CN114432901B - 一种具有耐酸性和碱性的复合膜及其制备方法与应用 - Google Patents

一种具有耐酸性和碱性的复合膜及其制备方法与应用 Download PDF

Info

Publication number
CN114432901B
CN114432901B CN202011201688.1A CN202011201688A CN114432901B CN 114432901 B CN114432901 B CN 114432901B CN 202011201688 A CN202011201688 A CN 202011201688A CN 114432901 B CN114432901 B CN 114432901B
Authority
CN
China
Prior art keywords
thiourea
layer
diisocyanate
composite membrane
polyamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011201688.1A
Other languages
English (en)
Other versions
CN114432901A (zh
Inventor
张杨
于浩
潘国元
刘轶群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN202011201688.1A priority Critical patent/CN114432901B/zh
Publication of CN114432901A publication Critical patent/CN114432901A/zh
Application granted granted Critical
Publication of CN114432901B publication Critical patent/CN114432901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明提供一种具有耐酸性和碱性的复合膜及其制备方法与应用。所述复合膜包括底层、中间的多孔支撑层和表层的分离层,所述分离层为聚硫脲分离层。所述分离层通过将硫脲及其衍生物、多元胺与多元异氰酸酯进行界面聚合得到。本发明在分离层中引入了电负性的硫元素,可以与未反应氨基上的氢形成氢键,使分离层分子结构更加紧密,并提高了复合膜在酸/碱溶液中的稳定性。

Description

一种具有耐酸性和碱性的复合膜及其制备方法与应用
技术领域
本发明涉及膜领域,具体地说,是涉及一种具有耐酸性和碱性的复合膜及其制备方法与应用。
背景技术
纳滤是一种介于反渗透和超滤之间的压力驱动膜分离过程,纳滤膜的孔径范围在几纳米左右,对单价离子和分子量小于200的有机物脱除较差,而对二价或多价离子及分子量介于200~500之间的有机物有较高的脱除率。可广泛地用于淡水软化、海水软化、饮用水净化、水质改善、油水分离、废水处理及回收利用,以及染料、抗生素、多肽和多糖等化工制品的分级、纯化及浓缩等领域。
目前,商业纳滤膜大多以聚砜超滤膜作为支撑层,在超滤膜上表面原位进行多元胺水相与多元酰氯有机相的界面聚合,最终的产品为复合纳滤膜。常见的水相单体为哌嗪或哌嗪取代胺,有机相为均苯三甲酰氯或一种多官能酰卤,如在专利号US4769148和US4859384中所公开报道的内容,大量未反应的酰氯基团水解成羧酸,使纳滤膜表面带负电,利用电荷效应,聚哌嗪酰胺复合纳滤膜对高价阴离子具有较高的截留率,对单价阴离子具有可调的截留率。此外,专利号US4765897、US4812270和US4824574还提供了一种如何将聚酰胺复合反渗透膜转变成纳滤膜的方法。但是,由于材料本身特性的限制,在极端pH环境下,特别是强碱条件下,传统的聚酰胺类纳滤膜会发生降解,由于聚酰胺纳滤膜的使用pH范围一般为2~11,所以只能用于中性介质或者接近中性的弱酸弱碱性介质。
近年来,研究者们开发出多种纳滤膜,并且出现多种商品化的产品。此外,很多新材料,例如磺化聚醚酮、磺化聚醚砜等也被应用到纳滤领域。
文献《Acid stable thin-film composite membrane fornanofiltrationprepared from naphthalene-1,3,6-trisulfonylchloride(NTSC)and piperazine(PIP),J.Membr.Sci.,415-416,122-131,2012》中报道:磺酰胺材料具有很强的耐酸性,利用多元磺酰氯单体与哌嗪通过界面聚合得到的复合纳滤膜可以在pH=0环境中保持稳定的分离性能。
文献《Sulfonated poly(etheretherketone)based composite membranes fornanofiltration of acidic and alkaline media,J.Membr.Sci.,381,81-89,2011》中报道:磺化聚醚醚酮既具有耐酸性,又有很强的耐碱性,通过交联更能得到截留性能优异的纳滤膜材料,而且,交联后的聚醚醚酮材料具有很强的耐溶剂性,可以在异丙醇和丙酮等极性溶剂中分离染料(Crosslinking of modified poly(etheretherketone)membranes foruse in solvent resistant nanofiltration,447,212-221,2013)。
文献《耐酸碱耐高温纳滤膜HYDRACoRe70pHT用于制糖工业废碱液回收,膜科学与技术,32,11-15,2006》中报道:已经商品化的磺化聚醚砜类复合纳滤膜是由日东电工海德能公司开发出的HYDRACoRe系列,可以在强酸、强碱溶液中使用,广泛应用于废碱的回收。
GE公司开发出的耐酸纳滤膜Duracid NF1812C为三层复合结构,其分离层材质为聚磺酰胺(专利号US7138058),能在20%的盐酸、硫酸以及磷酸条件下保持稳定,而且在70℃,20%浓度的硫酸条件下仍能保持稳定。
专利号US5265734,EP0392982(A3)中报道了能够在pH=0~14长期稳定运行的纳滤膜只有KOCH公司开发出的SelRO MPS34,它最早是由以色列科学家研发出来的,最早应用于渗透汽化。
AMS公司开发出耐酸、耐碱以及耐溶剂的复合纳滤膜,其分离层材质为聚胺(US9943811),是多元胺与三聚氯氰或其衍生物,通过界面聚合反应制得。
文献(Journal of Membrane Science 523(2017)487-496)以及文献(Journal ofMembrane Science 478(2015)75-84)报道了利用界面聚合法在多孔支撑层上修饰聚苯胺分离层,复合膜在pH=0~14的介质环境中具有较强的渗透和分离稳定性。
文献(Journal of Membrane Science 572(2019)489-495)利用相转化和后处理的方法制备了聚偏氟乙烯纳滤膜材料,该材料在强酸和强碱环境中具有很强的稳定性。
发明内容
本发明的目的是为了克服现有的纳滤膜耐酸性以及耐碱性差的缺陷,而提供一种复合纳滤膜及其制备方法,以及该复合纳滤膜和由该方法制备得到的复合纳滤膜在水处理领域中的应用。
为了实现上述目的,本发明目的之一为提供一种具有耐酸性和碱性的复合膜,包括底层、中间的多孔支撑层和表层的分离层,所述分离层为聚硫脲分离层。
本发明的所述具有耐酸性和碱性的复合膜包括三层结构:最底的底层、在底层的一个表面上附有一层多孔支撑层、在多孔支撑层的表面附有具有交联结构的聚硫脲致密分离层。
根据本发明,对所述底层和多孔支撑层没有具体限定,可以由现有的各种具有一定的强度、并能够用于纳滤、反渗透膜的材料制成。
所述底层可以为无纺布,无纺布的材质为聚乙烯和聚丙烯中的一种或者二者混合。
所述多孔支撑层材料可以为聚醚砜、聚砜、聚芳香醚、聚苯并咪唑、聚醚酮、聚醚醚酮、聚丙烯腈、聚偏氟乙烯、聚芳醚酮中的一种或几种混合,对此本领域技术人员均能知悉,在此将不再赘述。
所述分离层通过将硫脲及其衍生物、多元胺与多元异氰酸酯进行界面聚合得到。
优选地,所述硫脲及其衍生物为硫脲、氨基硫脲、2-甲基氨基硫脲、4-甲基氨基硫脲、N-甲基硫脲、乙基硫脲、亚乙基硫脲、正丙基硫脲、异丙基硫脲、烯丙基硫脲、正丁基硫脲、4-苯基-3-氨基硫脲、1-苯基氨基硫脲、4-2,4-二甲级苯基-3-氨基硫脲、2-氯苯基硫脲、1-(2-氟苯基)-2-硫脲、3,5-二氯苯基硫脲、荧光素-5-氨基硫脲、(2,4-二氟苯基)硫脲、5-丙基-2-硫脲嘧啶、2,5-二氯苯基硫脲、1,3-二异丙基-2-硫脲、3,5-二氯苯基硫脲、2,4-二氯苯基硫脲、4-氯苯硫脲、3,4-二氯苯基硫脲、N,N’-二甲基硫脲、N-(4-羧苯基)硫脲、3-吡啶基硫脲、N,N’-二乙基硫脲、3-氯苯硫脲、4-溴苯硫脲中的至少一种,更优选为硫脲、氨基硫脲、2-甲基氨基硫脲、4-甲基氨基硫脲中的至少一种。
优选地,所述多元胺为间苯二胺、对苯二胺、邻苯二胺、1,3,5-三氨基苯、三聚氰胺、哌嗪、乙二胺、1,2-丙二胺、1,4-丁二胺、二乙烯三胺、四乙烯五胺、聚乙烯亚胺、多乙烯多胺、聚醚胺中的至少一种;更优选为聚乙烯亚胺、1,3,5-三氨基、多乙烯多胺中的至少一种。
优选地,所述多元异氰酸酯为间苯二甲基二异氰酸酯、异佛尔酮二异氰酸酯、1,6-己二异氰酸酯、甲苯-2,6-二异氰酸酯、1,4-苯二异氰酸酯、甲苯-2,4-二异氰酸酯、4,4’-亚甲基双(异氰酸苯酯)、1,3-苯二异氰酸酯、3,3’-二氯-4,4’-二异氰酸酯联苯、二环己基甲烷-4,4’-二异氰酸酯、三甲基六亚甲基二异氰酸酯、L-赖氨酸-乙基酯-二异氰酸酯、1,4-环己基二异氰酸酯、4-氯-6-甲基间苯二异氰酸酯中的至少一种,更优选为4,4’-亚甲基双(异氰酸苯酯)、间苯二甲基二异氰酸酯、甲苯-2,6-二异氰酸酯、1,4-苯二异氰酸酯中的至少一种。
根据本发明,对所述底层、多孔支撑层和分离层的厚度没有特别地限定,可以为本领域的常规选择,但为了使得这三层能够起到更好的协同配合作用,使得到的复合膜能够更好地兼具优异的耐酸碱性能、较高的水通量和脱盐率,优选情况下,所述底层的厚度为30~150μm,优选为50~120μm;所述多孔支撑层的厚度为10~100μm,优选为30~60μm;所述聚脲分离层的厚度为10~500nm,优选为50~300nm。
本发明目的之二为提供所述具有耐酸性和碱性的复合膜的制备方法,包括以下步骤:
(1)在所述底层的一个表面上制备多孔支撑层;
(2)在所述多孔支撑层的另一个表面上通过将包含硫脲及其衍生物、多元胺和多元异氰酸酯在内的组分进行界面聚合得到分离层。
根据本发明,步骤(1)方法可以为本领域的常规选择,优选地采用相转化法,可在底层的一个表面涂覆多孔支撑层材料的聚合物溶液,经过相转化得到多孔支撑层。
所述相转化法优选可以为:将支撑层聚合物材料溶于溶剂中,得到浓度为10~20重量%的聚合物溶液,在20~40℃下脱泡10~180min;接着将聚合物溶液涂覆在底层上得到初始膜,随即将其在温度为10~30℃的水中浸泡10~60min,经相转化层所述支撑层聚合物多孔膜。
其中,所述溶剂可以为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜等。
根据本发明,步骤(2)为通过将硫脲及其衍生物、多元胺与多元异氰酸酯进行界面聚合得到所述聚硫脲分离层。
根据本发明,所述硫脲及其衍生物优选为硫脲、氨基硫脲、2-甲基氨基硫脲、4-甲基氨基硫脲、N-甲基硫脲、乙基硫脲、亚乙基硫脲、正丙基硫脲、异丙基硫脲、烯丙基硫脲、正丁基硫脲、4-苯基-3-氨基硫脲、1-苯基氨基硫脲、4-2,4-二甲级苯基-3-氨基硫脲、2-氯苯基硫脲、1-(2-氟苯基)-2-硫脲、3,5-二氯苯基硫脲、荧光素-5-氨基硫脲、(2,4-二氟苯基)硫脲、5-丙基-2-硫脲嘧啶、2,5-二氯苯基硫脲、1,3-二异丙基-2-硫脲、3,5-二氯苯基硫脲、2,4-二氯苯基硫脲、4-氯苯硫脲、3,4-二氯苯基硫脲、N,N’-二甲基硫脲、N-(4-羧苯基)硫脲、3-吡啶基硫脲、N,N’-二乙基硫脲、3-氯苯硫脲、4-溴苯硫脲中的一种或几种混合,更优选为硫脲、氨基硫脲、2-甲基氨基硫脲、4-甲基氨基硫脲中的一种或多种混合。
根据本发明,所述多元胺优选为间苯二胺、对苯二胺、邻苯二胺、1,3,5-三氨基苯、三聚氰胺、哌嗪、乙二胺、1,2-丙二胺、1,4-丁二胺、二乙烯三胺、四乙烯五胺、多乙烯多胺、聚乙烯亚胺和聚醚胺中的一种或几种混合;更优选为聚乙烯亚胺、1,3,5-三氨基与多乙烯多胺中的一种或几种混合。
根据本发明,所述多元异氰酸酯优选为间苯二甲基二异氰酸酯、异佛尔酮二异氰酸酯、1,6-己二异氰酸酯、甲苯-2,6-二异氰酸酯、1,4-苯二异氰酸酯、甲苯-2,4-二异氰酸酯、4,4’-亚甲基双(异氰酸苯酯)、1,3-苯二异氰酸酯、3,3’-二氯-4,4’-二异氰酸酯联苯、二环己基甲烷-4,4’-二异氰酸酯、三甲基六亚甲基二异氰酸酯、间苯二甲基二异氰酸酯、L-赖氨酸-乙基酯-二异氰酸酯、1,4-环己基二异氰酸酯、4-氯-6-甲基间苯二异氰酸酯中的一种或多种;更优选为4,4’-亚甲基双(异氰酸苯酯)、间苯二甲基二异氰酸酯、甲苯-2,6-二异氰酸酯、1,4-苯二异氰酸酯中的至少一种。
根据本发明,步骤(2)中,先将所述多孔支撑层的另一个表面与含有硫脲及其衍生物和多元胺的水相接触,排液后再与含有多元异氰酸酯的有机相接触,热处理。
根据本发明,本发明对界面聚合过程中,硫脲及其衍生物、多元胺和多元异氰酸酯的浓度没有特别地限定,只要能够使得到的纳滤膜能够兼具优异的耐酸碱性能、较高的水通量和脱盐率即可。
所述水相中,硫脲及其衍生物的浓度优选为0.05~5wt%,更优选为0.1~2.5wt%;多元胺的浓度为0.05~5wt%,优选为0.1~2.5wt%;
所述有机相中,多元异氰酸酯的浓度优选为0.025~1wt%,更优选为0.05~0.5wt%。
根据本发明,对界面聚合过程中,硫脲及其衍生物、多元胺与多元异氰酸酯的质量浓度比没有特别地限定,只要能够使得到的纳滤膜能够兼具优异的耐酸碱性能、较高的水通量和脱盐率即可。
硫脲及其衍生物和多元胺(即硫脲及其衍生物和多元胺的质量浓度比之和)与所述多元异氰酸酯的质量浓度比优选为(0.1~50):1,更优选为(0.5~20):1。
根据本发明,本发明对所述有机相的溶剂的种类没有特别地限定,只要能够溶解所述多元异氰酸酯即可,优选地,所述有机相的溶剂为正己烷、十二烷、正庚烷、烷烃溶剂油(Isopar E、Isopar G、Isopar H、Isopar L和Isopar M)中的一种或多种。
根据本发明,本发明对界面聚合过程中,所述多孔支撑层分别与水相和有机相的接触时间没有特殊限定,只要能够使得到的复合膜能够兼具优异的耐酸碱性能、较高的水通量和脱盐率即可,优选地,所述多孔支撑层与含有硫脲及其衍生物、多元胺的水相接触的时间为5s~100s,优选为10s~60s;与含有多元异氰酸酯的有机相接触的时间为10s~200s,优选为20s~120s。
根据本发明,本发明对界面聚合的后处理条件没有特殊地限定,只要能使单体聚合完全,纳滤膜能够兼具优异的耐酸碱性能、较高的水通量和脱盐率即可,优选地,热处理温度为40~150℃,优选为50~120℃;热处理时间为0.5~20分钟,优选为1~10分钟。
本发明目的之三为提供所述复合膜和由上述方法制备得到的复合膜在水处理领域中的应用。
本发明的发明人经过深入研究发现,聚硫脲分子结构中可以形成大量的分子间氢键,氢键的存在使分离层分子结构更加致密,更有助于提高其在酸/碱介质中的稳定性。
本发明所述的复合膜可以在pH=0~14的水溶液中稳定运行的,不仅具有较高的脱盐率和透水性(水通量),还具有较强的耐酸性和碱性,而且其制备方法简单,极具工业应用前景。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在以下实施例和对比例中:
(1)复合膜的水通量通过以下方法测试得到:将复合膜装入膜池中,在1.2MPa下预压0.5小时后,在压力为2.0MPa下、温度为25℃条件下测得1h内所述膜的水透过量,并通过以下公式计算得到:
J=Q/(A·t),其中,J为水通量,Q为水透过量(L),A为复合膜的有效膜面积(m2),t为时间(h);
(2)复合膜的脱盐率通过以下方法测试得到:将复合膜装入膜池中,在1.2MPa下预压0.5h后,在压力为2.0MPa下、温度为25℃条件下测得1h内初始浓度为2000ppm的硫酸镁原水溶液与透过液中硫酸镁的浓度变化,并通过以下公式计算得到:
R=(Cp-Cf)/Cp×100%,其中,R为脱盐率,Cp为原液中硫酸镁的浓度,Cf为透过液中硫酸镁的浓度;
(3)复合膜的耐酸性测试:是将复合膜膜片分别浸泡在在含有20质量%H2SO4,20质量%HCl的水溶液里浸泡6个月,然后测试复合膜的水通量和截盐率;
(4)复合膜的耐碱性测试:是将复合膜膜片在含有20质量%NaOH的碱的水溶液里浸泡6个月,然后测试复合膜的水通量和截盐率。
另外,在以下实施例和对比例中:
支化型聚乙烯亚胺(重均分子量为25000)、多乙烯多胺、三聚氰胺、1,3,5-三氨基苯、硫脲、氨基硫脲、2-甲基氨基硫脲、4-甲基氨基硫脲、N-甲基硫脲、4-苯基-3-氨基硫脲、1-苯基氨基硫脲、间苯二甲基二异氰酸酯、甲苯-2,6-二异氰酸酯、1,4-苯二异氰酸酯、4,4’-亚甲基双(异氰酸苯酯)等等均购自百灵威科技有限公司,其它化学试剂均购自国药集团化学试剂有限公司。
支撑层采用相转化法制得,具体步骤如下:
将一定量聚砜(数均分子量为80000)溶于N,N-二甲基甲酰胺中,制得浓度为18重量%的聚砜溶液,在25℃下脱泡120min;然后,利用刮刀将聚砜溶液涂覆在(厚度为75μm的)聚乙烯无纺布上得到初始膜,随即将其在温度为25℃的水中浸泡60min,使得聚乙烯无纺布表面的聚砜层经相转化成多孔膜,最后经3次水洗得到总厚度为115μm的膜。
实施例1
将上述聚砜支撑层上表面接触含有0.5重量%的硫脲和0.25重量%聚乙烯亚胺的水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.05重量%的4,4’-亚甲基双(异氰酸苯酯)的Isopar E溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为205nm。
将得到的复合膜N1在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里浸泡6个月,然后测试复合纳滤膜的水通量和截盐率,结果如表1所示。
实施例2
将上述聚砜支撑层上表面接触含有2.0重量%的氨基硫脲和0.2重量%的1,3,5-三氨基苯的水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.2重量%的间苯二甲基二异氰酸酯的Isopar E溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为252nm。
将得到的复合膜N2在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里浸泡6个月,然后测试复合纳滤膜的水通量和截盐率,结果如表1所示。
实施例3
将上述聚砜支撑层上表面接触含有2.5重量%的2-甲基氨基硫脲和2.5重量%多乙烯多胺的水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.5重量%的甲苯-2,6-二异氰酸酯的Isopar E溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为275nm。
将得到的复合膜N3在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
实施例4
将上述聚砜支撑层上表面接触含有0.1重量%的三聚氰胺和0.1重量%4-甲基氨基硫脲的水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.25重量%的1,4-苯二异氰酸酯的Isopar E溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为170nm。
将得到的复合膜N4在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
实施例5
按照实施例1制备复合膜的方法进行,所不同之处在于,用N-甲基硫脲替代硫脲,得到复合膜N5。
将得到的复合膜N5在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
实施例6
按照实施例1制备复合膜的方法进行,所不同之处在于,用4-苯基-3-氨基硫脲替代硫脲,得到复合膜N6。
将得到的复合膜N6在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
实施例7
按照实施例1制备复合膜的方法进行,所不同之处在于,用1-苯基氨基硫脲替代硫脲,得到复合膜N7。
将得到的复合膜N7在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
实施例8
按照实施例1制备复合膜的方法进行,所不同之处在于,硫脲和聚乙烯亚胺的浓度均为2.5重量%,4,4’-亚甲基双(异氰酸苯酯)的浓度为0.1重量%,反应后将得到的复合膜N8在水中浸泡24h后,得到复合膜。扫描电镜测得分离层的厚度为290nm。
在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
对比例1
将上述聚砜支撑层上表面接触含有0.75重量%聚乙烯亚胺的水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.05重量%的4,4’-亚甲基双(异氰酸苯酯)的Isopar E溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为215nm。
将得到的复合膜D1在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
对比例2
将上述聚砜支撑层上表面接触含有2.2重量%的1,3,5-三氨基苯的水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.2重量%的间苯二甲基二异氰酸酯的Isopar E溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为243nm。
将得到的复合膜D2在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
对比例3
将上述聚砜支撑层上表面接触含有5.0重量%多乙烯多胺的水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.5重量%的甲苯-2,6-二异氰酸酯的IsoparE溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为289nm。
将得到的复合膜D3在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里6个月后,测试复合纳滤膜的水通量和截盐率,结果如表1所示。
对比例4
将上述聚砜支撑层上表面接触含有0.75重量%的硫脲水溶液,25℃下接触60s后排液;然后,将支撑层上表面再接触含有0.05重量%的4,4’-亚甲基双(异氰酸苯酯)的Isopar E溶液,25℃下接触60s后排液;然后,将膜放进烘箱中,在70℃下加热3min,得到复合膜。扫描电镜测得分离层的厚度为300nm。
将得到的复合膜D4在水中浸泡24h后,在压力为2.0MPa、温度为25℃条件下测定水通量和对MgSO4的脱盐率,结果如表1所示。将膜片分别浸泡在20质量%HCl以及20质量%NaOH的水溶液里浸泡6个月,然后测试复合纳滤膜的水通量和截盐率,结果如表1所示。
表1的结果表明,在界面聚合过程中的水相中引入硫脲及其衍生物,可以提高纳滤膜的截盐率和耐酸性和碱性。这是由于,在分离层中引入了电负性的硫元素,可以与未反应氨基上的氢形成氢键,使分离层分子结构更加紧密,并提高了分离层在酸/碱溶液中的稳定性。
表1
Figure BDA0002755447080000141

Claims (14)

1.一种具有耐酸性和碱性的复合膜,包括底层、中间的多孔支撑层和表层的分离层,所述分离层为聚硫脲分离层;所述分离层通过将包含硫脲及其衍生物、多元胺的水相与包含多元异氰酸酯的有机相进行界面聚合得到,所述硫脲及其衍生物为硫脲、氨基硫脲、2-甲基氨基硫脲、4-甲基氨基硫脲、N-甲基硫脲、乙基硫脲、亚乙基硫脲、正丙基硫脲、异丙基硫脲、烯丙基硫脲、正丁基硫脲、4-苯基-3-氨基硫脲、1-苯基氨基硫脲、4-2,4-二甲基苯基-3-氨基硫脲、2-氯苯基硫脲、1-(2-氟苯基)-2-硫脲、3,5-二氯苯基硫脲、荧光素-5-氨基硫脲、(2,4-二氟苯基)硫脲、5-丙基-2-硫脲嘧啶、2,5-二氯苯基硫脲、1,3-二异丙基-2-硫脲、3,5-二氯苯基硫脲、2,4-二氯苯基硫脲、4-氯苯硫脲、3,4-二氯苯基硫脲、N,N’-二甲基硫脲、N-(4-羧苯基)硫脲、3-吡啶基硫脲、N,N’-二乙基硫脲、3-氯苯硫脲、4-溴苯硫脲中的至少一种,所述多元胺为间苯二胺、对苯二胺、邻苯二胺、1,3,5-三氨基苯、三聚氰胺、哌嗪、乙二胺、1,2-丙二胺、1,4-丁二胺、二乙烯三胺、四乙烯五胺、多乙烯多胺、聚乙烯亚胺、聚醚胺中的至少一种,所述多元异氰酸酯为间苯二甲基二异氰酸酯、异佛尔酮二异氰酸酯、1,6-己二异氰酸酯、甲苯-2,6-二异氰酸酯、1,4-苯二异氰酸酯、甲苯-2,4-二异氰酸酯、4,4’-亚甲基双(异氰酸苯酯)、1,3-苯二异氰酸酯、3,3’-二氯-4,4’-二异氰酸酯联苯、二环己基甲烷-4,4’-二异氰酸酯、三甲基六亚甲基二异氰酸酯、L-赖氨酸-乙基酯-二异氰酸酯、1,4-环己基二异氰酸酯、4-氯-6-甲基间苯二异氰酸酯中的至少一种。
2.根据权利要求1所述的复合膜,其特征在于:
所述多孔支撑层的材料为聚醚砜、聚砜、聚芳香醚、聚苯并咪唑、聚醚酮、聚醚醚酮、聚丙烯腈、聚偏氟乙烯、聚芳醚酮中的至少一种。
3.根据权利要求1~2之任一项所述的复合膜,其特征在于:
所述底层的厚度为30~150μm;所述多孔支撑层的厚度为10~100μm;所述分离层的厚度为10~500nm。
4.根据权利要求3所述的复合膜,其特征在于:
所述底层的厚度为50~120μm;所述多孔支撑层的厚度为30~60μm;所述分离层的厚度为50~300nm。
5.一种根据权利要求1~4之任一项所述的具有耐酸性和碱性的复合膜的制备方法,包括以下步骤:
(1)在所述底层的一个表面上制备多孔支撑层;
(2)在所述多孔支撑层的另一个表面上通过将包含硫脲及其衍生物、多元胺的水相和包含多元异氰酸酯的有机相进行界面聚合得到分离层。
6.根据权利要求5所述的复合膜的制备方法,其特征在于:
步骤(2)中,先将所述多孔支撑层的另一个表面与含有硫脲及其衍生物和多元胺的水相接触,排液后再与含有多元异氰酸酯的有机相接触,热处理。
7.根据权利要求6所述的复合膜的制备方法,其特征在于:
所述水相中,硫脲及其衍生物的浓度为0.05~5wt%;多元胺的浓度为0.05~5wt%;和/或,
所述有机相中,多元异氰酸酯的浓度为0.025~1wt%。
8.根据权利要求7所述的复合膜的制备方法,其特征在于:
所述水相中,硫脲及其衍生物的浓度为0.1~2.5wt%;多元胺的浓度为0.1~2.5wt%;和/或,
所述有机相中,多元异氰酸酯的浓度为0.05~0.5wt%。
9.根据权利要求7所述的复合膜的制备方法,其特征在于:
所述硫脲及其衍生物和多元胺与所述多元异氰酸酯的质量浓度比为(0.1~50):1。
10.根据权利要求9所述的复合膜的制备方法,其特征在于:
所述硫脲及其衍生物和多元胺与所述多元异氰酸酯的质量浓度比为(0.5~20):1。
11.根据权利要求6所述的复合膜的制备方法,其特征在于:
所述多孔支撑层与含有硫脲及其衍生物和多元胺的水相接触的时间为5~100s;和/或,
所述多孔支撑层与含有多元异氰酸酯的有机相接触的时间为10~200s;和/或,
所热处理温度为40~150℃;热处理时间为0.5~20分钟。
12.根据权利要求11所述的复合膜的制备方法,其特征在于:
所述多孔支撑层与含有硫脲及其衍生物和多元胺的水相接触的时间为10~60s;和/或,
所述多孔支撑层与含有多元异氰酸酯的有机相接触的时间为20~120s;和/或,
所热处理温度为50~120℃;热处理时间为1~10分钟。
13.根据权利要求5~12之任一项所述制备方法得到的复合膜。
14.权利要求1~4之任一项所述的复合膜或权利要求13所述复合膜在水处理领域中的应用。
CN202011201688.1A 2020-11-02 2020-11-02 一种具有耐酸性和碱性的复合膜及其制备方法与应用 Active CN114432901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011201688.1A CN114432901B (zh) 2020-11-02 2020-11-02 一种具有耐酸性和碱性的复合膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011201688.1A CN114432901B (zh) 2020-11-02 2020-11-02 一种具有耐酸性和碱性的复合膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114432901A CN114432901A (zh) 2022-05-06
CN114432901B true CN114432901B (zh) 2023-04-11

Family

ID=81357302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011201688.1A Active CN114432901B (zh) 2020-11-02 2020-11-02 一种具有耐酸性和碱性的复合膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114432901B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116535635B (zh) * 2023-07-05 2023-09-01 四川省工业环境监测研究院 一种席夫碱及其制备方法、油气井用缓蚀剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229053A (zh) * 2020-02-17 2020-06-05 中国科学院苏州纳米技术与纳米仿生研究所 一种高通量纳滤膜、其制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727434B2 (en) * 2005-08-16 2010-06-01 General Electric Company Membranes and methods of treating membranes
JP5131028B2 (ja) * 2007-05-30 2013-01-30 東レ株式会社 複合半透膜の製造方法
CN102348492B (zh) * 2009-01-13 2015-11-25 Ams技术Int(2012)有限公司 溶剂和酸稳定膜、其制造方法和其尤其用于将金属离子与液体加工流分离的用途
GB201216964D0 (en) * 2012-09-24 2012-11-07 Univ Leuven Kath Improved method for synthesis of polyamide composite membranes
CN103933878A (zh) * 2014-04-25 2014-07-23 浙江理工大学 一种高通量复合反渗透膜
EP3180112B1 (de) * 2014-08-13 2018-10-24 Fraunhofer Gesellschaft zur Förderung der Angewand Verfahren zur herstellung von antifouling-beschichtungen von dünnschichtkompositmembranen für die umkehrosmose und die nanofiltration, derartige dünnschichtkompositmembranen und deren verwendung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229053A (zh) * 2020-02-17 2020-06-05 中国科学院苏州纳米技术与纳米仿生研究所 一种高通量纳滤膜、其制备方法及应用

Also Published As

Publication number Publication date
CN114432901A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN113509840B (zh) 一种复合纳滤膜及其制备方法与应用
US4950404A (en) High flux semipermeable membranes
US5616249A (en) Nanofiltration apparatus and processes
EP2318126B1 (en) Water purification membranes with improved fouling resistance
KR100781625B1 (ko) 내오염성 및 내구성이 우수한 폴리아마이드 역삼투분리막의제조방법 및 그로부터 제조된 역삼투분리막
US4661254A (en) Chlorine-resistant semipermeable membranes
Wei et al. Negatively charged polyimide nanofiltration membranes with high selectivity and performance stability by optimization of synergistic imidization
KR101335949B1 (ko) 폴리아미드계 나노분리막 및 그의 제조방법
JP6534607B2 (ja) 逆浸透膜又はナノフィルトレーション膜及びそれらの製造方法
WO2021134060A1 (en) High-flux water permeable membranes
CN113509839B (zh) 一种具有耐酸/碱性的复合纳滤膜及其制备方法和应用
Higuchi et al. Surface‐modified polysulfone hollow fibers. II. Fibers having CH2CH2CH2SO3− segments and immersed in HCI solution
CN114146566B (zh) 高性能聚烯烃基底反渗透膜的制备方法、反渗透膜及应用
EP0421676B1 (en) Interfacially polymerized membranes, and reverse osmosis separation of organic solvent solutions using them
JPH03114518A (ja) 限外濾過または微細濾過に使用するための親水性膜およびその製造法
CN114432901B (zh) 一种具有耐酸性和碱性的复合膜及其制备方法与应用
Rahimpour Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: Ultrafiltration and nanofiltration performance
US10960359B2 (en) Method of making reaction induced phase separation membranes and uses thereof
Wei et al. One-step fabrication of recyclable polyimide nanofiltration membranes with high selectivity and performance stability by a phase inversion-based process
WO2023222117A1 (zh) 分离膜及其制备方法和应用
CN113634136A (zh) 一种纳滤膜及其制备方法与应用
JP2018012072A (ja) 正浸透膜およびその製造方法
CN107970779B (zh) 一种反渗透膜及其制备方法和应用
CN110917903A (zh) 一种反渗透膜及制备方法
CN114432903B (zh) 一种具有耐酸性的复合膜及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant