CN109174122A - 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法 - Google Patents

一种长针海胆状PdCuIr氮还原电催化剂及其制备方法 Download PDF

Info

Publication number
CN109174122A
CN109174122A CN201811282332.8A CN201811282332A CN109174122A CN 109174122 A CN109174122 A CN 109174122A CN 201811282332 A CN201811282332 A CN 201811282332A CN 109174122 A CN109174122 A CN 109174122A
Authority
CN
China
Prior art keywords
catalyst
pdcuir
concentration
minute hand
sea urchin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811282332.8A
Other languages
English (en)
Other versions
CN109174122B (zh
Inventor
王亮
杨良明
王自强
薛海荣
许友
王鸿静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201811282332.8A priority Critical patent/CN109174122B/zh
Publication of CN109174122A publication Critical patent/CN109174122A/zh
Application granted granted Critical
Publication of CN109174122B publication Critical patent/CN109174122B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种长针海胆状PdCuIr氮还原电催化剂及其制备方法,将氯钯酸钠、氯化铜和氯化铱溶解于去离子水中,它们的浓度控制在1~40mM之间;上述溶液混合后,再加入10~500mg的KBr,10~100mg的表面活性剂F127,0.5~5mL浓度为0.01~0.1mol/L之间的抗坏血酸,以及0.1~1mL浓度为1~10mol/L的HCl溶液,超声5~15min形成澄清溶液;再放入油浴锅于80~120℃下反应5~90min,待反应结束后,经过洗涤、离心、干燥,得到所述的长针海胆状PdCuIr氮还原电催化剂。本发明制备工艺简单,反应时间极短,制得的材料具有优异的电化学合成氨性能。

Description

一种长针海胆状PdCuIr氮还原电催化剂及其制备方法
(一)技术领域
本发明涉及长针海胆状PdCuIr氮还原电催化剂及其制备方法,该催化剂可用于电化学合成氨的研究。
(二)背景技术
氨可以用来合成化肥,染料,纤维,炸药等重要材料,因此对人类的生存和发展极其重要。另外,氨气中氢气含量较高且不含碳元素,是一种比较理想的清洁的能源载体。2017年,全球氨的产量约为1.5亿吨,且每年将以8%的速度持续增长。目前工业上主要通过哈伯-博施法来合成氨,其主要机理是在催化剂作用和高温高压下将氮气和氢气解离,然后结合成氨的过程(Ertl,G.Reactions at Surfaces:From Atoms to Complexity(NobelLecture).Angew.Chem.Int.Ed.2008,47,3524-3535)。因此,每年需要消耗全球1%的能源供应以及3-5%的天然气产量,从而也造成了极大的环境污染(Wang,L.;Xia,M.;Wang,H.;Huang,K.;Qian,C.;Maravelias,C.T.;Ozin,G.A.Greening Ammonia toward the SolarAmmonia Refinery.Joule 2018,2,1055-1074)。因此,开发简便、可持续的新型替代方法是当前一个严峻的任务。
目前,通过电能驱动氮气和水反应生成氨的技术受到了越来越多的关注,但是其发展需要开发出高效的氮还原催化剂。氮还原催化剂的催化性能通常和其结构,组分以及表面形貌密切相关。最近,Feng等证明了Pd能有效的促进氮还原形成氨(Wang,J.;Yu,L.;Hu,L.;Chen,G.;Xin,H.;Feng,X.Ambient ammonia synthesis via palladium-catalyzedelectrohydrogenation of dinitrogen at low overpotential.Nat.Commun.2018,9,1795),但是其产氨速率很难满足实际需求。为了提高Pd基催化剂的性能,一个有效的方法就是将Pd和其他金属复合形成合金,这不仅可以提高催化剂的性能,而且还能降低贵金属的用量。鄢俊敏等制备了PdCu纳米团簇负载的石墨烯(Shi,M.-M.;Bao,D.;Li,S.-J.;Wulan,B.-R.;Yan,J.-M.;Jiang,Q.Anchoring PdCu amorphous nanocluster ongraphene for electrochemical reduction of N2to NH3under ambient conditions inaqueous solution.Adv.Energy Mater.2018,8,1800124),结果表明具有合理组分的Pd0.2Cu0.8/rGO复合物能有效的催化氮还原合成氨,其性能大大优于单金属催化剂的性能。为了进一步提高其催化性能,将催化剂性能设计成多枝状结构,这样的结构不仅能提高更多的活性位点,还能加快传质过程,从而提高催化性能(Gilroy,K.D.;Ruditskiy,A.;Peng,H.-C.;Qin,D.;Xia,Y.Bimetallic nanocrystals:syntheses,properties,andapplications.Chem.Rev.2016,116,10414–10472)。目前,种子生长法、溶剂热法以及Gawani置换反应等(Zhang,Z.;Luo,Z.;Chen,B.;Wei,C.;Zhao,J.;Chen,J.;Zhang,X.;Lai,Z.;Fan,Z.;Tan,C.;Zhao,M.;Lu,Q.;Li,B.;Zong,Y.;Yan,C.;Wang,G.;Xu,Z.J.;Zhang,H.One-pot synthesis of highly anisotropic five-fold-twinned ptcu nanoframesused as a bifunctional electrocatalyst for oxygen reduction and methanoloxidation.Adv.Mater.2016,28,8712-8717;Bu,L.;Shao,Q.;Pi,Y.;Yao,J.;Luo,M.;Lang,J.;Hwang,S.;Xin,H.;Huang,B.;Guo,J.;Su,D.;Guo,S.;Huang,X.Coupled s-p-dexchange in facet-controlled Pd3Pb tripods enhances oxygen reductioncatalysis.Chem 2018,4,359-371;Xia,B.Y.;Wu,H.B.;Wang,X.;Lou,X.W.One-potsynthesis of cubic PtCu3nanocages with enhanced electrocatalytic activity forthe methanol oxidation reaction.J.Am.Chem.Soc.2012,134,13934-13937)常常被用来合成枝状金属材料。但是这些方法合成过程复杂,需要用到有毒溶剂,不利于可持续的发展。因此迫切需要开发绿色,简单的方法来合成多枝状氮还原电催化剂,为社会的可持续的发展做出重要的作用。
(三)发明内容
本发明目的是提供一种长针海胆状PdCuIr氮还原电催化剂及其制备方法,并用于电化学合成氨进行研究。
本发明采用的技术方案是:
一种长针海胆状PdCuIr氮还原电催化剂,由如下方法制备:
(1)分别将氯钯酸钠、氯化铜和氯化铱溶解于去离子水中,氯钯酸钾的浓度控制在1~40mM之间,氯化铜的浓度控制在1~40mM之间,氯化铱的浓度控制在1~40mM之间;
(2)将上述溶液混合后,再加入10~500mg的KBr,10~100mg的表面活性剂F127,0.5~5mL浓度为0.01~0.1M的抗坏血酸,以及0.1~1mL浓度为1~10M的HCl溶液,超声5~15min形成澄清溶液;
(3)然后将上述溶液放入油浴锅于80~120℃下反应5~90min,待反应结束后,经过洗涤、离心、干燥,得到所述结构可控的长针海胆状PdCuIr氮还原电催化剂。
反应物浓度和用量的选择,以及反应温度和时间的控制对催化剂的形貌和结构有重要影响,本发明选择抗坏血酸作为还原剂是因为其中等强度的还原能力,可以缓慢的还原金属源,加入盐酸可以调控抗坏血酸的还原能力,加入KBr可以将金属的生长方向沿着(100)晶面进行,从而形成枝状结构。
本发明还涉及长针海胆状PdCuIr氮还原电催化剂的制备方法,所述方法包括如下步骤:
(1)将氯钯酸钠、氯化铜和氯化铱溶解于去离子水中,它们的的浓度控制在1~40mM之间;
(2)将KBr的用量控制在10~500mg之间,表面活性剂F127的用量控制在10~100mg之间,抗坏血酸的浓度控制在0.01~0.1M之间、用量控制在0.5~5mL之间,HCl溶液的浓度控制在1~10M,用量控制在0.1~1mL之间,超声5~15min形成澄清溶液;
(3)将上述溶液快速混合,反应温度控制在80~120℃之间,反应时间控制在5~90min之间,待反应结束后,经过洗涤、离心,干燥,得到所述的长针海胆状PdCuIr氮还原电催化剂。
进一步,控制氯钯酸钠、氯化铜和氯化铱的浓度,KBr、表面活性剂F127、抗坏血酸和HCl的用量,以及反应时间来调控催化剂的结构和组分。
在常温常压下可以对氮气进行有效的催化还原制备氨。电化学合成氨性能的测试具体操作过程为:
(1)称取1~10mg左右样品分散在超纯水/乙醇混合液,然后加入20~100μL的Nafion溶液(5wt%),超声30分钟得到均匀的分散液,然后取10~50μL的分散液涂覆到碳纸中(0.5×0.5cm2),烘干得到工作电极;
(2)电化学合成氨实验在H型电解池中进行,将碳纸作为工作电极,饱和Ag/AgCl电极和碳棒分别作为参比电极和对电极。在测试之前,先通入30min的氮气使其溶液氮气饱和,选择线性扫描循环伏安法和计时电流法的测试程序,用计算机监视工作电极在不同电位下的电流情况。然后通过紫外可见分光光度计测试催化后电解质中氨的浓度,最后计算得出该催化剂的产氨速率和法拉第效率。
本发明所提供的一种长针海胆状PdCuIr氮还原电催化剂及其制备方法的有益效果主要体现在:
(1)合成简单,反应快速。采用液相还原反应,可以在短时间内得到高产率的长针海胆状PdCuIr合金催化剂。
(2)通过改变反应物的摩尔比可以控制PdCuIr合金催化剂的形貌和组分。
(3)该材料在常温常压下对氮气还原制备氨具有优异的催化性能和选择性能,具有很高的应用前景。
(四)附图说明
图1为本发明的具体实施例1的长针海胆状PdCuIr催化剂的SEM图。
图2为本发明的具体实施例1的长针海胆状PdCuIr催化剂的TEM图。
图3为本发明的具体实施例1的长针海胆状PdCuIr催化剂的HRTEM图。
图4为本发明的具体实施例1的长针海胆状PdCuIr催化剂的面扫和线扫图。
图5为本发明的具体实施例1的长针海胆状PdCuIr催化剂的XRD图。
图6为本发明的具体实施例1的长针海胆状PdCuIr催化剂的XPS图。
图7为本发明的具体实施例1的长针海胆状PdCuIr催化剂的双电层电容图。
图8为本发明的具体实施例1的长针海胆状PdCuIr催化剂的催化氮还原制备氨的性能图。
图9为本发明的具体实施例1的长针海胆状PdCuIr催化剂的稳定性图。
图10为本发明的具体实施例2的长针海胆状PdCuIr催化剂的SEM图。
图11为本发明的具体实施例2的长针海胆状PdCuIr催化剂的双电层电容图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
参照图1~图9,本实施例中,对所述长针海胆状PdCuIr材料的氮还原制备氨的性能测试是在CHI 660电化学工作站上进行的,操作过程为:
第一步、称取2mg左右样品分散在1mL的超纯水中,然后加入100μL的Nafion溶液(5wt%),超声30分钟得到均匀的分散液,然后取50μL的分散液涂覆到碳纸中(0.5×0.5cm2);
第二步,将负载长针海胆状PdCuIr催化剂的碳纸作为工作电极,进行氮还原制备氨的实验。在测试之前,先通入30分钟的氮气使其溶液氮气饱和,选择线性扫描循环伏安法和计时电流法的测试程序,用计算机监视工作电极在不同电位下的电流情况。然后通过紫外可见分光光度计测试催化后电解质中氨的浓度,最后计算得出该催化剂的产氨速率和法拉第效率。
实施例1
一种长针海胆状PdCuIr氮还原电催化剂的制备方法,所述方法包括如下步骤:
1)配置20mM的氯钯酸钠、氯化铜和氯化铱的水溶液,然后分别取2.5mL、1.0mL和1.0mL的氯钯酸钠、氯化铜和氯化铱溶液混合;
2)将2.0mL浓度为6M的盐酸、2.0mL浓度为0.1M的抗坏血酸溶液,200mg的KBr和50mg的F127超声混合,超声10min形成澄清溶液;
3)在搅拌下将两种溶液混合,放入到油浴锅中于95℃反应30分钟,待反应结束后,经过洗涤、离心,干燥,得到所述的长针海胆状PdCuIr氮还原电催化剂。
获得的长针海胆状PdCuIr催化剂的SEM图参见图1,获得的长针海胆状PdCuIr催化剂的TEM图参见图2,获得的长针海胆状PdCuIr催化剂的HRTEM图参见图3,获得的长针海胆状PdCuIr催化剂的面扫和线扫图参见图4,获得的长针海胆状PdCuIr催化剂的XRD图参见图5,获得的长针海胆状PdCuIr催化剂的XPS图参见图6,获得的长针海胆状PdCuIr催化剂的双电层电容图参见图7,在常温常压下的催化氮还原制备氨的性能参见图8,获得的长针海胆状PdCuIr催化剂的电催化稳定性参见图9。
由图可见,所得到的PdCuIr催化剂是由大量纳米刺状结构组成的,纳米刺的长度在60-85nm之间,宽度约为9nm,形貌类似于长针海胆状形貌;同时Pd,Cu和Ir均匀分布在催化剂中,而且XRD和XPS证明PdCuIr形成了合金结构,这样的结构不尽可以提供更多的活性位点,而且还能调控对吸附物种的吸附能,能极大的提高催化剂的性能。从HRTEM图中看出,PdCuIr催化剂主要暴露了(111)晶面。根据双电层电容曲线可以明显的看出,该材料具有较高的活性比表面积。通过紫外可见光谱测试计算得出该催化剂在中性条件下(-0.3V)产氨速率达到了13.43μg h-1mg-1 cat.和法拉第效率为5.29%,并且没有水合肼的生产。
实施例2
一种长针海胆状PdCuIr氮还原电催化剂的制备方法,所述方法包括如下步骤:
1)配置20mM的氯钯酸钠、氯化铜和氯化铱的水溶液,然后分别取1.5mL、1.5mL和1.5mL的氯钯酸钠、氯化铜和氯化铱溶液混合;
2)将2.0mL浓度为6M的盐酸、2.0mL浓度为0.1M的抗坏血酸溶液,200mg的KBr和50mg的F127超声混合,超声10min形成澄清溶液;
3)在搅拌下将两种溶液混合,放入到油浴锅中于95℃反应60分钟,待反应结束后,经过洗涤、离心,干燥,得到所述的长针海胆状PdCuIr氮还原电催化剂。
获得的海胆状PdCuIr催化剂的SEM图参见图10,获得的海胆状PdCuIr催化剂的双电层电容图参见图11。
由图可见,该PdCuIr催化剂仍然具有明显的枝状结构,表面是由很细长的针状结构组成,形成海胆状结构。根据双电层电容曲线可以明显的看出,该材料具有较高的活性比表面积。将该催化剂用于催化氮还原合成氨时,也表现出了一定的催化性能,经过计算得到在酸性条件下(-0.1V)产氨速率达到了8.62μg h-1mg-1 cat.
实施例3
一种长针海胆状PdCuIr氮还原电催化剂的制备方法,所述方法包括如下步骤:
1)将氯钯酸钠、氯化铜和氯化铱溶解于去离子水中,它们的浓度为1mM;
2)将0.1mL浓度为1M的盐酸、0.5mL浓度为0.01M的抗坏血酸溶液,10mg的KBr和10mg的F127超声混合,超声5min形成澄清溶液;
3)在搅拌下将两种溶液混合,放入到油浴锅中于80℃反应5分钟,待反应结束后,经过洗涤、离心,干燥,得到催化剂。
由于氯钯酸钠、氯化铜和氯化铱溶液的浓度较低,得到的产物很少,而且抗坏血酸和KBr的用量很少,难以将Pd和Ru金属源彻底还原,而且难以调控材料的形貌,因此很难得到长针海胆状PdCuIr氮还原电催化剂。
实施例4
一种长针海胆状PdCuIr氮还原电催化剂的制备方法,所述方法包括如下步骤:
1)将氯钯酸钠、氯化铜和氯化铱溶解于去离子水中,它们的浓度为40mM;
2)将1mL浓度为10M的盐酸、5mL浓度为0.1M的抗坏血酸溶液,500mg的KBr和100mg的F127超声混合,超声15min形成澄清溶液;
3)在搅拌下将两种溶液混合,放入到油浴锅中于120℃反应90分钟,待反应结束后,经过洗涤、离心,干燥,得到催化剂。
因为氯钯酸钠、氯化铜和氯化铱的浓度很高,因此得到的颗粒比较大,虽然抗坏血酸的用量较大,但是盐酸的用量也很大,这样导致抗坏血酸的还原能力大大下降,从而需要提高反应温度和反应时间来加快还原速度,因此得到的PdCuIr合金形成了块体结构,难以用于实际应用。

Claims (3)

1.一种长针海胆状PdCuIr氮还原电催化剂,由如下方法制备:
(1)分别将氯钯酸钠、氯化铜和氯化铱溶解于去离子水中,氯钯酸钾的浓度控制在1~40mM之间,氯化铜的浓度控制在1~40mM之间,氯化铱的浓度控制在1~40mM之间;
(2)将上述溶液混合后,再加入10~500mg的KBr,10~100mg的表面活性剂F127,0.5~5mL浓度为0.01~0.1mol/L之间的抗坏血酸,以及0.1~1mL浓度为1~10mol/L的HCl溶液,超声5~15min形成澄清溶液;
(3)然后将上述溶液放入油浴锅于80~120℃下反应5~90min,待反应结束后,经过洗涤、离心、干燥,得到所述的长针海胆状PdCuIr氮还原电催化剂。
2.一种如权利要求1所述的长针海胆状PdCuIr氮还原电催化剂的制备方法,其特征在于,所述方法包括如下步骤:
(1)将氯钯酸钠、氯化铜和氯化铱溶解于去离子水中,它们的的浓度控制在1~40mM之间;
(2)将KBr的用量控制在10~500mg之间,表面活性剂F127的用量控制在10~100mg之间,抗坏血酸的浓度控制在0.01~0.1mol/L之间、用量控制在0.5~5mL之间,HCl溶液的浓度控制在1~10mol/L,用量控制在0.1~1mL之间,超声5~15min形成澄清溶液;
(3)将两种溶液快速混合,反应温度控制在80~120℃之间,反应时间控制在5~90min之间,待反应结束后,经过洗涤、离心,干燥,得到所述的长针海胆状PdCuIr氮还原电催化剂。
3.如权利要求2所述的方法,其特征在于,控制氯钯酸钠、氯化铜和氯化铱的浓度,以及控制KBr、表面活性剂F127和盐酸的用量来调控催化剂的形貌和组分。
CN201811282332.8A 2018-10-31 2018-10-31 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法 Active CN109174122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811282332.8A CN109174122B (zh) 2018-10-31 2018-10-31 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811282332.8A CN109174122B (zh) 2018-10-31 2018-10-31 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109174122A true CN109174122A (zh) 2019-01-11
CN109174122B CN109174122B (zh) 2021-11-23

Family

ID=64940979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811282332.8A Active CN109174122B (zh) 2018-10-31 2018-10-31 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109174122B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479255A (zh) * 2019-09-17 2019-11-22 山东大学 一种用于氮还原合成氨的铑催化剂及其制备方法与应用
CN110560083A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种双金属多孔银铜网络结构氮还原催化剂及其制备方法
CN111180750A (zh) * 2020-01-03 2020-05-19 西北工业大学 一种AgPdIr纳米合金及制备和使用方法
CN114441514A (zh) * 2021-12-10 2022-05-06 南华大学 一种海胆状三元金属纳米酶的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589176A (zh) * 2006-12-21 2009-11-25 代理并代表亚利桑那州立大学的亚利桑那董事会 生成氨(nh3)的方法和装置
CN101829595A (zh) * 2009-03-09 2010-09-15 现代自动车株式会社 NOx还原催化剂以及使用该催化剂的排气系统
CN106111201A (zh) * 2016-06-23 2016-11-16 北京化工大学常州先进材料研究院 一种用于电化学合成氨的催化剂及其制备方法
CN106861717A (zh) * 2017-03-14 2017-06-20 中国科学技术大学先进技术研究院 一种CuPd金属纳米催化剂及其制备方法、应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589176A (zh) * 2006-12-21 2009-11-25 代理并代表亚利桑那州立大学的亚利桑那董事会 生成氨(nh3)的方法和装置
CN101829595A (zh) * 2009-03-09 2010-09-15 现代自动车株式会社 NOx还原催化剂以及使用该催化剂的排气系统
CN106111201A (zh) * 2016-06-23 2016-11-16 北京化工大学常州先进材料研究院 一种用于电化学合成氨的催化剂及其制备方法
CN106861717A (zh) * 2017-03-14 2017-06-20 中国科学技术大学先进技术研究院 一种CuPd金属纳米催化剂及其制备方法、应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560083A (zh) * 2019-08-29 2019-12-13 浙江工业大学 一种双金属多孔银铜网络结构氮还原催化剂及其制备方法
CN110479255A (zh) * 2019-09-17 2019-11-22 山东大学 一种用于氮还原合成氨的铑催化剂及其制备方法与应用
CN111180750A (zh) * 2020-01-03 2020-05-19 西北工业大学 一种AgPdIr纳米合金及制备和使用方法
CN114441514A (zh) * 2021-12-10 2022-05-06 南华大学 一种海胆状三元金属纳米酶的制备方法及其应用
CN114441514B (zh) * 2021-12-10 2023-11-07 南华大学 一种海胆状三元金属纳米酶的制备方法及其应用

Also Published As

Publication number Publication date
CN109174122B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Huang et al. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm− 2
Lv et al. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
CN109174122A (zh) 一种长针海胆状PdCuIr氮还原电催化剂及其制备方法
Wang et al. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production
Du et al. Enhanced electrochemical reduction of N2 to ammonia over pyrite FeS2 with excellent selectivity
CN107829107B (zh) 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
CN109126782A (zh) 一种用于电化学合成氨的多孔PdRu合金催化剂及其制备方法
Fu et al. In-situ growth of needle-like Co3O4 on cobalt foam as a self-supported cathode for electrochemical reduction of nitrate
Gou et al. Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media
CN108191009A (zh) 聚吡咯修饰的Ag-Pd双金属复合电催化阴极及制备方法和应用
CN114517304B (zh) 具有PdCu合金颗粒负载的NiFe-LDH金属纳米片材料电催化剂制备方法
Li et al. In-situ formation of bismuth nanoparticles on nickel foam for ambient ammonia synthesis via electrocatalytic nitrogen reduction
Wang et al. In situ electrochemical synthesis of Pd aerogels as highly efficient anodic electrocatalysts for alkaline fuel cells
Tan et al. Electrochemical Etching Switches Electrocatalytic Oxygen Evolution Pathway of IrOx/Y2O3 from Adsorbate Evolution Mechanism to Lattice‐Oxygen‐Mediated Mechanism
Yin et al. Construction of superhydrophilic metal-organic frameworks with hierarchical microstructure for efficient overall water splitting
Mao et al. Indium-activated bismuth-based catalysts for efficient electrocatalytic synthesis of urea
Ali et al. Recent advances in material design and reactor engineering for electrocatalytic ambient nitrogen fixation
CN103816906A (zh) 一种用于氨硼烷水解制氢的碳负载Ni3B复合催化剂
Zhang et al. Few-atom-layer metallene quantum dots toward CO2 electroreduction at ampere-level current density and Zn-CO2 battery
Zhang et al. Single-atom nickel anchored on surface of molybdenum disulfide for efficient hydrogen evolution
Zhao et al. A two-dimensional MXene-supported CuRu catalyst for efficient electrochemical nitrate reduction to ammonia
Meng et al. Construction of ZnCdS@ CAU-17 heterostructures containing intermediate mediator Bi2S3 as a highly efficient photocatalyst for nitrogen reduction reaction
Lyu et al. CoNi/Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ/N-doped-carbon as a highly-active bifunctional electrocatalyst for water splitting
Wei et al. Catalyst-Support interactions enhanced electrochemical nitrogen reduction on Au/ZrO2
Li et al. Ni2Se3− CuSex Heterostructure as a Highly Efficient Bifunctional Electrocatalyst for Urea‐Assisted Hydrogen Generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant