CN114437452A - 一种长玻纤增强聚丙烯材料及其制备方法和应用 - Google Patents

一种长玻纤增强聚丙烯材料及其制备方法和应用 Download PDF

Info

Publication number
CN114437452A
CN114437452A CN202011188024.6A CN202011188024A CN114437452A CN 114437452 A CN114437452 A CN 114437452A CN 202011188024 A CN202011188024 A CN 202011188024A CN 114437452 A CN114437452 A CN 114437452A
Authority
CN
China
Prior art keywords
glass fiber
polypropylene
parts
fiber reinforced
long glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011188024.6A
Other languages
English (en)
Other versions
CN114437452B (zh
Inventor
李长金
董穆
高达利
张师军
徐凯
侴白舸
尹华
刘振杰
袁浩
邵静波
吕芸
吕明福
白弈青
张�浩
杨庆泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN202011188024.6A priority Critical patent/CN114437452B/zh
Publication of CN114437452A publication Critical patent/CN114437452A/zh
Application granted granted Critical
Publication of CN114437452B publication Critical patent/CN114437452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/30Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及高分子材料技术领域的一种长玻纤增强聚丙烯材料及其制备方法和应用。所述长玻纤增强聚丙烯材料,包含重量份数计的以下组分:聚丙烯100份,玻璃纤维20~60份,疏水性无定形纳米二氧化硅1~15份;相容剂3~10份。本发明提供的长玻纤增强聚丙烯复合材料具有更高综合力学性能,低收缩率和高尺寸稳定性,尤其是降低了复合材料沿平行于流动方向和垂直于流动方向两个方向收缩率的差异性,在汽车领域、家电等领域等方面可有广泛应用。

Description

一种长玻纤增强聚丙烯材料及其制备方法和应用
技术领域
本发明涉及高分子材料技术领域,更进一步说,涉及一种长玻纤增强聚丙烯材料及其制备方法和应用。
背景技术
长玻纤增强聚丙烯复合材料在汽车工业里得到越来越多的关注,相比较短纤维增强聚丙烯,具有较高的拉伸、弯曲强度和模量,有助于实现聚丙烯通用塑料在汽车工业承载部件上的广泛应用,也利于实现了低成本和高效益的目标。
因此,这种材料成为目前汽车轻量化的热门材料之一。在实际应用中可以以塑代钢和取代增强工程塑料,满足包装箱、汽车领域、家电等领域使用要求。但是加入玻纤后,制件上会出现沿流动方向和垂直方向收缩率不一致的问题。这是由于在加工成型过程中,长玻纤在树脂基体中的不同取向引起的。这就制约了长玻纤增强聚丙烯复合材料在汽车工业中的大型零部件、复杂精密零部件中应用。
中国专利CN109280276A公布了一种抗菌玻纤增强聚丙烯复合材料及其制备方法,其优点在于将有机包覆改性碳化硅粉、衣康酸二甲酯和余下长玻璃纤维采用测喂料的方式,提升材料的低翘曲性能与表面光滑性。
发明内容
为了解决现有技术中存在的上述问题,本发明提出一种长玻纤增强聚丙烯材料。具体地说涉及一种长玻纤增强聚丙烯材料及其制备方法和应用。本发明提供的长玻纤增强聚丙烯复合材料具有更高综合力学性能,低收缩率和高尺寸稳定性,尤其是降低了复合材料沿平行于流动方向和垂直于流动方向两个方向收缩率的差异性。在汽车领域、家电等领域等方面可有广泛应用。
本申请目的之一是提供一种长玻纤增强聚丙烯材料,可包含重量份数计的以下组分:
聚丙烯100份,
玻璃纤维20~60份,优选为30~50份,
疏水性无定形纳米二氧化硅1~15份;优选5~10份;
相容剂3~10份,优选为3~8份。
其中,
所述的聚丙烯为高流动聚丙烯;
所述的聚丙烯在230℃、负载为2.16kg的条件下,其熔体流动速率为40~150g/10min,优选为100~150g/10min。
所述聚丙烯可选自等规聚丙烯、间规聚丙烯、无规聚丙烯中的至少一种。
所述疏水性无定形纳米二氧化硅可为表面分散有二氧化硅的马来酸酐-苯乙烯交替共聚物微球。
所述的相容剂可为马来酸酐接枝聚丙烯,密度可为0.89~0.91g/cm3,熔点可为160~180℃,熔体流动速率(230℃,2.16Kg)可为100~200g/10min,马来酸酐的接枝率可为0.8~1.2%。
所述的玻璃纤维可为无碱高强连续玻璃纤维,强度>2300MPa,直径为10~24um,线密度为1200~4800TEX。具体地,所述玻璃纤维可选自型号为362J、T838T、362K、SE4805D、ER4305PM中的一种或多种玻璃纤维。
优选地,本申请所述的长玻纤增强聚丙烯材料,还可包含表面改性剂;以所述聚丙烯的用量为100重量份计,所述表面改性剂可为5~10重量份,优选为5~8重量份;
所述表面改性剂可为超高熔指聚丙烯中的至少一种,其熔体流动速率为150~10000g/10min,优选为400~3800g/10min,更优选为1000~2000g/10min。
在本申请的一些具体实施中,所述的长玻纤增强聚丙烯材料,还可包含润滑剂;以所述聚丙烯的用量为100重量份计,所述润滑剂可为0.5~1重量份,优选为0.5~0.8重量份;所述的润滑剂可为氧化聚乙烯蜡、微晶石蜡的至少一种。
优选地,本申请所述的长玻纤增强聚丙烯材料,还可包含抗氧剂;以所述聚丙烯的用量为100重量份计,所述抗氧剂可为0.1~3重量份,优选为0.1~1重量份;所述抗氧剂至少为抗氧剂1010、抗氧剂1076、抗氧剂168、抗氧剂2246、抗氧剂CA、抗氧剂626或抗氧剂636中的至少一种,优选一种或两种。
本发明通过引入疏水性无定形纳米二氧化硅,即将气相二氧化硅分散到马来酸酐-苯乙烯交替共聚微球中,提高了复合材料的拉伸强度、弯曲强度、简支梁缺口冲击强度,降低了复合材料的收缩率,尤其是降低了复合材料沿平行于流动方向和垂直于流动方向收缩率的差异性。
本发明目的之二是提供所述的长玻纤增强聚丙烯材料的制备方法,可包括以下步骤:
将包含所述聚丙烯、疏水性无定形纳米二氧化硅、相容剂在内的组分混合均匀,再对玻璃纤维进行浸渍,即得。所述浸渍处理具体可采用连续纤维增强热塑性材料的浸渍设备。
具体地,可将包含所述聚丙烯、相容剂、疏水性无定形纳米二氧化硅、表面改性剂、抗氧剂、润滑剂在内的组分,加入到高混机中,混料温度控制为40~60℃,混料时间为3~5分钟,然后将混好的聚丙烯混合树脂加到挤出机的料斗中备用。
再采用连续纤维增强热塑性材料的浸渍设备,将混好的聚丙烯混合树脂通过挤出机熔融塑化后进入与挤出机机头相连接的熔融浸渍模。将连续玻纤束从导纤架导出,进入玻纤分散辊系和预热单元对玻纤进行预热和分散,然后进入熔融浸渍模头,并与熔融的聚丙烯混合树脂进行浸渍包覆。浸渍包覆的复合材料料条通过整形板、口模板牵出后,经过拉条、冷却、吹干、切粒制备得到长玻纤增强聚丙烯复合材料。通过选择口模板的尺寸来调整复合材料中连续玻璃纤维在复合材料中的含量为30~60重量份;通过调整切粒机的切刀转速获得切粒长度为6~25mm的长玻纤增强聚丙烯粒料。
所述的挤出机可为双螺杆挤出机,螺杆直径为40~55mm,螺杆的长径比为40:1,加工温度为230~280℃,熔体温度230~260℃,机头温度240~280℃。
所述的浸渍设备温度可为220~230℃。
所述的分散辊系和预热单元的温度可为130~170℃。
所述的定型口模的尺寸为3.0~5.0mm,对应于玻璃纤维在复合材料中的含量为30~60重量份。
其中,
所述疏水性无定形纳米二氧化硅的制备方法包括以下步骤:
将气相法二氧化硅分散到马来酸酐-苯乙烯交替共聚微球中;
具体地,可将马来酸酐-苯乙烯交替共聚物微球与气相法二氧化硅共混,分散均匀;
所述共混步骤中:共混温度可为20~50℃;具体在操作时可使用冷却装置使共混温度保持在20~50℃。若共混搅拌时间长,体系温度增加,气相二氧化硅可能出现沉淀,导致最终分散效果变差,本发明所述的共混时间可为5~40分钟,优选5~25分钟。
所述共混装置可为搅拌器,例如高速搅拌器;电机转速可设定为20~500转/分,优选50~150转/分;所述共混装置也可为分散设备,例如高速分散机、或超声分散器或类似的分散设备或带搅拌叶片的分散装置;所述分散设备的叶片线速度可为5~50米/秒;
所述气相法二氧化硅的用量可为所述马来酸酐-苯乙烯交替共聚物微球重量的0.5~10%wt,优选为0.5~5%wt。
所述气相法二氧化硅的原生粒子平均直径可为7~40nm,相应比表面积可为50~380m2/g。
所述的马来酸酐-苯乙烯交替共聚物微球的微球平均粒径为90~1715nm,分散系数为1.04~1.004,数均分子量范围为8000~300000g/mol;
优选地,
所述的马来酸酐-苯乙烯交替共聚物微球的制备方法包括以下步骤:在氮气保护下,将单体Man和St、引发剂有机过氧化物或偶氮化合物,溶解在溶液介质中,并于60~90℃反应,得到聚合物微球的分散体系。
所述的马来酸酐-苯乙烯交替共聚物微球可参考按照公开号为CN101235117A(申请号为CN200810101948.0)的中国专利中的共聚方法进行制备。
具体地,所述的马来酸酐-苯乙烯交替共聚物微球的制备方法可包括以下步骤:
在氮气保护下,将单体Man和St、引发剂有机过氧化物或偶氮化合物,溶解在溶液介质中,并于60~90℃反应1/4~12h,得到聚合物分散微球的分散体系;所述分散体系中微球平均粒径为90~1715nm,分散系数为1.04~1.004,数均分子量范围为8000~300000g/mol。其中,所述溶液介质可为有机酸烷基酯或酮与烷烃的混合溶液介质。
纳米级至微米级的聚合物微球比表面积大、吸附性强、凝聚作用大,表面反应能力强。将二氧化硅在聚合物分散微球中分散,目的在于将二氧化硅附聚体分散成很小的聚集体,后者可以在树脂中均匀分布。二氧化硅与聚合物分散微球通过分子间作用结合,便于加入到聚合物树脂基体中。
所述气相法二氧化硅是一种高分散、无定形、高纯度二氧化硅微粒,由四氯化硅在氢氧焰中高温水解制得。所述气相法二氧化硅的原生粒子平均直径可为7~40nm,相应比表面积可为50~380m2/g。不同产品粒径大小不同。硅氧烷和硅烷醇基团分布在这些颗粒表面。气相法二氧化硅可以通过表面硅烷醇基团与合适物质反应进行表面改性,如硅烷类化合物,这种产品表面就被化学键合的二甲基硅烷基所覆盖,从而使其不能被水润湿,即显示疏水性。本申请采用马来酸酐-苯乙烯交替共聚物微球来对气相二氧化硅进行分散。气相法二氧化硅表面硅烷醇基团与马来酸酐-苯乙烯交替共聚物微球的酸酐键发生相互作用,气相法二氧化硅由亲水性变为疏水性。马来酸酐-苯乙烯交替共聚物微球与聚丙烯有较好相容性,因此气相法二氧化硅可以聚丙烯中均匀分散。
本发明目的之三是提供所述的长玻纤增强聚丙烯材料在汽车领域、家电等领域中的应用。
本发明通过引入马来酸酐-苯乙烯交替共聚物微球,气相二氧化硅,即将气相二氧化硅分散到马来酸酐-苯乙烯交替共聚微球中,并与其他助剂与树脂基体结合来调整材料的收缩率和尺寸稳定性,尤其是复合材料沿平行于流动方向和垂直于流动方向两个方向收缩率的差异性。最终赋予材料优异的综合力学性能,低收缩率和高尺寸稳定性,尤其是降低了复合材料沿平行于流动方向和垂直于流动方向两个方向收缩率的差异性;可在汽车领域、家电等领域推广应用。
具体实施方式
下面结合实施例,进一步说明本发明。但本发明不受这些实施例的限制。
原料来源
聚丙烯:高融指共聚聚丙烯,共聚单体为乙烯,乙烯基含量为2~4mol%,熔体流动速率为100g/10min,测试条件为230℃,2.16Kg。
玻璃纤维:无碱玻璃纤维,SE4805D,直径为17μm,线密度2400tex,强度>2300MPa,欧文斯科宁(上海)玻璃纤维有限公司。
马来酸酐接枝聚丙烯(PP-g-MAH),牌号BONDYRAM 1001,普利朗塑料工业有限公司。(密度0.900g/cm3、熔点160℃、流动速率100g/10min)
气相二氧化硅,
Figure BDA0002751970220000061
200,购自美国赢创公司。(平均直径是12nm,比表面积是200±25m2/g)
表面改性剂,PP PF1800,熔融指数1800g/10min,湖南盛锦新材料有限公司;
抗氧剂1010,巴斯夫公司生产;
抗氧剂168,巴斯夫公司生产;
氧化聚乙烯蜡XH-201,购自祥和涂料集团。
马来酸酐-苯乙烯交替共聚物微球的制备方法:
参考专利CN200810101948.0实施例1制备,MAn和St摩尔配比1:1,其中Man0.3118g,St 0.330g;引发剂为偶氮二异丁腈AIBN,0.05g;介质为乙酸异戊酯,45mL。采用水浴加热,在70℃的温度下反应6小时,得到马来酸酐/苯乙烯的交替共聚物PMS微球,平均粒径(Dn)为331nm、分散系数(U)为1.028,聚合收率(Cp)为85%、以及聚合物数均分子量(Mn)为119653。疏水性无定形纳米二氧化硅的制备方法:
将马来酸酐-苯乙烯交替共聚物微球与气相法二氧化硅在高速搅拌器内混合25分钟,并使用冷却装置使高速搅拌器温度保持在30℃,即得。其中电机转速设定为150转/分。气相法二氧化硅分别添加占马来酸酐-苯乙烯交替共聚物微球重量的2wt%(实施例1)、3wt%(实施例2、实施例3、实施例4)的气相二氧化硅。
实施例1~4及对比例1~3
将聚丙烯、相容剂马来酸酐接枝聚丙烯BONDYRAM 1001、疏水性无定形纳米二氧化硅、抗氧剂、润滑剂,表面改性剂PF1800在高速混合机中45℃搅拌3~5min,然后将混好的聚丙烯混合树脂加到挤出机的料斗中备用。实施例1~4及对比例1~3中的聚丙烯质量份数为100质量份数,其他组分质量份数如下表1。
再采用连续纤维增强热塑性材料的浸渍设备,将混好的聚丙烯混合树脂通过挤出机熔融塑化后进入与挤出机机头相连接的熔融浸渍模。将连续玻纤束从导纤架导出,进入玻纤分散辊系和预热单元对玻纤进行预热和分散,然后进入熔融浸渍模头,并与熔融的聚丙烯混合树脂进行浸渍包覆。浸渍包覆的复合材料料条通过整形板、口模板牵出后,经过拉条、冷却、吹干、切粒制备得到长玻纤增强聚丙烯复合材料预浸料。通过选择口模板的尺寸来调整复合材料中连续玻璃纤维在复合材料中的含量(具体含量见表1);通过调整切粒机的切刀转速获得切粒长度为12mm的长玻纤增强聚丙烯粒料预浸料。
所述的挤出机为双螺杆挤出机,螺杆直径为40mm,螺杆的长径比为40:1,加工温度为230~280℃,熔体温度230~260℃,机头温度240~280℃。
所述的浸渍设备温度为220~230℃。
所述的分散辊系和预热单元的温度为130~170℃。
将得到的所述长玻纤增强聚丙烯粒料预浸料干燥后注塑,测试力学性能,测试结果见表2。
表1
Figure BDA0002751970220000081
性能测试
拉伸强度按GB/T 1040—2006测定,拉伸速率5mm/min;弯曲强度按GB/T9341—2000测定,实验速率2mm/min;简支梁缺口冲击强度按GB/T 1043—2008测定;收缩率按照GB/T15585-1995测定,测试结果见表2。
表2材料性能测试结果
Figure BDA0002751970220000091
对于上述实施例1~4与对比例1~3相比,将气相二氧化硅分散到马来酸酐-苯乙烯交替共聚微球中,提高了复合材料的拉伸强度、弯曲强度、简支梁缺口冲击强度,降低了复合材料的收缩率,尤其是降低了复合材料沿平行于流动方向和垂直于流动方向收缩率的差异性。

Claims (13)

1.一种长玻纤增强聚丙烯材料,包含重量份数计的以下组分:
聚丙烯100份,
玻璃纤维20~60份,优选为30~50份,
疏水性无定形纳米二氧化硅1~15份;优选5~10份;
相容剂3~10份,优选为3~8份。
2.根据权利要求1所述的长玻纤增强聚丙烯材料,其特征在于:
所述的聚丙烯为高流动聚丙烯;
所述的聚丙烯在230℃、负载为2.16kg的条件下,其熔体流动速率为40-150g/10min,优选为100-150g/10min;
所述聚丙烯选自等规聚丙烯、间规聚丙烯、无规聚丙烯中的至少一种。
3.根据权利要求1所述的长玻纤增强聚丙烯材料,其特征在于:
所述疏水性无定形纳米二氧化硅为表面分散有二氧化硅的马来酸酐-苯乙烯交替共聚物微球。
4.根据权利要求1所述的长玻纤增强聚丙烯材料,其特征在于:
所述的相容剂为马来酸酐接枝聚丙烯,密度为0.89~0.91g/cm3,熔点为160~180℃,熔体流动速率为100~200g/10min,马来酸酐的接枝率为0.8~1.2%。
5.根据权利要求1所述的长玻纤增强聚丙烯材料,其特征在于:
所述的玻璃纤维为无碱高强连续玻璃纤维,强度>2300MPa,直径为10~24um,线密度为1200~4800TEX。
6.根据权利要求1所述的长玻纤增强聚丙烯材料,其特征在于包含润滑剂;
以所述聚丙烯的用量为100重量份计,所述润滑剂为0.5-1重量份,优选为0.5~0.8重量份;和/或,
所述的润滑剂为氧化聚乙烯蜡、微晶石蜡的至少一种。
7.根据权利要求1~6之任一项所述的长玻纤增强聚丙烯材料,其特征在于包含表面改性剂;以所述聚丙烯的用量为100重量份计,所述表面改性剂为5~10重量份,优选为5~8重量份;和/或,
所述表面改性剂为超高熔指聚丙烯,其熔体流动速率为150-10000g/10min,优选为400-3800g/10min,更优选为1000-2000g/10min。
8.根据权利要求1~7之任一项所述的长玻纤增强聚丙烯材料的制备方法,其特征在于包括以下步骤:
将包含所述聚丙烯、疏水性无定形纳米二氧化硅、相容剂在内的组分混合均匀,再对玻璃纤维进行浸渍,即得。
9.根据权利要求8所述的长玻纤增强聚丙烯材料的制备方法,其特征在于:
所述疏水性无定形纳米二氧化硅的制备方法包括以下步骤:将气相法二氧化硅与马来酸酐-苯乙烯交替共聚微球共混;
所述气相法二氧化硅的用量为马来酸酐-苯乙烯交替共聚物微球的0.5~10wt%;优选为0.5~5wt%。
10.根据权利要求9所述的长玻纤增强聚丙烯材料的制备方法,其特征在于:
所述的马来酸酐-苯乙烯交替共聚物微球的微球平均粒径为90~1715nm,分散系数为1.04~1.004,数均分子量范围为8000~300000g/mol;
优选地,
所述的马来酸酐-苯乙烯交替共聚物微球的制备方法包括以下步骤:在氮气保护下,将单体Man和St、引发剂有机过氧化物或偶氮化合物,溶解在溶液介质中,并于60~90℃反应,得到聚合物分散微球的分散体系。
11.根据权利要求9所述的长玻纤增强聚丙烯材料的制备方法,其特征在于:
所述气相法二氧化硅的原生粒子平均直径是7~40nm,相应比表面积是50~380m2/g。
12.根据权利要求9所述的长玻纤增强聚丙烯材料的制备方法,其特征在于:
所述共混步骤中:
共混温度为20~50℃;共混时间为5~40分钟。
13.根据权利要求1~7之任一项所述的长玻纤增强聚丙烯材料或根据8~12之任一项所述的制备方法制备的长玻纤增强聚丙烯材料在汽车领域、家电领域中的应用。
CN202011188024.6A 2020-10-30 2020-10-30 一种长玻纤增强聚丙烯材料及其制备方法和应用 Active CN114437452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011188024.6A CN114437452B (zh) 2020-10-30 2020-10-30 一种长玻纤增强聚丙烯材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011188024.6A CN114437452B (zh) 2020-10-30 2020-10-30 一种长玻纤增强聚丙烯材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114437452A true CN114437452A (zh) 2022-05-06
CN114437452B CN114437452B (zh) 2023-12-08

Family

ID=81358210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011188024.6A Active CN114437452B (zh) 2020-10-30 2020-10-30 一种长玻纤增强聚丙烯材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114437452B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116899A (en) * 1986-12-15 1992-05-26 Chisso Corporation Resin composition for electric insulation materials for vehicles
CN103589103A (zh) * 2012-08-14 2014-02-19 合肥杰事杰新材料股份有限公司 一种长玻纤增强聚丙烯复合材料、制备方法及其应用
CN105623097A (zh) * 2016-03-02 2016-06-01 北京航天试验技术研究所 一种纳米材料复合长玻纤增强聚丙烯材料及其制备方法
CN109265818A (zh) * 2018-07-27 2019-01-25 会通新材料股份有限公司 一种耐洗涤、抗黄变聚丙烯复合材料及其制备方法
CN109679221A (zh) * 2018-12-29 2019-04-26 重庆普利特新材料有限公司 一种高韧性高断裂伸长率长玻纤增强热塑性材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116899A (en) * 1986-12-15 1992-05-26 Chisso Corporation Resin composition for electric insulation materials for vehicles
CN103589103A (zh) * 2012-08-14 2014-02-19 合肥杰事杰新材料股份有限公司 一种长玻纤增强聚丙烯复合材料、制备方法及其应用
CN105623097A (zh) * 2016-03-02 2016-06-01 北京航天试验技术研究所 一种纳米材料复合长玻纤增强聚丙烯材料及其制备方法
CN109265818A (zh) * 2018-07-27 2019-01-25 会通新材料股份有限公司 一种耐洗涤、抗黄变聚丙烯复合材料及其制备方法
CN109679221A (zh) * 2018-12-29 2019-04-26 重庆普利特新材料有限公司 一种高韧性高断裂伸长率长玻纤增强热塑性材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
汪多仁 编著: "《绿色化工助剂》", 31 January 2006, 科学技术文献出版社 *
罗春华 等编著: "《材料制备与性能测试实验》", 31 July 2019, 机械工业出版社 *

Also Published As

Publication number Publication date
CN114437452B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CA2667283C (en) Aqueous dispersions disposed on glass-based fibers and glass-containing substrates
JPS6257586B2 (zh)
EP2632972A1 (en) Nucleating agent for polyethylenes
JPH11343349A (ja) 樹脂製ウィンドウ及びその製法
CN106995550A (zh) 一种超支化聚酰胺改性聚丙烯复合材料及其制备方法
CN111732838B (zh) 一种仿木家具用耐老化木塑复合材料及其制备方法
CN1094497C (zh) 纳米无机粒子增韧增强塑料及其制备方法
Soudmand et al. Experimental investigation on the mechanical properties of Co-polypropylene/GF/CaCO 3 hybrid nanocomposites
Dal Castel et al. Properties of silane grafted polypropylene/montmorillonite nanocomposites
CN113429597B (zh) 一种高浸渍度长玻纤增强聚丙烯复合材料及其制备方法
Qian et al. Preparation and characterization of polypropylene/silica nanocomposites by gamma irradiation via ultrafine blend
JP2023529743A (ja) ポリマー及びハイブリッドナノ添加剤を含む高性能材料
Rahman et al. Effect of compatibiliser on the properties of polypropylene/glass fibre/nanoclay composites
CN114437452B (zh) 一种长玻纤增强聚丙烯材料及其制备方法和应用
Bao et al. Fabrication and characterization of a novel hydrophobic CaCO3 grafted by hydroxylated poly (vinyl chloride) chains
CN114437538A (zh) 一种长玻纤增强尼龙复合材料及其制备方法和应用
Sharma et al. Study of morphological and mechanical properties of PBT/PTT blends and their nanocomposites and their correlation
Reddy et al. Propylene‐ethylene copolymer nanocomposites: Epoxy resin grafted nanosilica as a reinforcing filler
CN116426081A (zh) 一种注塑用聚丙烯母粒及其制备方法
CN114181456B (zh) 一种高硬度聚丙烯复合材料及其制备方法
CN112143194A (zh) 一种改性再生pc/abs合金回收料及其制备方法
Elleithy et al. Different factors affecting the mechanical and thermo-mechanical properties of HDPE reinforced with micro-CaCO3
CN112876775B (zh) 一种高耐磨聚丙烯材料及其制备方法
CA1335740C (en) Fiber reinforced semi-finished products
CN114426732A (zh) 一种改性长玻纤增强聚丙烯复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant