CN114433980A - 一种电弧增材制造过程中熔池尺寸的控制装置和方法 - Google Patents

一种电弧增材制造过程中熔池尺寸的控制装置和方法 Download PDF

Info

Publication number
CN114433980A
CN114433980A CN202210239830.4A CN202210239830A CN114433980A CN 114433980 A CN114433980 A CN 114433980A CN 202210239830 A CN202210239830 A CN 202210239830A CN 114433980 A CN114433980 A CN 114433980A
Authority
CN
China
Prior art keywords
molten pool
size
additive manufacturing
welding gun
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210239830.4A
Other languages
English (en)
Other versions
CN114433980B (zh
Inventor
蒋凡
王秉学
张国凯
陈树君
李德保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210239830.4A priority Critical patent/CN114433980B/zh
Priority claimed from CN202210239830.4A external-priority patent/CN114433980B/zh
Publication of CN114433980A publication Critical patent/CN114433980A/zh
Priority to US18/119,851 priority patent/US20230286049A1/en
Application granted granted Critical
Publication of CN114433980B publication Critical patent/CN114433980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0252Steering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0282Carriages forming part of a welding unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明公开了一种电弧增材制造过程中熔池尺寸的控制装置和方法,包括增材制造设备、连接装置、双侧气流装置、CCD相机;通过调节连接装置,使双侧气流装置与焊枪具有合适的的相对位置;将CCD相机装夹于焊枪后侧,配合合适的滤光片,检测熔池尺寸信息。在增材过程中,双侧气流装置和焊枪保持同步运动,焊丝由送丝装置输送至沉积层指定位置,双侧气流能够直接同步作用于熔化区域。该电弧增材制造过程中熔池尺寸的控制装置和方法,根据CCD相机检测到的熔池尺寸实时调节流量控制器,控制双侧高速气流的流速和压力,对熔池侧壁施加压力,约束熔池尺寸。同时通过改变气体类型和温度来调节沉积层的流动和凝固,实现样件尺寸的精准控制。

Description

一种电弧增材制造过程中熔池尺寸的控制装置和方法
技术领域
本发明属于增材制造领域,尤其涉及一种电弧增材制造过程中熔池尺寸的控制装置和方法。
背景技术
增材制造技术又被称为“3D打印”、“快速成型”,是根据零件的三维模型,基于离散、堆积原理采用材料逐层累加的方法来制造实体零件。在金属增材制造领域,快速成型技术采用的热源主要分为激光、电子束和电弧,电弧增材制造技术以其材料利用率高、范围广、成本低等诸多优点而受到人们的广泛关注。但是,在电弧增材制造过程中,沉积层随着热积累的逐渐增大,会出现诸如沉积层塌陷、成形精度低等问题。
对此,有学者提出了基于夹持约束的复合增材制造技术以解决上述问题。能够在不削减沉积层的前提下,提高成形零件的组织性能和成形精度。在现有的相关研究中,对于成形精度方面中国专利CN112916874A提出的增材制造过程中熔池两侧夹持辅助成形装置和方法,通过夹持部件的夹持约束作用,能够在一定程度上提高沉积层侧壁的表面平整度及宽度方向的尺寸精度。但由于其直接作用于半熔化半凝固状态的沉积层熔池外壁,会造成整个沉积层内部性能分布不均,且由于该装置的滚轮与熔池长时间直接接触,会对滚轮的造成损耗,减少使用寿命,增加使用成本。对此,提出一种电弧增材制造过程中熔池尺寸的控制装置和方法,增材制造过程中对沉积层侧壁施加双侧气流作用,通过CCD相机检测到的熔池尺寸信息,实时调节流量控制器,控制双侧高速气流的流量,改变双侧气流对熔池侧壁施加的变形压力和柔性支撑作用,约束熔池尺寸。以获得沉积层形貌优良,性能良好,成形尺寸精确的样件。
发明内容
为了解决上述技术问题,本发明提供了一种电弧增材制造过程中熔池尺寸的控制装置和方法,主要满足不同需求下的电弧增材制造。
本发明采用的技术方案是:
一种电弧增材制造过程中熔池尺寸的控制装置和方法,所述的装置包括:增材制造设备、连接装置、双侧气流装置。所述的增材制造设备包括焊枪、焊接电源、气瓶II、送丝装置、送丝装置连接板。焊丝通过送丝装置输送至沉积层指定位置,在电弧的作用下熔滴与基板相结合,将构件沉积成形在指定基板上;其中,增材过程中的热源由与焊枪相连的焊接电源提供;送丝装置通过送丝装置连接板与焊枪上的连接块相连,使焊枪和送丝装置同步运动;CCD相机装夹于焊枪后侧,配合合适的滤光片,检测熔池尺寸信息。
所述连接装置包括连接块、z轴调位装置、y轴调位装置、x轴调位装置、偏转角调位装置;连接块固定在焊枪上,作为双侧气流装置与焊枪相对位置调位的基准结构件;焊枪、连接块、z轴调位装置、y轴调位装置、x轴调位装置、偏转角调位装置及双侧气流装置通过螺栓连接依次连接组合。
所述的双侧气流装置与连接装置相连接,通过调节连接装置,实现双侧气流装置与焊枪相对位置的精准调节;通过调节连接装置,可以调节双侧气流装置的间距,控制样件的成形尺寸精度;在沉积成形的过程中双侧高速气流对熔池侧壁施加压力,对沉积层起到柔性支撑的作用,同时通过改变气体类型和温度来调节沉积层的流动和凝固,实现成形样件尺寸的精准控制。
所述的CCD相机装夹于焊枪后侧,配合合适的滤光片,检测熔池尺寸信息。根据CCD相机检测到的熔池尺寸信息,实时调节流量控制器,控制双侧高速气流的流量,改变双侧高速气流对熔池侧壁施加的变形压力和柔性支撑作用,约束熔池尺寸,提高成形样件的尺寸精度。
所述的z轴调位装置、y轴调位装置、x轴调位装置和偏转角调位装置等连接部位具有尺寸刻度,使双侧气流装置与焊枪的相对位置能够实现精准调节。
所述的焊丝种类为不锈钢或者铝合金。
所述的气瓶内用于焊枪内部及沉积层两侧的气体均为惰性气体。
所述的电弧增材制造方式包括GMAW、GTAW及等离子弧。
所述的双侧气流装置的材料需高于沉积成形过程中熔池温度300℃及以上。
所述的z轴调位装置、y轴调位装置、x轴调位装置和偏转角调位装置等连接部位具有尺寸刻度,使双侧气流装置与焊枪的相对位置能够实现精准调节。
一种电弧增材制造过程中熔池尺寸的控制装置和方法,包括以下步骤:
步骤一:调节连接装置使双侧气流装置气流喷嘴的水平间距比所需沉积层宽度大1mm,气流喷嘴与水平位置的夹角为15°,待调位完成后紧固连接装置,使双侧气流装置与焊枪能够保持一定的相对位置关系同步移动;
步骤二:启动增材制造系统,在焊枪焊枪、连接装置及焊接电源的协同作用下,配合三维运动机构进行增材制造,在沉积成形的过程中,根据CCD相机检测到的熔池尺寸实时调控双侧高速气流的流量,改变双侧气流对熔池侧壁施加的变形压力和柔性支撑作用,约束熔池尺寸,同时通过改变气体类型和温度来调节沉积层的流动和凝固,形成沉积层形貌优良且尺寸精确的样件;
步骤三:回到初始位置,将焊枪提升一定的高度;
步骤四:重复步骤二与步骤三,不断循环往复沉积成形所需的构件。
本发明的有益效果:
(1)相较于现有发明,本发明通过气体柔性支撑辅助成形,避免机械刚性支撑与沉积层相接触,减少增材装置的损耗和沉积层裂纹等缺陷。
(2)相较于现有发明,本发明可根据CCD相机检测到的熔池尺寸实时调控双侧高速气流的流量,改变双侧气流对熔池侧壁施加的变形压力和柔性支撑作用,约束熔池尺寸。
(3)相较于现有发明,本发明可通过改变气体类型和温度,调节沉积层的流动和凝固,提高成形质量。
附图说明
图1为一种电弧增材制造过程中熔池尺寸的控制装置结构示意图,采用旁轴送丝的方式。
图2为连接装置及双侧气流装置示意图,其中所述的z轴调位装置、y轴调位装置、x轴调位装置和偏转角调位装置通过螺栓依次连接组合,偏转角调位装置与双侧气流装置相连,z轴调位装置与连接块相连,双侧气流装置与气瓶I相连。
图中:1、焊枪;2、连接装置;2-1、连接块;2-2、z轴调位装置;2-3、y轴调位装置;2-4、x轴调位装置;2-5、偏转角调位装置;3、CCD相机;4、构件;5、基板;6、双侧气流装置;7、气瓶I;8、送丝装置;9、送丝装置连接板;10、气瓶II;11、焊接电源。
具体实施方式
为了能进一步了解本发明的内容、特点及效果,列举以下实施例,并配合附图详细说明如下:
本发明的基本思想是根据CCD相机检测到的熔池尺寸实时调控双侧高速气流的流量,改变双侧气流对熔池侧壁施加的变形压力和柔性支撑作用,约束熔池尺寸,同时通过改变气体类型和温度来调节沉积层的流动和凝固,形成沉积层形貌优良且尺寸精确的样件。
实施例1:
以等离子弧增材的方式制造一个沉积层宽度为4mm的铝合金薄壁件为例,如图一所示,采用旁轴送丝的方式,电弧增材制造的焊接电源为变极性等离子弧电源,使用三维运动机构带动等离子焊枪移动,气流喷嘴为圆筒状喷嘴,具体包括以下步骤:
步骤一:用砂纸打磨5A06铝合金基板表面,去除表面的氧化膜,将基板置于工作台表面,将ER4043铝合金丝放入送丝机中,打开送丝机电源并设置送丝速度为4m/min,将离子气流量设置为1.4L/min,将保护气流量设置为15L/min。打开变极性等离子弧电源,将等离子弧EN阶段电流设置为60A,EP阶段电流设置为70A;
步骤二:通过三维运动机构控制器,调节等离子焊枪和增材基板的相对位置,使其位于基板上方8mm处;
步骤三:首先调节y轴调位装置使气流喷嘴在y方向距离等离子焊枪6mm处,随后调整z轴调位装置使气流喷嘴贴近基板表面,最后调整x轴调位装置使两侧气流喷嘴关于等离子焊枪中心对称且保证两者相距5mm,气流喷嘴与水平位置的夹角为15°;
步骤四:启动送丝机及等离子电源,按照预先编辑好的程序下运行,开始进行等离子弧增材制造;
步骤五:CCD相机采集熔池的图像信息,并对熔池宽度信息进行实时提取。将CCD相机采集到的的熔池尺寸D与预设的熔池宽度Dp比较;如果D>Dp,则气体流量器输出的气体流量增大;如果D=Dp,则气体流量器输出的气体流量不变;如果D<Dp,则气体流量器输出的气体流量减小。
步骤六:如上所述,进行单向熔覆沉积,得到沉积层宽度为4mm的薄壁件。

Claims (9)

1.一种电弧增材制造过程中熔池尺寸的控制装置,其特征在于:包括:增材制造设备、连接装置(2)、双侧气流装置(6);所述的增材制造设备包括焊枪(1)、焊接电源(11)、气瓶II(10)、送丝装置(8)、送丝装置连接板(9);焊丝通过送丝装置(8)输送至沉积层指定位置,在电弧的作用下熔滴与基板相结合,将构件(4)沉积成形在指定基板(5)上;增材过程中的热源由与焊枪(1)相连的焊接电源(11)提供;送丝装置(8)通过送丝装置连接板(9)与焊枪(1)上的连接装置(2)相连,使焊枪(1)和送丝装置(8)同步运动;所述的双侧气流装置(6)与连接装置(2)相连接,通过调节连接装置(2),实现双侧气流装置(6)与焊枪(1)相对位置的精准调节。
2.根据权利要求1所述一种电弧增材制造过程中熔池尺寸的控制装置,其特征在于:所述连接装置(2)包括连接块(2-1)、z轴调位装置(2-2)、y轴调位装置(2-3)、x轴调位装置(2-4)、偏转角调位装置(2-5);连接块(2-1)固定在焊枪(1)上,作为双侧气流装置(6)与焊枪(1)相对位置调位的基准结构件;焊枪(1)、连接块(2-1)、z轴调位装置(2-2)、y轴调位装置(2-3)、x轴调位装置(2-4)、偏转角调位装置(2-5)及双侧气流装置(6)通过螺栓连接依次连接组合。
3.根据权利要求1所述一种电弧增材制造过程中熔池尺寸的控制装置,其特征在于:通过调节连接装置(2)调节双侧气流装置(6)的间距,控制样件的成形尺寸精度;在沉积成形的过程中双侧高速气流对熔池侧壁施加压力,对沉积层起到柔性支撑的作用,通过改变气体类型和温度来调节沉积层的流动和凝固,实现成形样件尺寸的精准控制。
4.根据权利要求1所述一种电弧增材制造过程中熔池尺寸的控制装置,其特征在于:CCD相机(3)装夹于焊枪(1)后侧,配合滤光片检测熔池尺寸信息;根据CCD相机(3)检测到的熔池尺寸信息,实时调节流量控制器,控制双侧高速气流的流量,改变双侧高速气流对熔池侧壁施加的变形压力和柔性支撑作用,约束熔池尺寸,提高成形样件的尺寸精度。
5.根据权利要求1所述一种电弧增材制造过程中熔池尺寸的控制装置,其特征在于:所述的焊丝为不锈钢或者铝合金。
6.根据权利要求1所述一种电弧增材制造过程中熔池尺寸的控制装置和方法,其特征在于:所述的气瓶I(7)和气瓶II(10)内用于焊枪内部及沉积层两侧的气体均为惰性气体。
7.根据权利要求1所述一种电弧增材制造过程中熔池尺寸的控制装置,其特征在于:电弧增材制造方式包括GMAW、GTAW及等离子弧。
8.根据权利要求2所述一种电弧增材制造过程中熔池尺寸的控制装置,其特征在于:所述的z轴调位装置(2-2)、y轴调位装置(2-3)、x轴调位装置(2-4)和偏转角调位装置(2-5)连接部位设有尺寸刻度,使双侧气流装置(6)与焊枪(1)的相对位置能够实现精准调节。
9.利用权利要求1-8任一所述装置进行的一种电弧增材制造过程中熔池尺寸的控制方法,其特征在于:该方法包括如下步骤:
步骤一:调节连接装置(2)使双侧气流装置(6)气流喷嘴的水平间距比所需沉积层宽度大1mm,气流喷嘴与水平位置的夹角为15°,待调位完成后紧固连接装置(2),使双侧气流装置(6)与焊枪(1)能够保持相对位置关系同步移动;
步骤二:启动增材制造装置,在焊枪(1)、连接装置(2)及焊接电源(11)的协同作用下,配合三维运动机构进行增材制造,在沉积成形的过程中,根据CCD相机(3)检测到的熔池尺寸实时调控双侧高速气流的流量,改变双侧气流对熔池侧壁施加的变形压力和柔性支撑作用,约束熔池尺寸,同时通过改变气体类型和温度来调节沉积层的流动和凝固;
步骤三:回到初始位置,将焊枪(1)提升高度;
步骤四:重复步骤二与步骤三不断循环往复沉积,最终成形得到所需构件(4)。
CN202210239830.4A 2022-03-12 2022-03-12 一种电弧增材制造过程中熔池尺寸的控制装置和方法 Active CN114433980B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210239830.4A CN114433980B (zh) 2022-03-12 一种电弧增材制造过程中熔池尺寸的控制装置和方法
US18/119,851 US20230286049A1 (en) 2022-03-12 2023-03-10 Device and method for controlling size of molten pool in wire and arc additive manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210239830.4A CN114433980B (zh) 2022-03-12 一种电弧增材制造过程中熔池尺寸的控制装置和方法

Publications (2)

Publication Number Publication Date
CN114433980A true CN114433980A (zh) 2022-05-06
CN114433980B CN114433980B (zh) 2024-07-16

Family

ID=

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669833A (zh) * 2022-05-13 2022-06-28 南京航空航天大学 一种基于熔池监测实时调控电弧增材性能成形稳定性的装置及方法
CN115194293A (zh) * 2022-06-04 2022-10-18 南京理工大学 一种实时微调送丝实现非熔化极电弧高精度增材成形的装置及方法
CN115319241A (zh) * 2022-07-11 2022-11-11 北京航星机器制造有限公司 一种基于构造曲面的电弧增材制造路径规划方法及装置
CN115365515A (zh) * 2022-08-26 2022-11-22 南京航空航天大学 超声熔融复合沉积增材制造装置及制造方法
CN115383258A (zh) * 2022-07-15 2022-11-25 江苏靖宁智能制造有限公司 一种机器人gmaw增材制造电弧形态的对称磁极压缩控制系统
CN116223445A (zh) * 2023-05-05 2023-06-06 安徽中科智泰光电测控科技有限公司 一种矿用井下多气体检测仪和检测系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781971A (en) * 1980-11-11 1982-05-22 Babcock Hitachi Kk Method and device for narrow groove welding
JP2003088969A (ja) * 2001-09-18 2003-03-25 Hitachi Zosen Corp 厚板重ね溶接方法及び装置
JP2007260743A (ja) * 2006-03-29 2007-10-11 Tokyu Car Corp レーザ溶接方法
US20140008332A1 (en) * 2012-07-06 2014-01-09 Lincoln Global, Inc. Method and system of using gas flow to control weld puddle in out-of-position welding
WO2019002563A2 (en) * 2017-06-30 2019-01-03 Norsk Titanium As IN-SOLIDIFICATION REFINING AND GENERAL PHASE TRANSFORMATION CONTROL BY APPLYING IN SITU GAS IMPACT IMPACT IN THE ADDITIVE MANUFACTURE OF METALLIC PRODUCTS
CN109807417A (zh) * 2019-03-24 2019-05-28 北京工业大学 一种激光主动切割焊丝控制熔滴温度的方法
US20210016381A1 (en) * 2018-04-14 2021-01-21 Aml3D Pty Limited Method and apparatus for manufacturing 3d metal parts
CN112548281A (zh) * 2020-12-11 2021-03-26 福州大学 交叉类金属零件辅助填丝gmaw电弧增材制造系统及方法
CN112916874A (zh) * 2021-01-23 2021-06-08 大连理工大学 一种增材制造过程中熔池两侧夹持辅助成形装置和方法
CN112975054A (zh) * 2021-02-22 2021-06-18 西安铂力特增材技术股份有限公司 电弧增材制造过程中零件表面温度控制装置及控制方法
CN113263242A (zh) * 2021-05-08 2021-08-17 南京航空航天大学 一种变截面结构电弧增材制造过程冷却装置及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781971A (en) * 1980-11-11 1982-05-22 Babcock Hitachi Kk Method and device for narrow groove welding
JP2003088969A (ja) * 2001-09-18 2003-03-25 Hitachi Zosen Corp 厚板重ね溶接方法及び装置
JP2007260743A (ja) * 2006-03-29 2007-10-11 Tokyu Car Corp レーザ溶接方法
US20140008332A1 (en) * 2012-07-06 2014-01-09 Lincoln Global, Inc. Method and system of using gas flow to control weld puddle in out-of-position welding
WO2019002563A2 (en) * 2017-06-30 2019-01-03 Norsk Titanium As IN-SOLIDIFICATION REFINING AND GENERAL PHASE TRANSFORMATION CONTROL BY APPLYING IN SITU GAS IMPACT IMPACT IN THE ADDITIVE MANUFACTURE OF METALLIC PRODUCTS
US20210016381A1 (en) * 2018-04-14 2021-01-21 Aml3D Pty Limited Method and apparatus for manufacturing 3d metal parts
CN109807417A (zh) * 2019-03-24 2019-05-28 北京工业大学 一种激光主动切割焊丝控制熔滴温度的方法
CN112548281A (zh) * 2020-12-11 2021-03-26 福州大学 交叉类金属零件辅助填丝gmaw电弧增材制造系统及方法
CN112916874A (zh) * 2021-01-23 2021-06-08 大连理工大学 一种增材制造过程中熔池两侧夹持辅助成形装置和方法
CN112975054A (zh) * 2021-02-22 2021-06-18 西安铂力特增材技术股份有限公司 电弧增材制造过程中零件表面温度控制装置及控制方法
CN113263242A (zh) * 2021-05-08 2021-08-17 南京航空航天大学 一种变截面结构电弧增材制造过程冷却装置及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669833A (zh) * 2022-05-13 2022-06-28 南京航空航天大学 一种基于熔池监测实时调控电弧增材性能成形稳定性的装置及方法
CN115194293A (zh) * 2022-06-04 2022-10-18 南京理工大学 一种实时微调送丝实现非熔化极电弧高精度增材成形的装置及方法
CN115194293B (zh) * 2022-06-04 2024-04-05 南京理工大学 一种实时微调送丝实现非熔化极电弧高精度增材成形的装置及方法
CN115319241A (zh) * 2022-07-11 2022-11-11 北京航星机器制造有限公司 一种基于构造曲面的电弧增材制造路径规划方法及装置
CN115319241B (zh) * 2022-07-11 2024-04-05 北京航星机器制造有限公司 一种基于构造曲面的电弧增材制造路径规划方法及装置
CN115383258A (zh) * 2022-07-15 2022-11-25 江苏靖宁智能制造有限公司 一种机器人gmaw增材制造电弧形态的对称磁极压缩控制系统
CN115365515A (zh) * 2022-08-26 2022-11-22 南京航空航天大学 超声熔融复合沉积增材制造装置及制造方法
CN116223445A (zh) * 2023-05-05 2023-06-06 安徽中科智泰光电测控科技有限公司 一种矿用井下多气体检测仪和检测系统

Also Published As

Publication number Publication date
US20230286049A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US10682716B2 (en) Method for rapidly forming a part using combination of arc deposition and laser shock forging and device implementing same
CN202052935U (zh) 一种激光感应复合熔化直接成形装置
CN108637504A (zh) 一种电弧填丝和滚压复合增材制造方法和装置
CN110773837B (zh) 一种钛合金高精度电弧增材制造工艺
CN108161229B (zh) 一种填丝式增材制造实体类铝合金结构的方法
CN108723549A (zh) 一种电弧增材制造方法
CN102179517A (zh) 一种激光感应复合熔化直接成形方法及装置
CN109746443A (zh) 一种增材制造过程中并行控制零件变形和精度的方法
WO2020062341A1 (zh) 一种激光增材装置及其增材制造的方法
CN109128177B (zh) 一种控制增材制造电弧弧长和成形件端面平整度的方法
WO2011127798A1 (zh) 零件与模具的熔积成形复合制造方法及其辅助装置
CN109909616A (zh) 一种基于低功率激光诱导tig电弧的不锈钢结构件增材制造方法及制造系统
CN110355366B (zh) 铺粉器机构与可在线检测质量的金属增材制造装置及方法
CN112439971B (zh) 一种自适应非平整面的连续电弧增材制造方法及装置
CN107253004A (zh) 一种金属结构件熔丝增材装置及其熔丝制造工艺
CN112404712A (zh) 一种用于热塑复合材料与金属激光连接的气体冷却装置与方法
WO2023142212A1 (zh) 一种闭环控制激光功率改善工件塌边问题的装置和方法
CN114101712B (zh) 一体式电弧3d打印增减材制造系统与增减材加工方法
CN114433980B (zh) 一种电弧增材制造过程中熔池尺寸的控制装置和方法
CN114433980A (zh) 一种电弧增材制造过程中熔池尺寸的控制装置和方法
CN112692400A (zh) Tig电弧増材成形时变参数定距自适应控制方法
CN112916874A (zh) 一种增材制造过程中熔池两侧夹持辅助成形装置和方法
CN111531252A (zh) 改善薄壁件gma增材制造效率与热积累的方法与装置
CN216227906U (zh) 电弧3d打印-铣削-毫克能复合增减材制造系统
CN115008017A (zh) 一种扫描激光辅助整形熔池的mig电弧双丝低热输入增材制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant