CN114441514B - 一种海胆状三元金属纳米酶的制备方法及其应用 - Google Patents

一种海胆状三元金属纳米酶的制备方法及其应用 Download PDF

Info

Publication number
CN114441514B
CN114441514B CN202111508680.4A CN202111508680A CN114441514B CN 114441514 B CN114441514 B CN 114441514B CN 202111508680 A CN202111508680 A CN 202111508680A CN 114441514 B CN114441514 B CN 114441514B
Authority
CN
China
Prior art keywords
metal nano
nano enzyme
sea urchin
ternary metal
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111508680.4A
Other languages
English (en)
Other versions
CN114441514A (zh
Inventor
王卫国
何健
曾国
段明慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of South China
Original Assignee
University of South China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of South China filed Critical University of South China
Priority to CN202111508680.4A priority Critical patent/CN114441514B/zh
Publication of CN114441514A publication Critical patent/CN114441514A/zh
Application granted granted Critical
Publication of CN114441514B publication Critical patent/CN114441514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/775Indicator and selective membrane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7759Dipstick; Test strip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种海胆状三元金属纳米酶的制备方法及其应用,利用Pd原料和Pt原料合成海胆状二元金属纳米酶Pd‑Pt;加热二元金属纳米酶Pd‑Pt,添加Ir原料,合成海胆状三元金属纳米酶Pd‑Pt‑Ir。优点有:设计出一种简单快捷的海胆状三元金属纳米酶Pd‑Pt‑Ir的制备方法,且基于海胆状三元金属纳米酶Pd‑Pt‑Ir实现了对抗坏血酸、H2O2的快速检测,以及拟构建一种快速检测试纸条,用于检测抗坏血酸,为疾病的预防以及预后管理提供参考依据,具有重要的临床应用价值。

Description

一种海胆状三元金属纳米酶的制备方法及其应用
技术领域
本发明涉及酶制备技术领域,尤其涉及金属纳米酶制备技术。
背景技术
抗坏血酸(AA),作为一种抗氧化剂,在人类的健康方面起着重要的作用。广泛应用于食品、化妆品、药品等中。且AA的缺乏会引起一些疾病,如坏血病、神经性疾病、癌症等。其可以促进胶原蛋白的合成,维持骨骼的健康,保证机体的正常发育;清除活性氧和氮类,保护机体免受氧化损伤,有效预防和治疗疾病;还可以抑制DNA和脂质的氧化,有助于治疗疾病中的氧化应激反应。因此,准确的AA和H2O2的测定非常重要。到目前为止,AA的检测建立了很多方法。其中Lau OW等人用紫外光谱法检测了药物维生素C片剂中的抗坏血酸。Liu J等人使用荧光探针法对食品中的抗坏血酸进行了检测。TaiA等人使用一种液相色谱法测定了食物和饮料中的抗坏血酸及其相关物质。然而这些传统的检测方法存在着一定缺陷,如消费大,操作不便,耗时等,限制了其应用。床旁快检(point-of-care testing,POCT)一种快速检测分析技术,它具有操作简便、结果判定快速,标本用量少、试剂稳定且便于保存和携带等优点。以及很少有做床旁快检,因此本文章通过床旁快检的模式去检测抗坏血酸,使检测方法更加准确,快速,便捷。
过氧化物纳米酶最早由我国科学家阎锡蕴院士发现,是一种与辣根过氧化物酶(HRP)具有相似活性的纳米材料。过氧化物纳米酶可以催化底物双氧水裂解产生羟基自由基,羟基自由基由于氧化能力较强,可氧化电子供体,例如3,3’,5,5’-四甲基联苯胺(TMB),电子供体的氧化产物可以产生明显的颜色变化。在这一氧化过程中,加入一些还原剂,例如抗坏血酸,可以抑制氧化过程的进行。基于这一原理可以实现还原剂(如AA)的检测。Egashira等人介绍了氧化应激以及电子自旋共振(ERS)技术检测自由基的方法,用5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)或α-苯基-N-叔丁基硝酮(PBN)捕获氧自由基,用ESR谱仪定量测定DMPO或PBN自旋加合物信号来检测体内自由基情况。
在纳米酶的研究过程中,经历了从单金属到多元化发展的阶段,在单金属过氧化物纳米酶的研究中,Song等设计并合成了铱纳米粒子,并且发现该纳米粒子具备超强的类过氧化物酶活性。Ning等得到了去铁铁蛋白包裹的铂纳米粒子,并发现其具有和HRP类似的性质。随后,具有合金或壳核结构的二元金属,逐渐取代单金属过氧化物纳米酶,Cai等发现在铂和铑形成的二元片状材料中,铑元素可弱化铂元素对中间体的吸附作用,提升活性氧的产生效率,过氧化物酶活性最佳的元素组成为Pt1Rh2。Tang等认为,二元金属Au-Pt活性要高于Pt单金属纳米酶,Au-Pt中皮层化的铂结构是提升其活性的关键。最近,纳米酶的元素组成逐渐多元化,Wang等发现,元素组成多元化会提升纳米酶的活性,Pt、PtPd和PdPtRh三类纳米酶中,PdPtRh的类过氧化物酶活性最佳。He等发现PtPdCu的过氧化物酶活性是二元金属纳米酶PtPd的2.26倍,测试结果说明,Cu可以增加PtPd对H2O2的亲和力。在长期探索中,研究人员发现,多元金属催化剂的活性并非各个组分之间的单一叠加,组分之间的电子结构可存在相互影响,形成协同作用。相较于单组分金属催化剂而言,多元金属催化剂具有组分、形貌、晶相和电子结构可调等诸多优势,是高性能催化剂设计的热点区域,三元金属催化剂是其中最具代表性的一类模型。相比于二元金属,三元金属在元素组合中存在更多的可能性,可以通过筛选由不同元素构成的三元金属纳米酶,以获得具有优异性能的纳米酶。
发明内容
本发明的目的在于提供一种海胆状三元金属纳米酶的制备方法及其应用,以解决现有技术检测AA和H2O2以及一些还原性物质中纳米酶催化活性不足的问题。
为了达到上述目的本发明采用如下技术方案:
第一方面,本发明提供一种海胆状三元金属纳米酶的制备方法,步骤包括:
(1)称取K2PdBr4和K2PtCl6,将其溶水中,并向其中加入嵌段共聚物PluronicF127,待其完全溶解后,向其中加入抗坏血酸水溶液,室温下持续反应后得海胆状二元金属纳米酶Pd-Pt;
(2)将海胆状二元金属纳米酶Pd-Pt分散于乙二醇中,搅拌,后升温至反应温度,向反应体系中缓慢加入Na3IrCl6的乙二醇溶液进行反应,待反应完成之后,降温至室温,离心并洗涤后,得海胆状三元金属纳米酶Pd-Pt-Ir。
进一步地,
所述K2PdBr4加入量为12.56mg~25.2mg;
K2PtCl6加入量为24.3mg~48.6mg;
嵌段共聚物Pluronic F127加入量为0.5g~1g。
进一步地,
所述抗坏血酸水浓度为0.1mol/L,加入量为5mL~10mL。
进一步地,
所述步骤(1)中室温下持续反应时间为12h~24h。
进一步地,
所述步骤(2)中用于分散海胆状二元金属纳米酶Pd-Pt的乙二醇的量为2mL~10mL。
进一步地,
所述步骤(2)中,将海胆状二元金属纳米酶Pd-Pt分散于乙二醇后90℃~120℃下搅拌30min;后升温至反应温度为180℃~210℃,往反应体系中加入Na3IrCl6的乙二醇溶液,进行反应。
进一步地,
所述Na3IrCl6的乙二醇溶液浓度为0.15mg/mL,加入量为2mL~10mL,加入速度为1.5mL/h~4.5mL/h。
进一步地,
所述步骤(2)中加入Na3IrCl6的乙二醇溶液后反应时间为1.5h~4.5h。
第二方面,本发明还提供所述的一种海胆状三元金属纳米酶在检测H2O2、抗坏血酸中的应用。
第三方面,本发明还提供所述的一种海胆状三元金属纳米酶在制备检测生物样品中H2O2、抗坏血酸试剂盒中的应用。
第四方面,本发明还提供所述的一种海胆状三元金属纳米酶在制备检测H2O2、抗坏血酸药物中的应用。
第五方面,本发明还提供所述的一种海胆状三元金属纳米酶在制备检测H2O2、抗坏血酸试纸中的应用。
第六方面,本发明还提供所述的一种海胆状三元金属纳米酶在制备检测H2O2、抗坏血酸试剂盒中的应用。
本发明的优点包括:设计出一种简单快捷的海胆状三元金属纳米酶Pd-Pt-Ir的制备方法,且基于三元金属纳米酶Pd-Pt-Ir实现了对抗坏血酸、H2O2的快速检测,以及拟构建一种快速检测抗坏血酸试纸条,以便将其用于检测一些食品、饮料、化妆品中的抗氧化剂的成分,为疾病的预防以及预后管理提供参考依据,具有重要的临床应用价值。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中:
图1a是三元金属纳米酶Pd-Pt-Ir透射电镜图;
图1b是三元金属纳米酶Pd-Pt-Ir高倍透射电镜图;
图1c三元金属纳米酶Pd-Pt-Ir元素分布图,其中AFD1所示是暗场的电镜图;
图2是Pd-Pt-Ir和Pd-Pt纳米酶作用条件下TMB氧化产物在652nm处的吸光度统计图;
图3a是三元金属纳米酶Pd-Pt-Ir检测H2O2的原理图;
图3b是TMB氧化产物在652nm的吸光度与H2O2浓度的关系;
图3c是三元金属纳米酶Pd-Pt-Ir抗干扰性评价统计图;
图3d是三元金属纳米酶Pd-Pt-Ir选择性评价统计图;
图4a是不同浓度的AA在652nm处的吸光度;
图4b是检测AA的线性曲线统计图;
图4c是检测AA的原理图;
图4d是检测AA的试纸条实验图。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
称取12.56mg K2PdBr4和24.3mg K2PtCl6,将其溶水中,并向其中加入1g嵌段共聚物Pluronic F127,待其完全溶解后,向其中加入0.1mol/L抗坏血酸水溶液5mL~10mL,室温下持续反应12h~24h后得海胆状二元金属纳米酶Pd-Pt。将海胆状二元金属纳米酶Pd-Pt1mL分散于2mL~10mL乙二醇中,在120℃下,搅拌30min,后升温至反应温度180℃,向反应体系中缓慢加入0.15mg/mL的Na3IrCl6乙二醇溶液2mL~10mL,加入速度为1.5mL/h~4.5mL/h,反应3h。待反应完成之后,降温至室温,离心并洗涤后,得海胆状三元金属纳米酶Pd-Pt-Ir。
实施例二
称取12.56mg K2PdBr4和48.6mg K2PtCl6,将其溶水中,并向其中加入1g嵌段共聚物Pluronic F127,待其完全溶解后,向其中加入0.1mol/L抗坏血酸水溶液5mL~10mL,室温下持续反应12h~24h后得海胆状二元金属纳米酶Pd-Pt。将海胆状二元金属纳米酶Pd-Pt1mL分散于2mL~10mL乙二醇中,在120℃下,搅拌30min,后升温至反应温度180℃,向反应体系中缓慢加入0.15mg/mL的Na3IrCl6乙二醇溶液2mL~10mL,加入速度为1.5mL/h~4.5mL/h,反应3h。待反应完成之后,降温至室温,离心并洗涤后,得海胆状三元金属纳米酶Pd-Pt-Ir。
实施例三
称取25.2mg K2PdBr4和48.6mg K2PtCl6,将其溶水中,并向其中加入1g嵌段共聚物Pluronic F127,待其完全溶解后,向其中加入0.1mol/L抗坏血酸水溶液5mL~10mL,室温下持续反应12h~24h后得海胆状二元金属纳米酶Pd-Pt。将海胆状二元金属纳米酶Pd-Pt 1mL分散于2mL~10mL乙二醇中,在120℃下,搅拌30min,后升温至反应温度180℃,向反应体系中缓慢加入0.15mg/mL的Na3IrCl6乙二醇溶液2mL~10mL,加入速度为1.5mL/h~4.5mL/h,反应3h。待反应完成之后,降温至室温,离心并洗涤后,得海胆状三元金属纳米酶Pd-Pt-Ir。
得到的三元金属纳米酶Pd-Pt-Ir如图1a和图1b所示。如图1c所示的元素分布图中可以看出,三种元素呈夹心状分布,内核为钯,中层为铂,表层为铱元素。
为验证本发明的有益效果,特做以下实验。
测试1:三元金属纳米酶Pd-Pt-Ir的类过氧化物酶的活性
为了探究过氧化物酶的催化活性,以TMB为底物,在H2O2的存在下对三元金属纳米酶Pd-Pt-Ir的酶活性进行探究。当反应体系中存在H2O2时,Pd-Pt-Ir可以催化H2O2裂解产生具有氧化能力的羟基自由基,使TMB氧化生成肉眼可见的蓝色产物,生成的氧化产物在652nm处有较明显的紫外特征吸收峰。设置4个实验组进行探究:Pd-Pt-Ir+TMB+H2O2、Pd-Pt+TMB+H2O2、TMB+H2O2、Pd-Pt-Ir+TMB,如图2所示,图中曲线从上到下依次是:Pd-Pt-Ir+TMB+H2O2、Pd-Pt+TMB+H2O2、TMB+H2O2、Pd-Pt-Ir+TMB,在控制时间相同的情况下,Pd-Pt-Ir三元纳米酶在652nm处的吸光度要优于二元Pd-Pt纳米酶的吸光度,说明了Ir元素的加入使纳米酶的活性有所增强。三元金属纳米酶Pd-Pt-Ir具有良好的过氧化物酶活性。
测试2:三元金属纳米酶Pd-Pt-Ir检测H2O2
由于三元金属纳米酶Pd-Pt-Ir具有良好的催化性能,我们设计了一种方便、快速、直接的检测H2O2的比色法。原理如图3a所示,三元金属纳米酶Pd-Pt-Ir可以催化双氧水裂解成羟基自由基,羟基自由基可进一步氧化电子供体(3,3’,5,5’-四甲基联苯胺TMB),引起电子供体颜色变化。为了评价三元金属纳米酶的活性,对不同浓度的双氧水引起的显色做了紫外扫描。
测试步骤
取pH=3.6醋酸缓冲液2.5mL,溶解在DMSO中的浓度为10mg/mL TMB 100μL,和三元金属纳米酶Pd-Pt-Ir 10μL(其中Pd的浓度为0.5mg/L)的混合溶液装入试管中。再分别加入不同浓度的H2O2400μL(62.5,31.3,15.6,7.81,3.91mM),使溶液充分混匀后立即放入紫外分光光度仪中。紫外分光分析结果如图3b所示,三元金属纳米酶Pd-Pt-Ir对双氧水的检测的线性范围为3.91~62.5mM,检出限为3.6mM。
并且,对该检测方法的抗干扰性进行了评价,如图3c所示,当体系中存在等摩尔的可能的杂质,如尿素,盐(氯化钾,氯化钠),有机试剂(丙酮,乙醇和乙二醇),聚乙烯吡咯烷酮等杂质不会对检测结果产生干扰。另外,对本检测方法的选择性也进行了评价,如图3d所示,当体系中不含H2O2,但是含有氯化钠,氯化钾,过硫酸钠,甲醇和乙醇等物质时,并不会对吸光度产生明显的变化,当体系中含有H2O2时,吸光度明显提升,这一结果说明本检测方法对双氧水具有较好的特异性。
测试3:三元金属纳米酶Pd-Pt-Ir检测AA及构建检测AA的试纸条
基于所合成的三元金属纳米酶Pd-Pt-Ir具有良好的催化活性。在H2O2存在时,它能催化H2O2导致TMB氧化生成蓝色产物,而当AA加入时,可快速还原蓝色产物,使蓝色褪去。原理如图4c所示。
测试步骤
取pH=3.6醋酸缓冲液2.5mL,向其中加入三元金属纳米酶Pd-Pt-Ir10μL(以Pd的浓度为标准,浓度为0.5mg/L),400μL的H2O2和10mg/mLTMB 100μL,使其溶液混合均匀。最后加入100μL不同浓度的AA(0、25、50、100、200、400、600、800μM),记录其紫外-可见光谱,结果如图4a所示,TMB氧化产物在652nm的吸光度随着AA浓度的增加,吸光度逐渐下降。因此建立了一种AA比色检测方法,在2.5mL醋酸缓冲液中加入Pd-Pt-Ir 10μl(以Pd的浓度为标准,浓度为0.5mg/L),400μL的H2O2和100μL TMB(10mg/ml,溶解在DMSO中),最后加入100μl不同浓度的AA(0、25、50、100、200、400、600、800μM),记录其紫外-可见光谱,结果如图4b所示,在25~800μM范围内,吸光度与AA浓度呈线性关系,随着AA浓度增大,TMB氧化产物的吸光度在减小。所述AA比色检测方法检测抗坏血酸的线性范围为25~800μM,检测限(LOD)11.7μM。另外也建立了检测的AA试纸条,方法如下:在2.5mL醋酸缓冲液(pH=3.6)中加入Pd-Pt-Ir金属酶10μL(以Pd的浓度为标准,浓度为0.5mg/L),400μL的H2O2和10mg/mL TMB(溶解在DMSO中)100μL,再分别加入100μL不同浓度的AA(0、1.0、2.0、3.0、7.8、15.6、31.2mM)使其混合均匀。随即向溶液中放入白色试纸条,3min后将试纸条拿出,结果如图4d所示,随着AA的浓度增加,肉眼可观测到检测抗坏血酸的试纸随0-31.2mM的AA浓度发生的变化。进一步也证实了三元金属纳米酶Pd-Pt-Ir对AA具有良好的选择性和特异性。
综上所述,本发明通过制备得到海胆状Pd-Pt-Ir三元金属纳米酶,过程简单快捷。本发明证明了三元金属纳米酶Pd-Pt-Ir具有优异的内在类过氧化物酶活性。此外,基于三元金属纳米酶Pd-Pt-Ir具有类过氧化物酶催化性能,它可以在H2O2存在下使TMB产生显色反应,本发明以三元金属纳米酶Pd-Pt-Ir为模拟酶构建了一种快速比色检测平台,并探索了其在H2O2、AA检测中的应用。这些研究表明,这种基于三元金属纳米酶Pd-Pt-Ir的生物检测具有广阔的应用前景。
以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据本发明实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种海胆状三元金属纳米酶的制备方法,其特征在于:
步骤包括:
称取K2PdBr4 12.56mg~ 25.2mg和K2PtCl6 24.3mg~48.6mg,将其溶水中,并向其中加入嵌段共聚物Pluronic F127 0.5g~ 1g,待其完全溶解后,向其中加入0.1mol/L抗坏血酸水溶液5mL~10mL,室温下持续反应12h~24h后得海胆状二元金属纳米酶Pd-Pt;
将海胆状二元金属纳米酶Pd-Pt分散于乙二醇中,搅拌,后升温至反应温度,向反应体系中缓慢加入Na3IrCl6的乙二醇溶液进行反应,待反应完成之后,降温至室温,离心并洗涤后,得海胆状三元金属纳米酶Pd-Pt-Ir。
2. 根据权利要求1所述一种海胆状三元金属纳米酶的制备方法,其特征在于:所述步骤(2)中将海胆状二元金属纳米酶Pd-Pt分散乙二醇的操作是将海胆状二元金属纳米酶Pd-Pt 1 mL分散于2mL~10mL乙二醇中。
3.根据权利要求1所述一种海胆状三元金属纳米酶的制备方法,其特征在于:所述步骤(2)中,将海胆状二元金属纳米酶Pd-Pt分散于乙二醇后90℃~120℃下搅拌30min;后升温至反应温度为180~210℃,往反应体系中加入Na3IrCl6的乙二醇溶液,进行反应。
4.根据权利要求1所述一种海胆状三元金属纳米酶的制备方法,其特征在于:所述Na3IrCl6的乙二醇溶液浓度为0.15mg/mL,加入量为2mL~10mL,加入速度为1.5mL/h~4.5mL/h。
5.根据权利要求1所述一种海胆状三元金属纳米酶的制备方法,其特征在于:所述步骤(2)中加入Na3IrCl6的乙二醇溶液后反应时间为1.5h~4.5h。
6.如权利要求1-5任一所述的一种海胆状三元金属纳米酶制备方法制得的海胆状三元金属纳米酶在检测H2O2或抗坏血酸中的应用。
7.如权利要求1-5任一所述的一种海胆状三元金属纳米酶制备方法制得的海胆状三元金属纳米酶在制备检测H2O2或抗坏血酸的药物、试纸、试剂盒中的应用。
CN202111508680.4A 2021-12-10 2021-12-10 一种海胆状三元金属纳米酶的制备方法及其应用 Active CN114441514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111508680.4A CN114441514B (zh) 2021-12-10 2021-12-10 一种海胆状三元金属纳米酶的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111508680.4A CN114441514B (zh) 2021-12-10 2021-12-10 一种海胆状三元金属纳米酶的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114441514A CN114441514A (zh) 2022-05-06
CN114441514B true CN114441514B (zh) 2023-11-07

Family

ID=81363070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111508680.4A Active CN114441514B (zh) 2021-12-10 2021-12-10 一种海胆状三元金属纳米酶的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114441514B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551000A (zh) * 2014-12-23 2015-04-29 国家纳米科学中心 一种铂钴纳米合金模拟酶及其制备方法和用途
CN108445142A (zh) * 2018-03-12 2018-08-24 国家纳米科学中心 一种铑片纳米酶在模拟生物酶催化中的应用
CN109174122A (zh) * 2018-10-31 2019-01-11 浙江工业大学 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法
CN109822109A (zh) * 2019-04-09 2019-05-31 吉林大学 一种具有过氧化物酶活性的花状银纳米酶的制备方法
CN112206771A (zh) * 2019-07-12 2021-01-12 华南理工大学 一种三元金属Pd-M-Ir纳米酶及其制备方法和应用
CN112945945A (zh) * 2021-01-23 2021-06-11 西安交通大学 基于介孔CuO纳米酶检测H2O2的纸基传感器及制备方法
CN113599368A (zh) * 2021-07-27 2021-11-05 东南大学 一种细胞膜拮抗联合纳米酶的仿生载药纳米系统、制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162490A1 (en) * 2011-05-24 2012-11-29 Board Of Regents Of The University Of Nebraska Nanozyme compositions and methods of synthesis and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551000A (zh) * 2014-12-23 2015-04-29 国家纳米科学中心 一种铂钴纳米合金模拟酶及其制备方法和用途
CN108445142A (zh) * 2018-03-12 2018-08-24 国家纳米科学中心 一种铑片纳米酶在模拟生物酶催化中的应用
CN109174122A (zh) * 2018-10-31 2019-01-11 浙江工业大学 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法
CN109822109A (zh) * 2019-04-09 2019-05-31 吉林大学 一种具有过氧化物酶活性的花状银纳米酶的制备方法
CN112206771A (zh) * 2019-07-12 2021-01-12 华南理工大学 一种三元金属Pd-M-Ir纳米酶及其制备方法和应用
CN112945945A (zh) * 2021-01-23 2021-06-11 西安交通大学 基于介孔CuO纳米酶检测H2O2的纸基传感器及制备方法
CN113599368A (zh) * 2021-07-27 2021-11-05 东南大学 一种细胞膜拮抗联合纳米酶的仿生载药纳米系统、制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Rapid preparation and characterization of oxygen-deficient SnO2 nanobelts with enhanced Li diffusion kinetics;Zhen-Kun He et al.;《Journal of Electroanalytical Chemistry》;第114276-114281页 *
Three-dimensional superlattice engineering with block copolymer epitaxy;JIAXING REN et al.;《Science Advances》;introduction and results *

Also Published As

Publication number Publication date
CN114441514A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
Zhao et al. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis
Zhang et al. Detection of choline and hydrogen peroxide in infant formula milk powder with near infrared upconverting luminescent nanoparticles
Wu et al. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight
Fu et al. Mixed valence state cerium metal organic framework with prominent oxidase-mimicking activity for ascorbic acid detection: Mechanism and performance
CN111992732A (zh) 一种钯铜双金属纳米花类过氧化物的制备方法及其在葡萄糖检测中的应用
CN115215846B (zh) 一种荧光探针及其合成方法和检测cn-的应用
Tang et al. Synergistic function of Au NPs/GeO2 nanozymes with enhanced peroxidase-like activity and SERS effect to detect choline iodide
Qiao et al. A novel colorimetric and fluorometric dual-signal identification of organics and Baijiu based on nanozymes with peroxidase-like activity
Guo et al. Zeolitic imidazolate framework-8 encapsulating carbon nanodots and silver nanoparticles for fluorescent detection of H2O2 and glucose
Han et al. Fe 3 O 4@ Au–metal organic framework nanozyme with peroxidase-like activity and its application for colorimetric ascorbic acid detection
Wang et al. A dual-modal electrochemical aptasensor based on intelligent DNA walker with cascade signal amplification powered by Nb. BbvCI for Pb2+
Sun et al. Ratiometric fluorometric and colorimetric dual-mode sensing of glucose based on gold-platinum bimetallic nanoclusters
CN114441514B (zh) 一种海胆状三元金属纳米酶的制备方法及其应用
Wang et al. Diacetyl as a new-type of artificial enzyme to mimic oxidase mediated by light and its application in the detection of glutathione at neutral pH
CN109975287A (zh) 一种用Au@NH2-MIL-125作为纳米酶催化剂检测双氧水和半胱氨酸的方法
Jabiyeva et al. The peroxidase-like activity of Au NPs deposited inverse opal CeO2 nanozyme for rapid and sensitive H2O2 sensing
Li et al. Fe-Ni dual-single atoms nanozyme with high peroxidase-like activity for sensitive colorimetric and fluorometric dual-mode detection of cholesterol
Yao et al. Modulation of inner filter effect between persistent luminescent particles and 2, 3-diaminophenazine for ratiometric fluorescent assay of ascorbic acid and ascorbate oxidase activity
AU2019100369A4 (en) Utility of PtRu alloy nanozyme in detection of ascorbic acid
CN115282966B (zh) 一种二价铁离子掺杂钴酸铜材料及其制备方法
CN115818695B (zh) 具有四酶活性的荔枝状氧化亚铜/氧化铜纳米微球的制备方法
US11499094B1 (en) Ratiometric fluorescent probe, preparation method thereof, and application in detection of hydrogen peroxide
Yan et al. Highly efficient persistent luminescent nanozymes-based luminescence-colorimetric dual-mode sensor for total antioxidant capacity assay
Erkmen et al. Nanozymes in Electrochemical Analysis
Zhou et al. A covalent-organic framework-based platform for simultaneous smartphone detection and degradation of aflatoxin B1

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant