CN114432496A - 一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法 - Google Patents

一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法 Download PDF

Info

Publication number
CN114432496A
CN114432496A CN202210088763.0A CN202210088763A CN114432496A CN 114432496 A CN114432496 A CN 114432496A CN 202210088763 A CN202210088763 A CN 202210088763A CN 114432496 A CN114432496 A CN 114432496A
Authority
CN
China
Prior art keywords
network
double
hydrogel
gelatin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210088763.0A
Other languages
English (en)
Inventor
王华楠
刘运鹏
陈楷文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210088763.0A priority Critical patent/CN114432496A/zh
Publication of CN114432496A publication Critical patent/CN114432496A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Biomedical Technology (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明属于材料科学领域、纳米材料领域、生物医学工程领域,具体是一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法。水凝胶材料由天然有机高分子纳米颗粒组装而成形成水凝胶网络;有机纳米颗粒的尺寸10nm~20um;占水凝胶总质量的2~80wt%,分散性良好,该方法利用有机纳米颗粒之间的静电组装,氢键作用疏水作用等非共价作用力进行自组装,形成凝胶网络,经增材制造得到凝胶支架,兼具优异的打印性能和较高力学强度。水凝胶网络具有微观小孔,孔隙尺寸为0.1~100μm,还可以进一步通过聚乙烯醇网络共价交联形成高强度水凝胶来实现为了机械性能与与目标组织适配。可作为骨修复支架,软骨修复支架,药物缓释载体应用于生物医学领域。

Description

一种天然高分子有机纳米复合的可注射可二次力学增强的双 网络水凝胶的制备方法
技术领域
本发明属于材料科学领域、纳米材料领域、生物医学工程领域,具体是一种天然高分子有机纳米复合的颗粒组装的水凝胶材料及其在组织工程中的应用,公开了一种由非共价键和共价键双重交联的、可注射、可塑形、可打印的双网络水凝胶材料及其制备方法和应用
背景技术
随着我国经济水平的飞速发展以及人口的老龄化的加剧,人们对健康以及医疗的需求日益加强,然而许多外伤造成的创伤是不可逆的,对这种组织来说创伤会在数年内都一直保留下来,进一步退化并最终引发疾病,如骨关节炎,导致关节功能受损,生活质量下降。目前的治疗策略包括自体或异体器官移植植入,这些方法大大改善了缺陷修复的结果,然而有一定的缺陷,可能会导致免疫排斥反应以及引发伦理问题,以及配型供不应求,无法作为长期的临床解决方案面向广大群体普遍应用。因此,迫切需要有潜力的的替代治疗方法。
通过三维(3D)打印模拟复合组织结构的挤出式增材制造因其快速原型设计和创建复杂配方而在组织工程中越来越受欢迎。能够制造患者特定的解剖结构,以满足个性化再生医学的需求。生物墨水需要满足的几个基本标准包括适当的粘度,用于控制在生物打印过程中创建独立结构的灵活性,以及生物打印后保持建筑完整性。此外,剪切变稀用于在低喷嘴压力下挤出生物墨水,以保护细胞免受物理压力源的影响,适配新组织生成的生物降解性,仿生特性以及其结构和机械稳定性是同样重要的标准。为解决传统的胶体凝胶力学强度差的问题,双网络水凝胶的设计策略提供了新的手段。双网络水凝胶是一类具有高机械强度和韧性的水凝胶材料。其通过将两种可独立形成水凝胶网络的高分子复合在同一水凝胶中实现优异的机械性能。目前报道的双网络水凝胶往往基于高分子组成,不具有可注射的性能,颗粒水凝胶是一种基于“自下而上”设计理念,以微、纳米颗粒为基本单元,形成具有精细微观结构和稳定宏观结构的新型水凝胶材料。以天然高分子有机微纳米颗粒为基本结构单元,通过自下而上的组装策略,控制基本结构单元之间的相互作用如:磁力、疏水相互作用、静电力、空间位阻等诱导其自组装形成的支架。由于物理“交联”的胶体颗粒间作用的可逆性保障双网络水凝胶力学强度增强的同时具有优异的剪切变稀自修复性能满足3D打印的需求。
发明内容
本发明开发了一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法。本发明以聚乙烯醇和有机高分子明胶纳米颗粒为基本机构单元构建了双网络水凝胶,明胶颗粒具有优异的生物相容性以及RGD多肽序列为细胞提供黏附位点,并且可以组装形成胶体凝胶网络。由于明胶颗粒表面具有带有正电荷的氨基和负电荷的羧基和羟基,有明显的非共价相互作用形成第二重网络,聚乙烯醇是一种极安全的高分子有机物,对人体无毒,无副作用,具有良好的生物相容性,尤其在医疗中的如其水性凝胶在眼科、伤口敷料和人工关节方面的有广泛应用,保证了有机纳米复合凝胶在生物医学领域应用的可行性。通过氢键相互作用,使有机纳米复合凝胶更加稳定。通过二次交联的方法,有机纳米复合凝胶在未进行二重交联时具有剪切变稀、自修复的优异力学性能,可以用于可注射填充材料用于微创手术以及3D生物打印墨水用于生物制造。然后,通过控制聚合交联网络后,得到的有机纳米复合凝胶具有稳定和优异的力学强度的。进一步通载细胞生物打印3D生物打印,我们证实了通过3D生物制造将胶体凝胶加工成具有精细结构的三维细胞支架。
有益效果
本发明通过一种新型的有机纳米复合水凝胶的概念,将明胶有机纳米颗粒引入传统的聚合物网络,构建了一种区别去传统复合水凝胶材料的有机纳米复合材料,基于明胶纳米颗粒之间丰富的静电相互作用,氢键作用等可逆的非共价相互作用,赋予了这种复合凝胶材料优异的剪切变稀自修复特性,反映到材料来说就是良好的的精细的的一种可塑型性,同时可进行二次交联二次力学增强,用以匹配不同组织部位组织工程的需求,本发明精细的探究了聚乙烯醇与明胶纳米颗粒共混时,通过共聚焦显微镜观察了颗粒与聚合物之间的排空力诱导胶体网络的形成过程以及最终胶体凝胶网络结构。这种有机纳米复合凝胶材料提高了传统的生物打印墨水的力学性能,实现了高强度生物打印墨水的开发。制备简单,极大的扩宽了可注射材料和3D打印支架的应用领域。
本专利所述的双网络水凝胶具有良好的生物相容性和生物降解性,可作为细胞二维培养或三维培养的基质,实现对细胞三维环境的构建,并支持细胞的生长繁殖等功能,可作为载细胞的三维可注射凝胶支架和3D打印支架用于组织工程和再生医学的应用。
附图说明
图1是高分子网络未形成时,水凝胶粘度随剪切速率变化趋势,表明水凝胶具有剪切变稀的力学性能,且光学图像表明水凝胶的可注射性能。
图2是高分子网络未形成时,水凝胶模量经受剪切应变后恢复曲线,表明水凝胶具有自修复的力学性能,且光学图像表明水凝胶的自修复性能;
图3是实施例2中双网络水凝胶,聚乙烯醇高分子网络聚合过程,双网络水凝胶模量的变化
图4是实施例2和对比例2双网络水凝胶和明胶胶体凝胶微观结构的扫描电镜图;
图5是实施例3中明胶颗粒组装成网络结构的共聚焦显微镜图片;
图6是实施例10中双网络水凝胶作为载小鼠间充质干细胞支架细胞培养实验结果;
具体实施方式
以下结合具体实施例对本发明作进一步说明,但不以任何方式限制本发明。
实施例1
1.明胶颗粒的制备:5gA型明胶溶解在100mL去离子水溶液中,并保持加热到 40℃,得到澄清透明的明胶水溶液,滴加盐酸将溶液pH值调节至2.5,分别将240,350mL的丙酮溶液滴加至上述明胶水溶液中并保持加热40℃和持续搅拌(1000rpm),滴加总时间为20min,向上述纳米颗粒悬液中加入74μL 的交联剂戊二醛(25wt%水溶液),交联时间12hrs,待反应结束后,向混合物中加入100mM浓度的甘氨酸,终止未反应完全的戊二醛的端基。将纳米颗粒悬浮液反复离心和在去离子水中重悬。将悬浊液在-60℃下冷冻干燥,得到明胶纳米颗粒干粉。通过纳米粒度仪测试明胶颗粒的颗粒尺寸和表面电荷。 (表1)
2.光交联基团改性明胶纳米颗粒的制备:在50℃下将5g明胶A型粉末溶于 100mL去离子水中得到明胶溶液。分别加入0.0625,0.125,0.25,0.5,2g的甲基丙烯酸酐于高温下反应两小时,甲基丙烯酸酐与蛋白质分子链上游离的氨基发生亲核取代反应,同时产生等摩尔的甲基丙烯酸。用盐酸调节pH至7,并加入原溶液2倍体积的丙酮,破坏蛋白质分子表面的水化层,甲基丙烯酸酯明胶(GelMA)沉淀析出,使用去离子水反复清洗后,进行冷冻干燥,得到冻干的甲基丙烯酸酯明胶样品。通过核磁共振氢谱测试明胶表面的氨基的接枝度;根据相应基团谱图变化计算出的接枝度如表1所示;
表1
Figure BDA0003488238070000041
3.将5g上述不同接枝度的改性明胶重新溶于40℃100mL的去离子水中,并调节pH至2.5,在30min内加入300mL丙酮,并快速搅拌,使蛋白质分子缓慢脱水卷曲形成纳米级球体。随后加入165μL交联剂戊二醛,搅拌12hrs。用氢氧化钠将颗粒悬浮液pH调节至7后,得到改性明胶纳米颗粒,其尺寸和表面电荷如表2所示。将纳米颗粒悬浮液反复离心和在去离子水中重悬。将悬浊液在-60℃下冷冻干燥,得到明胶纳米颗粒干粉。
表2
改性明胶颗粒
颗粒尺寸 416nm
表面电荷 11.9mV
实施例2
1.改性明胶纳米颗粒颗粒的制备:使用实施例1方案1中制备的改性明胶纳米颗粒
2.使用分子量为6kDa的聚乙烯醇(购买自中国西格玛-奥德里奇化学试剂公司)将0.1g的6kDa的聚乙烯醇和0.005g的2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮光引发剂溶解在1mL水性溶液中与0.2g明胶颗粒通过鲁尔转接头注射器反复吹打10次,得到预聚合胶体凝胶,其可注射和自修复性能如图1,2 所示,表1明预聚合胶体凝胶具有优异的可注射性和自修复性能;
表1
Figure BDA0003488238070000051
3.上述预聚合胶体凝胶在365nm,50mw/cm2紫外光下交联30s,得到双网络水凝胶,成胶过程中凝胶强度通过流变仪监控如图3所示,随着第二重聚合物网络的交联,水凝胶的储能模量和损耗模量显著增加。形成的双网络水凝胶的微观结构如图4所示,可以观察到多空聚合物网络的内部分布着相互堆积的明胶颗粒;
4.上述二次交联后双网络水凝胶的储能模量和损耗模量(表2)使用旋转流变仪的时间扫描模式得到,其中频率为1Hz,应变为0.5%。压缩力学应变和断裂强度通过力学测试机获得,其中压缩速率为0.0211/s。
表2
Figure BDA0003488238070000052
实施例3
1.明胶颗粒的制备:使用实施例1方案二制备的明胶纳米颗粒;
2.聚乙烯醇聚合基团的接枝:使用分子量为6kDa的聚乙烯醇二丙烯酸酯(购买自中国西格玛-奥德里奇化学试剂公司)
3.将0.05g得到的6kDa的聚乙烯醇二丙烯酸酯和0.005g的2-羟基-4′-(2- 羟乙氧基)-2-甲基苯丙酮光引发剂溶解在1mL水性溶液中与0.2g明胶颗粒通过鲁尔转接头注射器反复吹打10次,得到可注射,自修复预聚合胶体凝胶;
Figure BDA0003488238070000061
4.上述预聚合胶体凝胶在365nm,50mw/cm2紫外光下交联30s,得到双网络水凝胶
5.上述双网络水凝胶的储能模量和损耗模量(表4)使用旋转流变仪的时间扫描模式得到,其中频率为1Hz,应变为0.5%。压缩力学应变和断裂强度通过力学测试机获得,其中压缩速率为0.0211/s。
Figure BDA0003488238070000062
实施例4
1.明胶颗粒的制备:使用实施例1方案1制备的明胶纳米颗粒
2.聚乙二醇聚合基团的接枝使用分子量为20kDa的叠氮端基修饰聚乙二醇和炔烃修饰聚乙二醇(购买自中国厦门赛诺邦格生物科技有限公司);
3.将0.05g20kDa的叠氮端基修饰聚乙二醇和0.05g20kDa炔烃修饰聚乙二醇以相同质量比在水性溶液混合均匀,再与0.2g明胶颗粒通过鲁尔转接头注射器反复吹打10次,室温等待1hrs,形成双网络水凝胶;
Figure BDA0003488238070000071
4.上述预聚合胶体凝胶在365nm,50mw/cm2紫外光下交联30s,得到双网络水凝胶;
5.上述双网络水凝胶的储能模量和损耗模量(表4)使用旋转流变仪的时间扫描模式得到,其中频率为1Hz,应变为0.5%。压缩力学应变和断裂强度通过力学测试机获得,其中压缩速率为0.0211/s。
Figure BDA0003488238070000072
实施例5
1.点击化学明胶高分子制备:在50℃下将5g明胶A型粉末溶于100mL去离子水中得到明胶溶液。将上述溶液加入反应催化剂0.01g的EDC/NHS,同时加入0.1g的叠氮亚胺或丙炔胺反应2hrs,叠氮亚胺和丙炔胺与明胶链上游离的羧基发生亲核取代反应,分别得到叠氮基团封端的明胶和炔烃封端的明胶;
2.改性明胶纳米颗粒制备:用盐酸调节pH至7,并加入原溶液2倍体积的丙酮,破坏明胶分子表面的水化层,叠氮基团封端的明胶和炔烃封端的明胶作为沉淀析出,将叠氮基团封端的明胶和炔烃封端的明胶的沉淀分别重新溶于 40℃100mL的去离子水中,并调节pH至2.5,在30min内加入300mL丙酮,并快速搅拌,使蛋白质分子缓慢脱水卷曲形成纳米级球体。随后加入165μL 交联剂戊二醛,搅拌12hrs。用氢氧化钠将颗粒悬浮液pH调节至7后,进行冷冻干燥,得叠氮化明胶颗粒粉末,炔烃化明胶颗粒粉末;
3.使用分子量为6kDa的聚乙烯醇(购买自中国西格玛-奥德里奇化学试剂公司)将0.1g的6kDa的聚乙烯醇和0.005g的2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮光引发剂溶解在1mL水性溶液中与0.2g明胶颗粒通过鲁尔转接头注射器反复吹打10次,得到预聚合胶体凝胶,其可注射和自修复性能如图1,2 所示,表明预聚合胶体凝胶具有优异的可注射性和自修复性能;
Figure BDA0003488238070000081
4.上述预聚合胶体凝胶在365nm,50mw/cm2紫外光下交联30s,得到双网络水凝胶;
5.上述双网络水凝胶的储能模量和损耗模量(表4)使用旋转流变仪的时间扫描模式得到,其中频率为1Hz,应变为0.5%。压缩力学应变和断裂强度通过力学测试机获得,其中压缩速率为0.0211/s。
Figure BDA0003488238070000091
实施例6
1.明胶颗粒的制备使用实施例1方案1制备的明胶纳米颗粒;
2.聚合基团的接枝使用分子量为6kDa的聚乙烯醇二丙烯酸酯(购买自中国西格玛-奥德里奇化学试剂公司)
3.将0.1g的0.6,20kDa的聚乙烯醇二丙烯酸酯和0.005g过硫酸铵,0.004g 四甲基亚胺溶解在1mL水性溶液中并与0.2g明胶颗粒通过鲁尔转接头注射器反复吹打10次,室温等待1hrs,过硫酸铵和四甲基亚胺诱导烯烃的自由基聚合使得聚乙烯醇网络的交联得到双网络水凝胶;
4.上述双网络水凝胶的储能模量和损耗模量(表11)使用旋转流变仪的时间扫描模式得到,其中频率为1Hz,应变为0.5%。压缩力学应变和断裂强度通过力学测试机获得,其中压缩速率为0.0211/s。
Figure BDA0003488238070000092
实施例7
权利要求中共同混合的方式
1.将5g上述不同接枝度的实例1中的改性明胶,重新溶于40℃100mL的去离子水中,并调节pH至2.5,在30min内加入300mL丙酮,并快速搅拌,使蛋白质分子缓慢脱水卷曲形成纳米级球体。随后加入165μL交联剂戊二醛,搅拌12hrs。用氢氧化钠将颗粒悬浮液pH调节至7后,进行冷冻干燥,得到改性明胶纳米颗粒粉末,称量不同质量分数的颗粒粉末,分别加入分子量为 6kDa的聚乙烯醇(购买自中国西格玛-奥德里奇化学试剂公司),将0.2改性明胶纳米颗粒/聚乙烯醇和0.005g的2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮光引发剂溶解在1mL水性溶液中通过鲁尔转接头注射器反复吹打10次,得到可注射,自修复预聚合胶体凝胶,上述预聚合胶体凝胶在365nm, 50mw/cm2紫外光下交联30s,得到双网络水凝胶,双网络水凝胶的储能模量和损耗模量(表2)使用旋转流变仪的时间扫描模式得到,其中频率为1Hz,应变为0.5%。压缩力学应变和断裂强度通过力学测试机获得,其中压缩速率为0.0211/s;
2. 5gA型明胶溶解在100mL去离子水溶液中,并保持加热到40℃,得到澄清透明的明胶水溶液,滴加盐酸将溶液pH值调节至2.5,分别将240mL的丙酮溶液滴加至上述明胶水溶液中并保持加热40℃和持续搅拌(1000rpm),滴加总时间为20min,向上述纳米颗粒悬液中加入74μL的交联剂戊二醛(25wt%水溶液),交联时间12hrs,待反应结束后,向混合物中加入100mM浓度的甘氨酸,终止未反应完全的戊二醛的端基。将纳米颗粒悬浮液反复离心和在去离子水中重悬。将50mL的20mg/mL的明胶纳米颗粒悬浊液中分别加入分子量为0.6kDa和20kDa的聚乙二醇二丙烯酸酯(购买自中国西格玛-奥德里奇化学试剂公司)1g,搅拌24h后,在-60℃下冷冻干燥,得到明胶纳米颗粒/ 聚乙二醇二丙烯酸酯混合干粉。将0.2明胶纳米颗粒/聚乙二醇二丙烯酸酯混合干粉和0.005g的2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮光引发剂溶解在1mL水性溶液中通过鲁尔转接头注射器反复吹打10次,得到可注射,自修复预聚合胶体凝胶,上述预聚合胶体凝胶在365nm,50mw/cm2紫外光下交联30s,得到双网络水凝胶,双网络水凝胶的储能模量和损耗模量(表2) 使用旋转流变仪的时间扫描模式得到,其中频率为1Hz,应变为0.5%。压缩力学应变和断裂强度通过力学测试机获得,其中压缩速率为0.0211/s
实施例8
压缩回复过程
用实施例1-6中制备的聚乙烯醇基分子量为6kDa双网络水凝胶,通过在三维打印模具中成型得到圆柱形支架(直径12mm,高8mm)。使用万能力学测试机将双网络水凝胶压缩至自身的0.8倍形变时,快速抬起压缩探头(10mm/s)。,双网络水凝胶能快速跟随探头回复,并且结构完整,表明双网络水凝胶具有高弹性。
实施例9
拉伸性能
用实施例1-6中制备的聚乙烯醇基分子量为6kDa双网络水凝胶,通过三维打印模具中成胶得到标准单轴拉伸测试样条(根据ISO527-2标准的5B型设计)。并使用配备有50N测力传感器的万能试验机以50mm/min的变形速度对水凝胶进行拉伸试验,可以看到双网络拉伸形变至自身2.5倍,结构保持完整。
实施例10
3D打印支架性能
用实施例1-6中制备的聚乙烯醇基分子量为6kDa双网络水凝胶通过鲁尔转接头注射器反复吹打10次,使用3D生物打印机将水凝胶打印成特定结构。并在365nm, 50mw/cm2紫外光下交联30s,得到双网络水凝胶支架(长,宽:15mm,高:2mm)。如图6所示,6kDa聚乙二醇基高分子与明胶颗粒复合的双网络水凝胶展示了高弹性模量,打印支架可完整承受2kg的砝码;实施例1-6中制备的聚乙烯醇基分子量为6kDa双网络水凝胶用1mL含有间充质干细胞的高糖培养基溶液中(500000 个/cm2接种)代替水性溶液,使用3D生物打印机将水凝胶打印成特定结构。并在365nm,50mw/cm2紫外光下交联30s,得到载细胞双网络水凝胶支架。双网络水凝胶支架在培养基中培养第7,21天,使用2mM钙黄绿素(绿色荧光标记活细胞)和4mM乙锭同型二聚体(红色荧光标记死细胞)对支架进行死活染色,并使用激光共聚焦显微镜观察细胞增殖情况。,第21天小鼠间充质干细胞的数量明显高于第七天在双网络水凝胶支架中的数量,表明细胞在双网络支架增殖,证实双网络水凝胶具有良好的生物相容性。

Claims (8)

1.一种基于明胶的高强度纳米复合水凝胶的制备,其特征在于,所述制备方法为下述两种方法中的一种
a)方法一构成第一重网络是通过将天然有机高分子纳米颗粒进行光交联基团的改性,通过共混,加入引发剂后与聚合物单体混合均匀得到预聚合胶体凝胶,通过单体聚合反应固化进行光固化的引发,从而将构成第一重网络,将有机纳米颗粒构成的第二重网络包封在第一重网络中,即得到所述双网络有机纳米复合凝胶;
b)方法二将构成第一重网络的聚合物单体与光引发剂共同溶解在水性溶液中与构成第二重网络的天然高分子有机纳米颗粒共混,混合均匀得到预聚合胶体,第一重网络单体聚合反应固化从而将构成第二重网络的有机纳米颗粒包封在第一重网络中,即得到所述双网络有机纳米复合凝胶;
c)其中,所述构成第一重网络的聚合物单体是将原始羟基进行修饰改性的有引发聚合反应的基团的聚乙烯醇基高分子,浓度为0.02-1g/mL;聚乙烯醇基高分子为直链的或多支化的聚乙烯醇基高分子中的一种或几种的组合,所述聚乙烯醇的分子量为0.1kDa-100kDa;
d)所述构成第二重网络的胶体网络明胶颗粒尺寸为50nm~500μm;明胶颗粒表面电荷为-40~20mV;所述构成第二重网络的胶体网络明胶颗粒的体积分数为φ=0.5~1;方法一中明胶颗粒中明胶高分子链上共价交联基团的取代度为5~80%,明胶颗粒和聚乙二醇混合时的质量比例为0.1~10:1。
2.一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法,其特征在于,所述方法一对明胶颗粒进行改性,明胶溶液中分别加入可与明胶表面羧基或者氨基发生酰胺化反应的化合物,通过叠氮化物/炔烃,巯基/双键、硫醇/烯烃或双烯/单烯键等的组合引入可光交联的双键;方法二中所述构成第一重网络的聚乙烯醇基高分子的端基修饰的引发聚合反应的基团选自丙烯酸酯、甲基丙烯酸缩水甘油酯、烯丙基异氰酸酯、氨基/醛基、叠氮化物/炔烃、巯基/双键、双烯/单烯中的一种或几种的组合。
3.根据权利要求1所述的一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法,其特征在于,所述聚合反应为自由基聚合反应时,为紫外光诱导聚合反应或化学引发剂诱导聚合反应。
4.根据权利要求3所述的一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法,其特征在于,所述紫外光诱导聚合反应固化的引发剂选自2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮、2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮、2,4,6-三甲基苯甲酰基-二苯基氧化膦、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、2-二甲氨基-2-苄基-1-[4-(4-吗啉基)苯基]-1-丁酮、2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮、苯甲酰甲酸甲酯中的一种或几种的组合,浓度为0.0025-0.05g/mL。所述紫外光诱导聚合反应的条件为:波长为200-400nm,紫外光强度为10-500mW/cm2,时间为1-200s。化学引发剂诱导聚合反应固化的引发剂选自氧化二苯甲酰、叔丁基过氧化氢、过硫酸铵/四甲基亚胺中的一种或多种,浓度为0.0001-0.02g/mL。
5.一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶,其特征在于,所述双网络水凝胶由权利要求1-4中任意一项所述方法制备得到。
6.权利要求5所述的天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶可作为一种载活细胞打印的生物打印墨水应用;应用时,将通过有机纳米颗粒非共价键作用下形成的胶体颗粒与水性溶液共混得到体积分数0.5~1%的颗粒凝胶,再与细胞悬浮液混合得到体积分数为10~100%的载细胞颗粒凝胶,将上述墨水通过挤出或喷墨3D打印方式,获得具有3D结构的支架,打印之后再通过引发第一重网络的共价交联,得到高强度的载细胞打印支架。
7.权利要求5所述的天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶作为药物成分的载体或支架,应用于骨组织、软骨组织、肌肉、血管的创伤或缺损的修复填充;所述药物成分为维生素,氨基酸,矿物元素,微生态调节剂,生长因子,蛋白大分子药物、小分子药物或活细胞的一种或多种组合。
8.权利要求5所述的天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶作为丝素蛋白疏水药物缓释载体的应用,其特征在于,所述的疏水性药物为紫杉醇、多烯紫杉醇、姜黄素、利培酮、利福平、非洛地平、卡马西平、吲哚美辛、呋塞米、喜树碱、10-羟基喜树碱、9-硝基喜树碱、拓扑替康、伊立替康、9-氨基喜树碱、替尼泊苷、依托泊苷、环孢素-A、非诺贝特、西罗莫司、阿瑞吡坦、甲地孕酮、帕潘立酮、厄洛替尼、水飞蓟素、槲皮素、伊曲康唑、萘普生、地塞米松、地奥司明、淫羊藿素、冬凌草甲素、葛根素、奈韦拉平或齐拉西酮中的一种或多种组合。
CN202210088763.0A 2022-01-25 2022-01-25 一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法 Pending CN114432496A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210088763.0A CN114432496A (zh) 2022-01-25 2022-01-25 一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210088763.0A CN114432496A (zh) 2022-01-25 2022-01-25 一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法

Publications (1)

Publication Number Publication Date
CN114432496A true CN114432496A (zh) 2022-05-06

Family

ID=81369998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210088763.0A Pending CN114432496A (zh) 2022-01-25 2022-01-25 一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN114432496A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521484A (zh) * 2022-09-13 2022-12-27 大连理工大学 一种多酚、蛋白质复合颗粒组成的可注射胶体凝胶材料及其制备方法和应用
CN115998943A (zh) * 2022-12-20 2023-04-25 北京中医药大学 促进皮肤伤口愈合的水凝胶及其应用
CN116239799A (zh) * 2023-03-15 2023-06-09 昆明理工大学 一种双网络增韧水凝胶及其制备方法
CN116474158A (zh) * 2023-03-09 2023-07-25 天津大学 一种止血凝胶及其制备方法及其在动态止血中的应用
CN115998943B (zh) * 2022-12-20 2024-05-24 北京中医药大学 促进皮肤伤口愈合的水凝胶及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040105880A1 (en) * 2002-11-21 2004-06-03 Turner Josephine Sara Interpenetrating polymer network
CN104448161A (zh) * 2014-12-05 2015-03-25 四川大学 一种改性明胶纳米微球交联的有机复合水凝胶及其制备方法
CN110755678A (zh) * 2019-11-13 2020-02-07 中国矿业大学 一种基于绿色原位还原的3d打印抗菌水凝胶伤口敷料
CN111040205A (zh) * 2019-12-06 2020-04-21 大连理工大学 一种基于聚乙二醇/明胶颗粒的双网络水凝胶及其制备方法和应用
US20200129435A1 (en) * 2018-10-24 2020-04-30 Uvic Industry Partnerships Inc. Composition for delivering a therapeutic agent and methods for making and using

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040105880A1 (en) * 2002-11-21 2004-06-03 Turner Josephine Sara Interpenetrating polymer network
CN104448161A (zh) * 2014-12-05 2015-03-25 四川大学 一种改性明胶纳米微球交联的有机复合水凝胶及其制备方法
US20200129435A1 (en) * 2018-10-24 2020-04-30 Uvic Industry Partnerships Inc. Composition for delivering a therapeutic agent and methods for making and using
CN110755678A (zh) * 2019-11-13 2020-02-07 中国矿业大学 一种基于绿色原位还原的3d打印抗菌水凝胶伤口敷料
CN111040205A (zh) * 2019-12-06 2020-04-21 大连理工大学 一种基于聚乙二醇/明胶颗粒的双网络水凝胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIZE LI等: "A Logic-Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration", 《ADVANCED MATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521484A (zh) * 2022-09-13 2022-12-27 大连理工大学 一种多酚、蛋白质复合颗粒组成的可注射胶体凝胶材料及其制备方法和应用
CN115998943A (zh) * 2022-12-20 2023-04-25 北京中医药大学 促进皮肤伤口愈合的水凝胶及其应用
CN115998943B (zh) * 2022-12-20 2024-05-24 北京中医药大学 促进皮肤伤口愈合的水凝胶及其应用
CN116474158A (zh) * 2023-03-09 2023-07-25 天津大学 一种止血凝胶及其制备方法及其在动态止血中的应用
CN116474158B (zh) * 2023-03-09 2024-03-22 天津大学 一种止血凝胶及其制备方法及其在动态止血中的应用
CN116239799A (zh) * 2023-03-15 2023-06-09 昆明理工大学 一种双网络增韧水凝胶及其制备方法

Similar Documents

Publication Publication Date Title
Boyer et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering
WO2022160518A1 (zh) 一种两场耦合交联的、可注射、可塑形、可打印颗粒水凝胶材料及其制备方法和应用
CN107007881B (zh) 可用于药物加载和释放的可注射型自愈合凝胶及其制备方法和应用
CN114432496A (zh) 一种天然高分子有机纳米复合的可注射可二次力学增强的双网络水凝胶的制备方法
Yuan et al. Thermosensitive and photocrosslinkable hydroxypropyl chitin-based hydrogels for biomedical applications
Abdollahiyan et al. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today
CN111040205A (zh) 一种基于聚乙二醇/明胶颗粒的双网络水凝胶及其制备方法和应用
Tan et al. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications
Hasany et al. Synthesis, properties, and biomedical applications of alginate methacrylate (ALMA)-based hydrogels: Current advances and challenges
Aguero et al. Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review
CN113679888B (zh) 光固化成型复合水凝胶基质前驱体及其制备方法和带有其的支架
De Siqueira et al. Levan-based nanostructured systems: An overview
CN115521627A (zh) 一种结构蛋白/透明质酸复合微纳米颗粒及颗粒水凝胶材料和应用
CN112062981B (zh) 一种培养基介导交联的透明质酸基双交联水凝胶制备方法
Pekař Hydrogels with micellar hydrophobic (nano) domains
Zhang et al. “All-in-one” zwitterionic granular hydrogel bioink for stem cell spheroids production and 3D bioprinting
CN113559328B (zh) 一种生物墨水及其制备方法
TWI673103B (zh) 可注射型自組裝微球凝膠、其用途及可注射型自組裝微球凝膠的製備方法
Yang et al. Fabricated technology of biomedical micro-nano hydrogel
CN113150561B (zh) 一种用于3d生物打印的胶原基生物墨水及其制备方法与应用
Nair et al. Polysaccharide-based hydrogels for targeted drug delivery
CN114558164A (zh) 一种基于明胶颗粒的可注射、止血粘合水凝胶的制备方法及其应用
Zhao et al. Effect of altering photocrosslinking conditions on the physical properties of alginate gels and the survival of photoencapsulated cells
Wang et al. A review on chitosan-based biomaterial as carrier in tissue engineering and medical applications
Zheng et al. Supramolecular assemblies of multifunctional microgels for biomedical applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220506