研究了MIS对四种MISRII阳性卵巢癌细胞系中MISRII、ALK2、ALK3和ALK6表达的影响:COV434-MISRII(性索间质瘤)、SKOV3-MISRII(上皮癌)、OVCAR8(上皮癌)和KGN(颗粒细胞瘤)。免疫荧光(IF)分析表明MISRII和ALK2在所有四种细胞系中在基础条件(1%FBS,对应于10μM MIS)下清楚地表达,并且它们的表达不通过与25nM LRMIS孵育90分钟来调节(数据未显示)。ALK3表达在基础条件下通过IF检测不到,但在所有四种细胞系中通过MIS添加诱导(数据未显示)。在两种实验条件下都检测不到ALK6。
然后,为了确定ALK2和ALK3的作用,我们在基础条件下和与LRMIS(1.6-25nM)孵育6小时后,通过蛋白质印迹评估它们的表达和MIS信号蛋白的表达。在所有四种细胞系中(数据未显示),ALK2基础表达在与LRMIS孵育后降低,并且在6.25或12.5nM LRMIS存在下几乎检测不到。相反,ALK3表达在LRMIS暴露后增加。此外,SMAD1/5磷酸化Caspase-3/7活性,以及半胱天冬酶3和PARP切割与ALK3表达平行增加(数据未显示)。
为了分析非SMAD通路参与MIS信号传导(Beck等,2016;Zhang,2017),我们监测AKT磷酸化,并发现其在与LRMIS孵育后降低,如对于ALK2表达所观察的(数据未显示)。
这些结果证实在卵巢癌细胞中,ALK3是通过SMAD通路诱导细胞凋亡的MIS信号传导中的主要MISR1(从约6nM LRMIS开始)。ALK2在基础条件(约10μM MIS)下表达,然后其表达在与LRMIS孵育时降低。
抗MIS抗体B10减少细胞增殖并诱导卵巢癌细胞中的生长抑制
为了测试低浓度MIS的增殖效应是否可以被抗体阻断以作为潜在的治疗策略,我们产生了抗MIS的新MAb。B10抗体是使用Ala453-Arg560MIS cTER结构域淘选后分离自人scFv噬菌体展示文库HuscI(Philibert等,2007;Robin和Martineau,2012),所述结构域具有生物活性,尽管其活性低于切割的MIS(Nachtigal和Ingraham,1996;Wilson等,1993)。首先,我们通过ELISA表征B10对MIS的亲和力(EC50=50.4±1.2nM)及其抑制25nM LRMIS在COV434-MISRII和SKOV3-MISRII细胞中的凋亡作用的能力(数据未显示)。25nM MIS诱导的Caspase-3/7活性(相对于未处理细胞的倍数变化)在约66nM B10存在下降低约40%。
然后,我们评估了在低LRMIS浓度(0.1-0.6nM)存在下B10对细胞活力的影响。根据细胞系,B10在3-333nM的浓度范围内诱导25%(OVCAR8)-50%(KGN)的细胞活力降低(数据未显示)。此外,333nM B10在COV434-MISRII、SKOV3-MISRII、OVCAR8和KGN细胞中分别使克隆源性存活率降低57.5%、57.1%、64.7%和37.5%(图4)。在四种细胞系中,B10降低AKT磷酸化,并且增加PARP和半胱天冬酶3切割(数据未显示),这是最初仅在高LRMIS浓度下观察到的现象(图2A和B)。
最后,我们评估了B10在分离自两名卵巢癌患者腹水样品的原发性癌细胞中的作用。这些患者正在等待手术干预并且从未接受过化疗。与在四种细胞系中一样,B10使细胞活力降低30%和20%(分别为患者1和2)(数据未显示),并且抑制细胞生长(通过汇合面积估计)25%和65%(分别为患者1和2)(图5A),而它使Caspase-3/7活性增加多达3倍(图5B)。尽管样品数量有限,但这些结果突出了用特异性抗体阻断MIS-增殖效应的潜在转化观点。
抗AMH抗体B10在体内减少COV434-MISRII肿瘤生长
为了评价B10体外抗增殖作用是否可以转化为体内抗肿瘤活性,我们用B10(抗-AMH抗体)、12G4(抗-AMHRII抗体)(两者均10mg/kg/注射)或媒介物(NaCl)通过每周两次ip注射4周来处理携带已建立的COV434-MISRII细胞衍生的肿瘤的小鼠(5-7只小鼠/组)。与媒介物相比,B10和12G4均抑制肿瘤生长(p<0.001)(图6A)。对于用媒介物、B10和12G4处理的小鼠,中位存活时间(定义为50%的小鼠具有1,500mm3的肿瘤时的时间)分别为60、69和76天(对于12G4和B10 VS对照,p=0.0050和p=0.0173;对于12G4和B10之间,P=0.4331)(图6B)。
讨论
在此,使用两种卵巢癌细胞系(COV434-MISRII和SKOV3-MISRII),我们发现ALK3是MIS信号传导和细胞凋亡诱导的最受欢迎的MISRI。在四种卵巢癌细胞系(COV434-MISRII、SKOV3-MISRII、OVCAR8和KGN)中,我们表明ALK2和ALK3通过与LRMIS孵育而调节,并且当使用高剂量的LRMIS诱导细胞凋亡时ALK3优先表达(图2A和2B)。这些结果在分离自两名卵巢癌患者腹水样品的肿瘤细胞中得到证实,并且目前用于开发新的治疗策略。
自从1979年(Donahoe等,1979),基于RE Scully的观察结果即上皮性卵巢癌在组织学上类似于衍生自苗勒管的组织(Scully,1970),MIS被提议为妇科肿瘤的潜在治疗。KimJH等人综述的许多研究确认了MIS在卵巢癌(Anttonen等,2011;Fuller等,1982;Masiakos等,1999;Peretti-vanmarcke等,2006;Stephen等,2002)、宫颈癌和子宫内膜癌(Barbie等,2003;Renaud等,2005)以及在非苗勒管肿瘤中,例如乳腺癌(Gupta等,2005)和前列腺癌(Hoshiya等,2003)中作为癌症治疗的生物药物的潜在应用(Kim等,2014)。具体地,这些研究表明高剂量的MIS可以在体外和体内在细胞系和在患者样品中抑制癌细胞生长。有趣的是,最近的结果表明MIS还可以在化疗抗性癌细胞和癌症干细胞中有效(Meirelles等,2012;Wei等,2010)。该策略的临床应用的主要问题是大量临床级MIS的可用性。据我们所知,最先进的策略是Pépin等开发的策略(即,具有白蛋白前导序列和切割位点修饰的LRMIS导致生物活性MIS的高产率)(Pépin等,2013)。
这些研究的共同点是它们都使用高剂量的MIS来治疗癌细胞,典型地为25-200nM。该浓度必须与生理上观察到的最高MIS血清浓度(从出生到青春期的男孩)进行比较,所述最高MIS血清浓度低于1nM(约50ng/ml)。这是完全合乎逻辑的,因为该策略基于MIS在苗勒管退化期间诱导细胞凋亡。我们在本研究中获得了类似的结果,但我们还聚焦于观察到低浓度(0.8nM-6.1nM,取决于细胞系)MIS促进细胞存活/增殖。
此外,BeckTN等人表明在肺癌中,MIS/MISRII信号传导调节上皮-间质转化(EMT)并促进细胞存活/增殖(Beck等,2016)。他们表明MIS/MISRII信号传导在EMT调节中的作用对于化学抗性是重要的。在本研究中,我们显示新的抗MIS Mab B10可以降低所有四种卵巢癌细胞系和分离自卵巢癌腹水样品的肿瘤细胞中的细胞活力、克隆源性存活和ATK磷酸化(图4)。所有这些体外数据表明抑制AMH的生理浓度可以模拟外源性AMH的超生理浓度的作用。作为该概念的体内证明的第一步,我们表明在小鼠中,与对照组(未处理)相比,B10抗AMH抗体降低COV434-AMHRII细胞衍生的肿瘤的生长并显著增加它们的中值存活时间(图6)。
基于这些结果,我们提出抗MISMAb(如B10),可以代表抑制MIS增殖效应的创新治疗方法,而不是施用高MIS剂量以诱导细胞凋亡。该策略可以首先在其中MIS/MISRII信号传导通路被充分描述的妇科肿瘤中评价,然后在其中(i)MIS基因上调(Pellatt等,2018),和(ii)高MIS RNA表达是不利的预后因子(n=597名患者,随访超过12年)(Uhlen等,2017)的结肠直肠癌中评价。
参考文献
在整个申请中,各种参考文献描述了本发明所属领域的状态。这些参考文献的公开内容在此通过引用并入本公开。
Anttonen,M.,
Figure BDA0003559438070000471
A.,Tauriala,H.,Kauppinen,M.,Maclaughlin,D.T.,Unkila-Kallio,L.,Bützow,R.,and Heikinheimo,M.(2011).Anti-Müllerian hormoneinhibits growth of AMH type IIreceptor-positive human ovarian granulosa celltumor cells by activatingapoptosis.Lab.Investig.J.Tech.Methods Pathol.91,1605–1614.
Bakkum-Gamez,J.N.,Aletti,G.,Lewis,K.A.,Keeney,G.L.,Thomas,B.M.,Navarro-Teulon,I.,and Cliby,W.A.(2008).Müllerianinhibiting substance type IIreceptor(MISIIR):a novel,tissue-specifictarget expressed by gynecologiccancers.Gynecol.Oncol.108,141–148.
Barbie,T.U.,Barbie,D.A.,MacLaughlin,D.T.,Maheswaran,S.,and Donahoe,P.K.(2003).Mullerian Inhibiting Substance inhibits cervical cancer cellgrowth via a pathway involving p130 and p107.Proc.Natl.Acad.Sci.U.S.A.100,15601–15606.
Basal,E.,Ayeni,T.,Zhang,Q.,Langstraat,C.,Donahoe,P.K.,Pepin,D.,Yin,X.,Leof,E.,and Cliby,W.(2016).Patterns of Müllerian Inhibiting Substance TypeII and Candidate Type I Receptors in Epithelial OvarianCancer.Curr.Mol.Med.16,222–231.
Beck,T.N.,Korobeynikov,V.A.,Kudinov,A.E.,Georgopoulos,R.,Solanki,N.R.,Andrews-Hoke,M.,Kistner,T.M.,Pépin,D.,Donahoe,P.K.,Nicolas,E.,et al.(2016).Anti-Müllerian Hormone Signaling Regulates Epithelial Plasticity andChemoresistance in Lung Cancer.Cell Rep.16,1-15.
Belville,C.,Jamin,S.P.,Picard,J.-Y.,Josso,N.,and di Clemente,N.(2005).Role of type I receptors for anti-Müllerian hormone in the SMAT-1Sertoli cell line.Oncogene 24,4984–4992.
Bougherara,H.,Némati,F.,Nicolas,A.,Massonnet,G.,Pugnière,M.,
Figure BDA0003559438070000481
C.,Le Frère-Belda,M.-A.,Leary,A.,Alexandre,J.,Meseure,D.,et al.(2017).Thehumanized anti-human AMHRII mAb 3C23K exerts an anti-tumor activity againsthuman ovarian cancer through tumor-associated macrophages.Oncotarget 8,99950–99965.
Cate,R.L.,Mattaliano,R.J.,Hession,C.,Tizard,R.,Farber,N.M.,Cheung,A.,Ninfa,E.G.,Frey,A.Z.,Gash,D.J.,and Chow,E.P.(1986).Isolation of the bovineand human genes for Müllerian inhibitingsubstance and expression of the humangene in animal cells.Cell 45,685–698.
Chan-Penebre,E.,Armstrong,K.,Drew,A.,Grassian,A.R.,Feldman,I.,Knutson,S.K.,Kuplast-Barr,K.,Roche,M.,Campbell,J.,Ho,P.,et al.(2017).Selective Killing of SMARCA2-and SMARCA4-deficient Small Cell Carcinoma ofthe Ovary,Hypercalcemic Type Cells by Inhibition of EZH2:In Vitro and In VivoPreclinical Models.Mol.Cancer Ther.16,850–860.
Clarke,T.R.,Hoshiya,Y.,Yi,S.E.,Liu,X.,Lyons,K.M.,and Donahoe,P.K.(2001).Müllerian inhibiting substance signaling uses a bone morphogeneticprotein(BMP)-like pathway mediated by ALK2 and induces SMAD6 expression.Mol.Endocrinol.Baltim.Md 15,946–959.
di Clemente,N.,Jamin,S.P.,Lugovskoy,A.,Carmillo,P.,Ehrenfels,C.,Picard,J.-Y.,Whitty,A.,Josso,N.,Pepinsky,R.B.,and Cate,R.L.(2010).Processingof anti-mullerian hormone regulates receptor activation by a mechanismdistinct from TGF-beta.Mol.Endocrinol.Baltim.Md 24,2193–2206.
Donahoe,P.K.,Swann,D.A.,Hayashi,A.,and Sullivan,M.D.(1979).Müllerianduct regression in the embryo correlated with cytotoxic activity againsthuman ovarian cancer.Science 205,913–915.
Donahoe,P.K.,Clarke,T.,Teixeira,J.,Maheswaran,S.,and MacLaughlin,D.T.(2003).Enhanced purification and production of Müllerian inhibiting substancefor therapeutic applications.Mol.Cell.Endocrinol.211,37–42.
Estupina,P.,Fontayne,A.,Barret,J.-M.,Kersual,N.,Dubreuil,O.,Le Blay,M.,Pichard,A.,Jarlier,M.,Pugniere,M.,Chauvin,M.,et al.(2017).The anti-tumorefficacy of 3C23K,a glyco-engineered humanized anti-MISRII antibody,in anovarian cancer model is mainly mediated by engagement of immune effectorcells.Oncotarget 8,37061–37079.
Fuller,A.F.,Guy,S.,Budzik,G.P.,and Donahoe,P.K.(1982).Mullerianinhibiting substance inhibits colony growth of a human ovarian carcinoma cellline.J.Clin.Endocrinol.Metab.54,1051–1055.
Gill,S.E.,Zhang,Q.,Keeney,G.L.,Cliby,W.A.,and Weroha,S.J.(2017).Investigation of factors affecting the efficacy of 3C23K,a human monoclonalantibody targeting MISIIR.Oncotarget.
Gupta,V.,Carey,J.L.,Kawakubo,H.,Muzikansky,A.,Green,J.E.,Donahoe,P.K.,MacLaughlin,D.T.,and Maheswaran,S.(2005).Mullerian inhibiting substancesuppresses tumor growth in the C3(1)Tantigen transgenic mouse mammarycarcinoma model.Proc.Natl.Acad.Sci.U.S.A.102,3219–3224.
Horbelt,D.,Denkis,A.,and Knaus,P.(2012).A portrait of TransformingGrowth Factorβsuperfamily signalling:Background matters.Int.J.Biochem.CellBiol.44,469–474.
Hoshiya,Y.,Gupta,V.,Segev,D.L.,Hoshiya,M.,Carey,J.L.,Sasur,L.M.,Tran,T.T.,Ha,T.U.,and Maheswaran,S.(2003).Mullerian Inhibiting Substance inducesNFkB signaling in breast and prostate cancer cells.Mol.Cell.Endocrinol.211,43–49.
Josso,N.,and Clemente,N.di(2003).Transduction pathway of anti-Müllerian hormone,a sex-specific member of the TGF-beta family.TrendsEndocrinol.Metab.TEM 14,91–97.
Josso,N.,Racine,C.,di Clemente,N.,Rey,R.,and Xavier,F.(1998).The roleof anti-Müllerian hormone in gonadal development.Mol.Cell.Endocrinol.145,3–7.
Kersual,N.,Garambois,V.,Chardès,T.,Pouget,J.-P.,Salhi,I.,Bascoul-Mollevi,C.,Bibeau,F.,Busson,M.,Vié,H.,Clémenceau,B.,et al.(2014).The human Müllerian inhibiting substance type II receptor as immunotherapy target forovarian cancer.Validation using the mAb 12G4.MAbs 6,1314–1326.
Kim,J.H.,MacLaughlin,D.T.,and Donahoe,P.K.(2014).Müllerian inhibitingsubstance/anti-Müllerian hormone:A novel treatment for gynecologictumors.Obstet.Gynecol.Sci.57,343–357.
Kittler,R.,Surendranath,V.,Heninger,A.-K.,Slabicki,M.,Theis,M.,Putz,G.,Franke,K.,Caldarelli,A.,Grabner,H.,Kozak,K.,et al.(2007).Genome-wideresources of endoribonuclease-prepared short interfering RNAs for specificloss-of-function studies.Nat.Methods 4,337–344.
Figure BDA0003559438070000511
G.,Howe,S.C.,and Milstein,C.(1976).Fusion betweenimmunoglobulin-secreting and nonsecreting myeloma cell lines.Eur.J.Immunol.6,292–295.
Masiakos,P.T.,MacLaughlin,D.T.,Maheswaran,S.,Teixeira,J.,Fuller,A.F.,Shah,P.C.,Kehas,D.J.,Kenneally,M.K.,Dombkowski,D.M.,Ha,T.U.,et al.(1999).Human ovarian cancer,cell lines,and primary ascites cells express the humanMullerian inhibiting substance(MIS)type II receptor,bind,and are responsiveto MIS.Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.5,3488–3499.
Mazumder,S.,Johnson,J.M.,Swank,V.,Dvorina,N.,Martelli,E.,Ko,J.,andTuohy,V.K.(2017).Primary Immunoprevention of Epithelial Ovarian Carcinoma byVaccination against the Extracellular Domain of Anti-Müllerian HormoneReceptor II.Cancer Prev.Res.Phila.Pa 10,612–624.
Meirelles,K.,Benedict,L.A.,Dombkowski,D.,Pepin,D.,Preffer,F.I.,Teixeira,J.,Tanwar,P.S.,Young,R.H.,MacLaughlin,D.T.,Donahoe,P.K.,et al.(2012).Human ovarian cancer stem/progenitor cells are stimulated bydoxorubicin but inhibited by Mullerian inhibiting substance.Proc.Natl.Acad.Sci.U.S.A.109,2358–2363.
Nachtigal,M.W.,and Ingraham,H.A.(1996).Bioactivation of Müllerianinhibiting substance during gonadal development by a kex2/subtilisin-like endoprotease.Proc.Natl.Acad.Sci.U.S.A.93,7711–7716.
Nishi,Y.,Yanase,T.,Mu,Y.,Oba,K.,Ichino,I.,Saito,M.,Nomura,M.,Mukasa,C.,Okabe,T.,Goto,K.,et al.(2001).Establishment and characterization of asteroidogenic human granulosa-like tumor cell line,KGN,that expressesfunctional follicle-stimulating hormone receptor.Endocrinology 142,437–445.
Donnell,R.L.,McCormick,A.,Mukhopadhyay,A.,Woodhouse,L.C.,Moat,M.,Grundy,A.,Dixon,M.,Kaufman,A.,Soohoo,S.,Elattar,A.,et al.(2014).The use ofovarian cancer cells from patients undergoing surgery to generate primarycultures capable of undergoing functional analysis.PloS One 9,e90604.
Orvis,G.D.,Jamin,S.P.,Kwan,K.M.,Mishina,Y.,Kaartinen,V.M.,Huang,S.,Roberts,A.B.,Umans,L.,Huylebroeck,D.,Zwijsen,A.,et al.(2008).Functionalredundancy of TGF-beta family type I receptors and receptor-Smads inmediating anti-Mullerian hormone-induced Mullerian duct regression in themouse.Biol.Reprod.78,994–1001.
Pellatt,A.J.,Mullany,L.E.,Herrick,J.S.,Sakoda,L.C.,Wolff,R.K.,Samowitz,W.S.,and Slattery,M.L.(2018).The TGFβ-signaling pathway andcolorectal cancer:associations between dysregulated genes andmiRNAs.J.Transl.Med.16,191.
Pépin,D.(2014).Modified mullerian inhibiting substance(mis)proteinsand uses thereof for the treatment of diseases.
Pépin,D.,Hoang,M.,Nicolaou,F.,Hendren,K.,Benedict,L.A.,Al-Moujahed,A.,Sosulski,A.,Marmalidou,A.,Vavvas,D.,and Donahoe,P.K.(2013).An albuminleader sequence coupled with acleavage site modification enhances the yieldof recombinant C-terminal Mullerian Inhibiting Substance.Technol.Elmsford N1,63–71.
Pépin,D.,Sosulski,A.,Zhang,L.,Wang,D.,Vathipadiekal,V.,Hendren,K.,Coletti,C.M.,Yu,A.,Castro,C.M.,Birrer,M.J.,et al.(2015).AAV9 delivering amodified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer.Proc.Natl.Acad.Sci.U.S.A.112,E4418-4427.
Philibert,P.,Stoessel,A.,Wang,W.,Sibler,A.-P.,Bec,N.,Larroque,C.,Saven,J.G.,Courtête,J.,Weiss,E.,and Martineau,P.(2007).A focused antibodylibrary for selecting scFvs expressed at high levels in the cytoplasm.BMCBiotechnol.7,81.
Pieretti-Vanmarcke,R.,Donahoe,P.K.,Szotek,P.,Manganaro,T.,Lorenzen,M.K.,Lorenzen,J.,Connolly,D.C.,Halpern,E.F.,and MacLaughlin,D.T.(2006).Recombinant human Mullerian inhibiting substance inhibits long-term growthof MIS type II receptor-directed transgenic mouse ovarian cancers invivo.Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.12,1593–1598.
Rehman,Z.U.,Worku,T.,Davis,J.S.,Talpur,H.S.,Bhattarai,D.,Kadariya,I.,Hua,G.,Cao,J.,Dad,R.,Farmanullah,null,et al.(2017).Role and mechanism of AMHin the regulation of Sertoli cells in mice.J.Steroid Biochem.Mol.Biol.174,133–140.
Renaud,E.J.,MacLaughlin,D.T.,Oliva,E.,Rueda,B.R.,and Donahoe,P.K.(2005).Endometrial cancer is a receptor-mediated targetfor MullerianInhibiting Substance.Proc.Natl.Acad.Sci.U.S.A.102,111–116.
Robin,G.,and Martineau,P.(2012).Synthetic customized scFvlibraries.Methods Mol.Biol.Clifton NJ 907,109–122.
Salhi,I.,Cambon-Roques,S.,Lamarre,I.,Laune,D.,Molina,F.,Pugnière,M.,Pourquier,D.,Gutowski,M.,Picard,J.-Y.,Xavier,F.,et al.(2004).The anti-Müllerian hormone type II receptor:insights into the binding domains recognizedby a monoclonal antibody and the natural ligand.Biochem.J.379,785–793.
Scully,R.E.(1970).Recent progress in ovarian cancer.Hum.Pathol.1,73–98.
Sèdes,L.,Leclerc,A.,Moindjie,H.,Cate,R.L.,Picard,J.-Y.,di Clemente,N.,and Jamin,S.P.(2013).Anti-Müllerian hormone recruits BMPR-IA in immaturegranulosa cells.PloS One 8,e81551.
Song,J.Y.,Chen,K.Y.,Kim,S.Y.,Kim,M.R.,Ryu,K.S.,Cha,J.H.,Kang,C.S.,MacLaughlin,D.T.,and Kim,J.H.(2009).The expression of Müllerian inhibitingsubstance/anti-Müllerian hormone type II receptor protein and mRNA in benign,borderline and malignant ovarian neoplasia.Int.J.Oncol.34,1583–1591.
Stephen,A.E.,Pearsall,L.A.,Christian,B.P.,Donahoe,P.K.,Vacanti,J.P.,and MacLaughlin,D.T.(2002).Highly purified müllerian inhibiting substanceinhibits human ovarian cancer in vivo.Clin.Cancer Res.Off.J.Am.Assoc.CancerRes.8,2640–2646.
Uhlen,M.,Zhang,C.,Lee,S.,
Figure BDA0003559438070000541
E.,Fagerberg,L.,Bidkhori,G.,Benfeitas,R.,Arif,M.,Liu,Z.,Edfors,F.,et al.(2017).A pathology atlas of thehuman cancer transcriptome.Science 357.
Visser,J.A.,Olaso,R.,Verhoef-Post,M.,Kramer,P.,Themmen,A.P.,andIngraham,H.A.(2001).The serine/threonine transmembrane receptor ALK2 mediatesMüllerian inhibiting substance signaling.Mol.Endocrinol.Baltim.Md 15,936–945.
Wei,X.,Dombkowski,D.,Meirelles,K.,Pieretti-Vanmarcke,R.,Szotek,P.P.,Chang,H.L.,Preffer,F.I.,Mueller,P.R.,Teixeira,J.,MacLaughlin,D.T.,et al.(2010).Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics.Proc.Natl.Acad.Sci.U.S.A.107,18874–18879.
Wilson,C.A.,di Clemente,N.,Ehrenfels,C.,Pepinsky,R.B.,Josso,N.,Vigier,B.,and Cate,R.L.(1993).Mullerian inhibiting substance requires its N-terminal domain for maintenance of biological activity,a novel finding withinthe transforming growth factor-beta superfamily.Mol.Endocrinol.Baltim.Md 7,247–257.
Yuan,Q.,Simmons,H.H.,Robinson,M.K.,Russeva,M.,Marasco,W.A.,and Adams,G.P.(2006).Development of engineered antibodies specific for the Müllerianinhibiting substance type II receptor:a promising candidate for targetedtherapy of ovarian cancer.Mol.Cancer Ther.5,2096–2105.
Yuan,Q.-A.,Robinson,M.K.,Simmons,H.H.,Russeva,M.,and Adams,G.P.(2008).Isolation of anti-MISIIR scFv molecules from a phage display libraryby cell sorter biopanning.Cancer Immunol.Immunother.CII 57,367–378.
Zhan,Y.,Fujino,A.,MacLaughlin,D.T.,Manganaro,T.F.,Szotek,P.P.,Arango,N.A.,Teixeira,J.,and Donahoe,P.K.(2006).Müllerian inhibiting substanceregulates its receptor/SMAD signaling and causes mesenchymal transition ofthe coelomic epithelial cells early in Müllerian ductregression.Dev.Camb.Engl.133,2359–2369.
Zhang,Y.E.(2017).Non-Smad Signaling Pathways of the TGF-βFamily.ColdSpring Harb.Perspect.Biol.9.
Zhang,H.,Vollmer,M.,De Geyter,M.,Litzistorf,Y.,Ladewig,A.,Dürrenberger,M.,Guggenheim,R.,Miny,P.,Holzgreve,W.,and De Geyter,C.(2000).Characterization of an immortalized human granulosa cell line(COV434).Mol.Hum.Reprod.6,146–153.
Figure IDA0003559438130000011
Figure IDA0003559438130000021
Figure IDA0003559438130000031
Figure IDA0003559438130000041
Figure IDA0003559438130000051
Figure IDA0003559438130000061

Claims (13)

1.分离的抗苗勒管抑制物质(MIS)抗体,其包含:
(a)重链,其中可变结构域包含具有SEQ ID NO:1所示序列的H-CDR1;具有SEQ ID NO:2或SEQ ID NO:3所示序列的H-CDR2;具有SEQ ID NO:4所示序列的H-CDR3;和
(b)轻链,其中可变结构域包含具有SEQ ID NO:5所示序列的L-CDR1;具有SEQ ID NO:6所示序列的L-CDR2;具有SEQ ID NO:7所示序列的L-CDR3。
2.根据权利要求1所述的分离的抗MIS抗体,其包含:
(a)可变重链,其与SEQ ID NO:8所示序列具有至少70%的同一性,其中可变结构域包含具有SEQ ID NO:1所示序列的H-CDR1;具有SEQ ID NO:2所示序列的H-CDR2;具有SEQ IDNO:4所示序列的H-CDR3;和
(b)可变轻链,其与SEQ ID NO:10所示序列具有至少70%的同一性,其中可变结构域包含具有SEQ ID NO:5所示序列的H-CDR1;具有SEQ ID NO:6所示序列的H-CDR2;具有SEQ IDNO:7所示序列的H-CDR3。
3.根据权利要求1所述的分离的抗MIS抗体,其包含:
(c)可变重链,其与SEQ ID NO:9所示序列具有至少70%的同一性,其中可变结构域包含具有SEQ ID NO:1所示序列的H-CDR1;具有SEQ ID NO:3所示序列的H-CDR2;具有SEQ IDNO:4所示序列的H-CDR3;和
(d)可变轻链,其与SEQ ID NO:10所示序列具有至少70%的同一性,其中可变结构域包含具有SEQ ID NO:5所示序列的H-CDR1;具有SEQ ID NO:6所示序列的H-CDR2;具有SEQ IDNO:7所示序列的H-CDR3。
4.根据权利要求1所述的分离的抗MIS抗体,其包含具有SEQ ID NO:8所示序列的重链;和具有SEQ ID NO:10所示序列的轻链。
5.根据权利要求1所述的分离的抗MIS抗体,其包含具有SEQ ID NO:9所示序列的重链;和具有SEQ ID NO:10所示序列的轻链。
6.核酸分子,其编码权利要求1所述的抗MIS抗体。
7.载体,其包含权利要求6所述的核酸。
8.宿主细胞,其被权利要求6所述的核酸和/或权利要求7所述的载体转染、感染或转化。
9.药物组合物,其包含权利要求1所述的抗MIS抗体。
10.权利要求1所述的抗体,其用于在有需要的受试者中治疗MIS或MISRII阳性癌症。
11.根据权利要求10所述的用于其用途的权利要求1所述的抗体,其中所述抗体与MIS或MISRII阳性癌症的经典治疗组合使用。
12.根据权利要求10或11所述的用于其用途的权利要求1所述的抗体,其中所述MIS或MISRII阳性癌症选自下组:妇科癌症、肺癌或结肠直肠癌。
13.在有需要的受试者中治疗妇科癌症、肺癌或结肠直肠癌的方法,其包括向所述受试者施用治疗有效量的权利要求1所述的抗MIS抗体。
CN202080066663.7A 2019-09-27 2020-09-25 抗苗勒管抑制物质抗体及其用途 Active CN114450304B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19306213.0 2019-09-27
EP19306213 2019-09-27
PCT/EP2020/076947 WO2021058763A1 (en) 2019-09-27 2020-09-25 Anti-müllerian inhibiting substance antibodies and uses thereof

Publications (2)

Publication Number Publication Date
CN114450304A true CN114450304A (zh) 2022-05-06
CN114450304B CN114450304B (zh) 2023-12-12

Family

ID=72665258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080066663.7A Active CN114450304B (zh) 2019-09-27 2020-09-25 抗苗勒管抑制物质抗体及其用途

Country Status (5)

Country Link
US (1) US20220324962A1 (zh)
EP (1) EP4034560A1 (zh)
JP (1) JP2022550325A (zh)
CN (1) CN114450304B (zh)
WO (1) WO2021058763A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573382A (zh) * 2006-11-02 2009-11-04 法国国家健康医学研究院 针对人抗苗勒激素ⅱ型受体(amhr-ⅱ)的单克隆抗体
EP2161579A1 (en) * 2008-08-26 2010-03-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Detection method of biologically active forms of anti-mullerian hormone
WO2017207694A1 (en) * 2016-06-02 2017-12-07 Kohlmann Angelica Antibodies that bind to human anti-müllerian hormone (amh) and their uses

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
DE3572982D1 (en) 1984-03-06 1989-10-19 Takeda Chemical Industries Ltd Chemically modified lymphokine and production thereof
EP0173494A3 (en) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by dna splicing and expression
AU606320B2 (en) 1985-11-01 1991-02-07 International Genetic Engineering, Inc. Modular assembly of antibody genes, antibodies prepared thereby and use
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4861719A (en) 1986-04-25 1989-08-29 Fred Hutchinson Cancer Research Center DNA constructs for retrovirus packaging cell lines
GB8725529D0 (en) 1987-10-30 1987-12-02 Delta Biotechnology Ltd Polypeptides
US5278056A (en) 1988-02-05 1994-01-11 The Trustees Of Columbia University In The City Of New York Retroviral packaging cell lines and process of using same
US5476996A (en) 1988-06-14 1995-12-19 Lidak Pharmaceuticals Human immune system in non-human animal
WO1990005144A1 (en) 1988-11-11 1990-05-17 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
CA2006596C (en) 1988-12-22 2000-09-05 Rika Ishikawa Chemically-modified g-csf
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US6291158B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
SE509359C2 (sv) 1989-08-01 1999-01-18 Cemu Bioteknik Ab Användning av stabiliserade protein- eller peptidkonjugat för framställning av ett läkemedel
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5670488A (en) 1992-12-03 1997-09-23 Genzyme Corporation Adenovirus vector for gene therapy
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
DE69233482T2 (de) 1991-05-17 2006-01-12 Merck & Co., Inc. Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen
ES2136092T3 (es) 1991-09-23 1999-11-16 Medical Res Council Procedimientos para la produccion de anticuerpos humanizados.
PT1696031E (pt) 1991-12-02 2010-06-25 Medical Res Council Produção de auto-anticorpos a partir de reportórios de segmentos de anticorpo e exibidos em fagos
DK0616640T3 (da) 1991-12-02 2004-12-20 Medical Res Council Fremstilling af anti-selv antistoffer fra repertoirer af antistofsegmenter og fremvist på fag
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
AU6248994A (en) 1993-02-22 1994-09-14 Rockefeller University, The Production of high titer helper-free retroviruses by transient transfection
FR2712812B1 (fr) 1993-11-23 1996-02-09 Centre Nat Rech Scient Composition pour la production de produits thérapeutiques in vivo.
AU701342B2 (en) 1994-07-13 1999-01-28 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin-8
IL116816A (en) 1995-01-20 2003-05-29 Rhone Poulenc Rorer Sa Cell for the production of a defective recombinant adenovirus or an adeno-associated virus and the various uses thereof
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
AU690474B2 (en) 1995-09-11 1998-04-23 Kyowa Hakko Kirin Co., Ltd. Antibody againts alpha-chain of human interleukin 5 receptor
US6013516A (en) 1995-10-06 2000-01-11 The Salk Institute For Biological Studies Vector and method of use for nucleic acid delivery to non-dividing cells
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
AU7071598A (en) 1997-04-10 1998-10-30 Erasmus University Rotterdam Diagnosis method and reagents
EP1724282B1 (en) 1997-05-21 2013-05-15 Merck Patent GmbH Method for the production of non-immunogenic proteins
US6342220B1 (en) 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
GB9722131D0 (en) 1997-10-20 1997-12-17 Medical Res Council Method
US6610833B1 (en) 1997-11-24 2003-08-26 The Institute For Human Genetics And Biochemistry Monoclonal human natural antibodies
KR101077001B1 (ko) 1999-01-15 2011-10-26 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
KR100857943B1 (ko) 2000-11-30 2008-09-09 메다렉스, 인코포레이티드 인간 항체의 제조를 위한 형질전환 트랜스염색체 설치류
WO2004081026A2 (en) 2003-06-30 2004-09-23 Domantis Limited Polypeptides
DK1399484T3 (da) 2001-06-28 2010-11-08 Domantis Ltd Dobbelt-specifik ligand og anvendelse af denne
EP2366718A3 (en) 2002-06-28 2012-05-02 Domantis Limited Ligand
US7361740B2 (en) 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
EP1578801A2 (en) 2002-12-27 2005-09-28 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
WO2004101790A1 (en) 2003-05-14 2004-11-25 Domantis Limited A process for recovering polypeptides that unfold reversibly from a polypeptide repertoire
ES2387312T3 (es) 2004-09-22 2012-09-20 Kyowa Hakko Kirin Co., Ltd. Anticuerpos IgG4 humanos estabilizados
JP5525729B2 (ja) 2005-11-28 2014-06-18 ゲンマブ エー/エス 組換え一価抗体およびその作製方法
EP4119579A1 (en) 2007-05-31 2023-01-18 Genmab A/S Stable igg4 antibodies
AU2014248864B2 (en) 2013-03-11 2017-12-14 Illing Engineering Services Wind turbine control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573382A (zh) * 2006-11-02 2009-11-04 法国国家健康医学研究院 针对人抗苗勒激素ⅱ型受体(amhr-ⅱ)的单克隆抗体
CN103396491A (zh) * 2006-11-02 2013-11-20 法国国家健康医学研究院 针对人抗苗勒激素ii型受体的单克隆抗体及其制备方法和应用
EP2161579A1 (en) * 2008-08-26 2010-03-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Detection method of biologically active forms of anti-mullerian hormone
WO2017207694A1 (en) * 2016-06-02 2017-12-07 Kohlmann Angelica Antibodies that bind to human anti-müllerian hormone (amh) and their uses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NATHALIE JOSSO等: "Anti-Müllerian hormone and its receptors" *

Also Published As

Publication number Publication date
CN114450304B (zh) 2023-12-12
WO2021058763A1 (en) 2021-04-01
JP2022550325A (ja) 2022-12-01
US20220324962A1 (en) 2022-10-13
EP4034560A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
AU2020233642B2 (en) Methods of treating cancers using PD-1 axis binding antagonists and taxanes
JP6552621B2 (ja) 抗pd−1抗体およびその使用方法
CN106103486B (zh) 抗ox40抗体和使用方法
US20170290913A1 (en) Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
JP6896650B2 (ja) Pd−1軸結合アンタゴニスト及びタキサンを使用した局所進行性または転移性乳癌の治療方法
AU2017205089A1 (en) Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
CN106102774A (zh) 包含ox40结合激动剂和pd‑1轴结合拮抗剂的组合疗法
JP2019513008A (ja) Btlaに対して特異性を有する抗体及びその使用
CN109476748B (zh) 用于癌症的治疗和诊断方法
JP2020510435A (ja) 抗gitr抗体およびその使用方法
KR20210010486A (ko) 암의 치료
JP2019031552A (ja) Pd−1系結合アンタゴニストおよび抗gpc3抗体を使用して癌を治療する方法
CN114450304B (zh) 抗苗勒管抑制物质抗体及其用途
ES2955032T3 (es) Métodos de diagnóstico para el cáncer de mama triple negativo
CN113164778A (zh) 抗ceacam6和tim3抗体的药物组合
WO2021058729A1 (en) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
US20220290151A1 (en) Use of müllerian inhibiting substance inhibitors for treating cancer
Chauvin et al. In Ovarian Cancer, the Concentration of Anti-Müllerian Hormone Dictates the Choice between Pro-Survival and Pro-Apoptotic Pathways Through Differential ALK2/ALK3 Usage
CN113905747A (zh) 用于增强免疫功能的细胞、组合物和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant