CN114425317A - 一种催化剂载体和催化剂及其制备方法和应用 - Google Patents

一种催化剂载体和催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114425317A
CN114425317A CN202011027018.2A CN202011027018A CN114425317A CN 114425317 A CN114425317 A CN 114425317A CN 202011027018 A CN202011027018 A CN 202011027018A CN 114425317 A CN114425317 A CN 114425317A
Authority
CN
China
Prior art keywords
catalyst
gas
methane
catalyst carrier
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011027018.2A
Other languages
English (en)
Inventor
邵芸
刘晓玲
赵清锐
刘东兵
张明森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN202011027018.2A priority Critical patent/CN114425317A/zh
Publication of CN114425317A publication Critical patent/CN114425317A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/14808Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with non-metals as element
    • C07C7/14816Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with non-metals as element oxygen; ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种催化剂载体和催化剂及其制备方法和应用。本发明的催化剂载体的制备原料包括:100重量份的CexZr1‑xO2、0.5~8重量份的助挤剂、10~25重量份的粘合剂、24~38重量份的胶溶剂,胶溶剂的质量浓度为2.9%~8%,在该催化剂载体上负载活性组分后得到催化剂。本发明的催化剂载体和催化剂的机械强度>40N/粒,本发明的催化剂对一氧化碳和氢气的去除率可达到90%以上,并且对甲烷的转化率很小,进而能够将其中未反应完全的甲烷输送至反应釜中继续进行反应。

Description

一种催化剂载体和催化剂及其制备方法和应用
技术领域
本发明涉及一种催化剂载体和催化剂及其制备方法和应用,尤其涉及该催化剂在去除甲烷氧化偶联制乙烯的尾气中含有的一氧化碳和氢气的应用。
背景技术
甲烷氧化偶联(OCM)技术,是以甲烷为原料,在催化剂和高温(>600℃)作用下,直接氧化脱氢制乙烯的工艺。甲烷氧化偶联制乙烯技术在石油化工领域中具有潜在的应用价值。在该技术方法中,各原料物料单次通过催化剂床层后,约50wt%的甲烷会转化成主产物乙烯、乙烷以及副产物氢气、一氧化碳和二氧化碳等。反应器输出的物料经去除二氧化碳和分离乙烯、乙烷后,主要的副产物是一氧化碳、氢气和未反应的甲烷。本领域的关注点主要在于如何提高原料甲烷的利用效率。
CN109456139A公开了一种甲烷制乙烯反应产物的油吸收分离方法,其将OCM反应产物进行急冷冷却、压缩升压、脱除杂质、气液分离工序处理,采用膜分离技术将不凝气中的甲烷分离出来并返回到OCM反应器中进行循环使用,工序复杂且操作成本较高。
CN111004081A公开了一种甲烷氧化偶联制乙烯反应气体的分离方法及装置。该分离方法包括以下步骤:(1)压缩:利用压缩机对反应气体升压;(2)净化:对步骤(1)升压后的反应气体进行脱酸、干燥处理;(3)冷却:经步骤(2)得到的净化气体冷却至-40℃至-10℃;(4)吸收:吸收剂从吸收塔顶部进入,吸收反应气体中的碳二馏分及以上组分,吸收塔塔釜物流送至解吸塔,塔顶气体送往冷量回收系统;(5)解吸:来自吸收塔塔釜的物流进入解吸塔,解吸塔塔釜得到的贫溶剂经过冷却降温后,返回吸收塔顶部,塔顶得到的气体送往脱乙烷塔;(6)脱乙烷:来自解吸塔塔顶的气体进入脱乙烷塔,塔顶得到富含乙烯乙烷的碳二组分,塔釜得到富含丙烯丙烷的碳三组分;(7)乙烯精馏:来自脱乙烷塔塔顶的气体先送往碳二加氢反应器脱除炔烃,然后送往乙烯精馏塔,乙烯精馏塔侧线采出乙烯产品,塔顶气体返回压缩机段间,塔釜物流送往裂解炉;(8)丙烯精馏:来自脱乙烷塔塔釜的物料先送往碳三加氢反应器脱除炔烃、二烯烃,然后送往丙烯精馏塔,丙烯精馏塔侧线采出丙烯产品,塔顶气体返回压缩机段间,塔釜物流送往裂解炉;(9)裂解:将步骤(7)和步骤(8)的塔釜物流送至裂解炉,得到的裂解气经废热锅炉回收热量后,进入油洗塔/水洗塔,然后送往压缩机一段吸入罐。
目前,针对OCM尾气的净化技术较少,通常采用选择性催化氧化技术来净化OCM尾气。即,OCM尾气在一定温度下通过催化剂床层后,一氧化碳和氢气被氧化,甲烷不消耗或消耗很少。甲烷净化后和新鲜甲烷一起进料,从而提高甲烷的利用效率。但是工业多相催化剂必须具备必要的机械强度。催化剂成型过程是工业催化剂制备工序的重要步骤之一。迄今为止,适用于OCM尾气净化处理的催化剂载体,其成型方式并未见报道。
发明内容
针对现有技术存在的上述问题,本发明提供了一种催化剂载体和催化剂,及其制备方法和应用。本发明提供的催化剂载体具有比较大的机械强度,当其负载活性组分后所得到的催化剂也具有较高的机械强度,且能够较好的去除OCM尾气中的一氧化碳和氢气,对甲烷的转化率较低。
本发明第一方面提供了一种催化剂载体,所述催化剂载体的制备原料包括:
Figure BDA0002702424520000021
所述胶溶剂的质量浓度为2.9%~8%。
根据本发明所述的催化剂载体的优选实施方式,其制备原料包括:
Figure BDA0002702424520000022
所述胶溶剂的质量浓度为2.9%~8%。
根据本发明所述的催化剂载体的一些实施方式,所述催化剂载体的平均机械强度>40N/粒。在本发明中,催化剂的机械强度的测试方法可以为:采用颗粒强度仪对50个长度为3mm、直径为2mm的催化剂载体的机械强度进行测试,计算得到平均机械强度。
根据本发明所述的催化剂载体的一些实施方式,所述CexZr1-xO2由水溶性铈盐和水溶性锆盐通过共沉淀法或溶胶-凝胶法或水热法制备得到。
根据本发明所述的催化剂载体的优选实施方式,所述水溶性铈盐选自硝酸铈、硝酸铈铵、硫酸铈和氯化铈中的至少一种。
根据本发明所述的催化剂载体的优选实施方式,所述水溶性锆盐选自氧氯化锆、氯化锆、硫酸锆和硝酸锆中的至少一种。
根据本发明所述的催化剂载体的优选实施方式,CexZr1-xO2中x=0.1~0.7。例如0.1、0.3、0.4、0.5、0.7,以及它们之间的任意值。
根据本发明所述的催化剂载体的优选实施方式,CexZr1-xO2中x=0.1~0.5。
根据本发明所述的催化剂载体的一些实施方式,所述助挤剂选自滑石粉、石墨、硬脂酸、硬脂酸盐、淀粉和田菁粉中的至少一种。
根据本发明所述的催化剂载体的具体实施方式,所述助挤剂为田菁粉。
根据本发明所述的催化剂载体的一些实施方式,所述粘合剂选自水玻璃、硅溶胶和铝溶胶中的至少一种。
根据本发明所述的催化剂载体的优选实施方式,所述粘合剂为铝溶胶。
根据本发明所述的催化剂载体的具体实施方式,所述粘合剂为拟薄水铝石。
根据本发明所述的催化剂载体的一些实施方式,所述胶溶剂选自盐酸、硝酸、甲酸、乙酸、柠檬酸、丙二酸和三氯乙酸中的至少一种。
根据本发明所述的催化剂载体的具体实施方式,所述胶溶剂为硝酸。
根据本发明所述的催化剂载体的优选实施方式,所述胶溶剂的质量浓度为2.9%~8%。例如2.9%、4.5%、5.1%、6.2%、7.7%、8%,以及它们之间的任意值。
在本发明的不同实施方式中,可根据不同的需要制备不同规格的催化剂载体。例如本发明的催化剂载体的直径可以为2mm,长度可以为3mm,采用颗粒强度仪测试该催化剂载体的机械强度,可以达到40N/粒以上。本发明的催化剂载体具有足够的机械强度,在后续的尾气催化转化过程中有足够的稳定性,并且可以重复使用。
本发明第二方面提供了一种催化剂载体的制备方法,包括步骤:
步骤A、将CexZr1-xO2、助挤剂、粘合剂和胶溶剂,以及任选的水进行捏合,得到混合料;
步骤B、将所述混合料挤出成型,得到湿成型体;
步骤C、所述湿成型体干燥后进行焙烧,得到所述催化剂载体。
根据本发明所述的制备方法的一些实施方式,所述焙烧条件为:温度为200~1000℃,时间为2~10h。
根据本发明所述的制备方法的优选实施方式,所述焙烧条件为:温度为400~700℃,时间为4~8h。
根据本发明所述的制备方法的具体实施方式,所述焙烧条件为:温度为600℃,时间为5h。
根据本发明所述的制备方法的一些实施方式,CexZr1-xO2、助挤剂、粘合剂、胶溶剂的重量配比为100:0.5~8:10~25:24~38。
根据本发明所述的制备方法的优选实施方式,CexZr1-xO2、助挤剂、粘合剂、胶溶剂的重量配比为100:2~6:12~20:26~34。
根据本发明所述的制备方法的一些实施方式,CexZr1-xO2中,x=0.1~0.7。例如0.1、0.3、0.4、0.5、0.7,以及它们之间的任意值。
根据本发明所述的制备方法的优选实施方式,CexZr1-xO2中,x=0.1~0.5。
根据本发明所述的制备方法的一些实施方式,所述CexZr1-xO2由水溶性铈盐和水溶性锆盐通过共沉淀法或溶胶-凝胶法或水热法制备得到。
根据本发明所述的制备方法的优选实施方式,所述水溶性铈盐选自硝酸铈、硝酸铈铵、硫酸铈和氯化铈中的至少一种。
根据本发明所述的制备方法的优选实施方式,所述水溶性锆盐选自氧氯化锆、氯化锆、硫酸锆和硝酸锆中的至少一种。
根据本发明所述的制备方法的一些实施方式,捏合过程中所加入的水的量为一个较宽的范围,可根据实际需要调整所加入的水的量。
根据本发明所述的制备方法的一些实施方式,所述助挤剂选自滑石粉、石墨、硬脂酸、硬脂酸盐、淀粉和田菁粉中的至少一种。
根据本发明所述的制备方法的具体实施方式,所述助挤剂为田菁粉。
根据本发明所述的制备方法的一些实施方式,所述粘合剂选自水玻璃、硅溶胶和铝溶胶中的至少一种。
根据本发明所述的制备方法的优选实施方式,所述粘合剂为铝溶胶。
根据本发明所述的制备方法的具体实施方式,所述粘合剂为拟薄水铝石。
根据本发明所述的制备方法的一些实施方式,所述胶溶剂选自盐酸、硝酸、甲酸、乙酸、柠檬酸、丙二酸和三氯乙酸中的至少一种。
根据本发明所述的制备方法的具体实施方式,所述胶溶剂为硝酸。
根据本发明所述的制备方法的一些实施方式,所述胶溶剂的质量浓度为2.9%~8%。例如2.9%、4.5%、5.1%、6.2%、7.7%、8%,以及它们之间的任意值。
本发明第三方面提供了一种根据上述制备方法得到的催化剂载体。
根据本发明所述的催化剂载体的一些实施方式,所述催化剂载体的平均机械强度>40N/粒。
本发明第四方面提供了一种催化剂,所述催化剂包括上述的催化剂载体和活性组分。
根据本发明所述的催化剂的优选实施方式,所述活性组分选自VB族金属氧化物、VIB族金属氧化物、VIIB族金属氧化物、VIII族金属氧化物和IB族金属氧化物中的至少一种。
根据本发明所述的催化剂的优选实施方式,所述活性组分选自氧化铁、氧化铜、氧化锰、氧化钴、氧化镍和氧化铬中的至少一种。
根据本发明所述的催化剂的优选实施方式,所述活性组分选自氧化铁、氧化锰和氧化铜中的至少一种。
根据本发明所述的催化剂的具体实施方式,所述活性组分为氧化铜。
在本发明的不同实施方式中,可根据不同的需要制备不同规格的催化剂。例如本发明的催化剂直径可以为2mm,长度可以为3mm。催化剂载体负载活性组分制备催化剂的过程,对其机械强度影响较小,用颗粒强度仪测试该催化剂的机械强度>40N/粒。
本发明提供的催化剂具有较高的机械强度,且在负载活性组分后,能够较好的去除甲烷氧化偶联反应尾气中的一氧化碳和氢气。当反应尾气单次通过催化剂床层时,一氧化碳的转化率>90%,氢气的转化率>90%,甲烷的转化率<2%。进而能够使得未反应的甲烷作为原料再循环送至反应釜中继续进行反应。
本发明第五方面提供了一种催化剂的制备方法,所述制备方法为:在上述的催化剂载体上负载含有活性元素的化合物并进行干燥和焙烧。
根据本发明所述的制备方法的一些实施方式,所述活性元素选自VB族金属、VIB族金属、VIIB族金属、VIII族金属和IB族金属中的至少一种。
根据本发明所述的制备方法的优选实施方式,所述活性元素选自铁、铜、锰、钴、镍和铬中的至少一种。
根据本发明所述的制备方法的优选实施方式,所述含有活性元素的化合物选自硝酸铜、氯化铜、醋酸铜和硫酸铜中的至少一种。
根据本发明所述的制备方法的具体实施方式,所述含有活性元素的化合物为氧化铜。
根据本发明所述的制备方法的优选实施方式,所述焙烧条件为:温度为200~1000℃,时间为2~10h。
根据本发明所述的制备方法的优选实施方式,所述焙烧条件为:温度为400~700℃,时间为4~8h。
根据本发明所述的制备方法的具体实施方式,所述焙烧条件为:温度为600℃,时间为5h。
本发明第六方面提供了一种甲烷氧化偶联反应尾气的净化处理方法,包括:将尾气通过上述的催化剂或由上述的制备方法得到的催化剂。
根据本发明所述的净化处理方法的一些实施方式,所述甲烷氧化偶联反应尾气的组成为:甲烷、一氧化碳、氢气的体积比为12~18:2~5:1。
根据本发明所述的净化处理方法的优选实施方式,所述甲烷氧化偶联反应尾气的组成为:甲烷、一氧化碳、氢气的体积比为15~17:2~4:1。
根据本发明所述的净化处理方法的一些实施方式,所述净化处理方法的条件包括:空速为10~200L/h·g催化剂,温度为200~700℃。在本发明中,“L/h·g催化剂”是指“L/(h·g催化剂)”。
根据本发明所述的净化处理方法的优选实施方式,所述净化处理方法的条件包括:空速为13~150L/h·g催化剂,温度为350~600℃。
根据本发明所述的净化处理方法的优选实施方式,所述尾气中一氧化碳的转化率>90%,氢气的转化率>90%,甲烷的转化率<2%。
上述的催化剂对甲烷氧化偶联反应尾气中各物质的转化率是在尾气单次通过催化剂床层后的数据,在本发明的不同实施方式中,根据不同的净化需求可选择将尾气多次通过催化剂床层。
本发明第七方面提供了一种上述催化剂载体及制备方法、催化剂及制备方法在甲烷氧化偶联反应尾气处理中的应用,更优选为在去除甲烷氧化偶联反应尾气中的一氧化碳和氢气中的应用。但并不限于此。
根据上述应用的优选实施方式,所述尾气中一氧化碳的转化率>90%,氢气的转化率>90%,甲烷的转化率<2%。
本发明的有益效果:
本发明制备的催化剂载体具有足够的机械强度,在其上负载活性组分后所得到的催化剂也具有较高的机械强度,且该催化剂能够去除甲烷氧化偶联反应尾气中一氧化碳和氢气,去除率可达到90%以上,并且对甲烷的转化率很小,进而能够将其中未反应完全的甲烷输送至反应釜中继续进行反应。
具体实施方式
为使本发明更加容易理解,下面将结合实施例来详细说明本发明,这些实施例仅起说明性作用,并不局限于本发明的应用范围。
本发明的测试方法以及测试中所用设备如下:
(1)一氧化碳、甲烷和氢气的转化率测试采用气相色谱法。
(2)挤条机为购自华南理工大学科技实业总厂制造公司、生产型号为F-26型的双螺杆挤条机。
(3)颗粒强度仪为购自江苏姜堰市分析仪器厂制造公司、型号为KC-2A的数显颗粒强度仪。
本发明中所用到的各种原料试剂均可通过市售途径获得。
【实施例1】
称取50g由共沉淀法制备得到的Ce0.1Zr0.9O2,向其中加入3.05g田菁粉、5.99g拟薄水铝石和14.99g浓度为5.1wt%的硝酸,然后在挤条机中捏合20min,并通过Φ=2mm的孔板挤出成型,得到长条状湿成型体。湿成型体在空气中干燥后,以5℃/min的速率升温至600℃并保持5h进行焙烧,得到催化剂载体。
称取1.49g三水合硝酸铜,溶于30ml水中,向其中加入5.12g长度为3mm的催化剂载体,然后在旋转蒸发仪上于常温常压条件下旋转5h,旋蒸至干,在80℃下干燥,再以5℃/min的速率升温至600℃,保持5h进行焙烧,得到催化剂。
利用颗粒强度仪测试催化剂的强度。对50个长度为3mm、直径为2mm的催化剂机械强度进行了测试,计算得到的平均机械强度为40.7N/粒。
在内径为8mm的石英玻璃管反应器中,装入0.21g催化剂。并且,催化剂上下均填充20~40目的石英砂。通入流速为40ml/min的氮气和4ml/min的氧气,以10℃/min的速率升温至600℃并保持30min,对催化剂进行活化。
将氮气和氧气切换成副产物反应气进行催化转化。其中,副产物反应气中包含CO15vol%、H2 5vol%,余量为甲烷。催化转化反应进行60min后,通过气相色谱法测定CO转化率、CH4转化率和H2转化率,测试结果见表1。
【实施例2】
称取50g由溶胶-凝胶法制备得到的Ce0.3Zr0.7O2,向其中加入2.98g田菁粉、8.02g拟薄水铝石和15.16g浓度为5.1wt%的硝酸,然后在挤条机中捏合20min,并通过Φ=2mm的孔板挤出成型,得到长条状湿成型体。湿成型体在空气中干燥后,以5℃/min的速率升温至600℃并保持5h进行焙烧,得到催化剂载体。
称取1.49g三水合硝酸铜,溶于30ml水中,向其中加入5.06g长度为3mm的催化剂载体,然后在旋转蒸发仪上于常温常压条件下旋转5h,旋蒸至干,在80℃下干燥,再以5℃/min的速率升温至600℃,保持5h进行焙烧,得到催化剂。
利用颗粒强度仪测试催化剂的强度。对50个长度为3mm、直径为2mm的催化剂机械强度进行了测试,计算得到的平均机械强度为47.3N/粒。
在内径为8mm的石英玻璃管反应器中,装入0.2g催化剂。并且,催化剂上下均填充20~40目的石英砂。通入流速为40ml/min的氮气和4ml/min的氧气,以10℃/min的速率升温至600℃并保持30min,对催化剂进行活化。
将氮气和氧气切换成副产物反应气进行催化转化。其中,副产物反应气中包含CO15vol%、H2 5vol%,余量为甲烷。催化转化反应进行60min后,通过气相色谱法测定CO转化率、CH4转化率和H2转化率,测试结果见表1。
【实施例3】
称取50g由水热法制备得到的Ce0.5Zr0.5O2,向其中加入3.01g田菁粉、10.01g拟薄水铝石和15.07g浓度为5.1wt%的硝酸,然后在挤条机中捏合20min,并通过Φ=2mm的孔板挤出成型,得到长条状湿成型体。湿成型体在空气中干燥后,以5℃/min的速率升温至600℃并保持5h进行焙烧,得到催化剂载体。
称取1.49g三水合硝酸铜,溶于30ml水中,向其中加入5.1g长度为3mm的催化剂载体,然后在旋转蒸发仪上于常温常压条件下旋转5h,旋蒸至干,在80℃下干燥,再以5℃/min的速率升温至600℃,保持5h进行焙烧,得到催化剂。
利用颗粒强度仪测试催化剂的强度。对50个长度为3mm、直径为2mm的催化剂机械强度进行了测试,计算得到的平均机械强度为53.6N/粒。
在内径为8mm的石英玻璃管反应器中,装入0.22g催化剂。并且,催化剂上下均填充20~40目的石英砂。通入流速为40ml/min的氮气和4ml/min的氧气,以10℃/min的速率升温至600℃并保持30min,对催化剂进行活化。
将氮气和氧气切换成副产物反应气进行催化转化。其中,副产物反应气中包含CO15vol%、H2 5vol%,余量为甲烷。催化转化反应进行60min后,通过气相色谱法测定CO转化率、CH4转化率和H2转化率,测试结果见表1。
【实施例4】
称取50g由溶胶-凝胶法制备得到的Ce0.4Zr0.6O2,向其中加入1.52g田菁粉、9.95g拟薄水铝石和16.91g浓度为2.9wt%的硝酸,然后在挤条机中捏合20min,并通过Φ=2mm的孔板挤出成型,得到长条状湿成型体。湿成型体在空气中干燥后,以5℃/min的速率升温至600℃并保持5h进行焙烧,得到催化剂载体。
称取1.49g三水合硝酸铜,溶于30ml水中,向其中加入5.03g长度为3mm的催化剂载体,然后在旋转蒸发仪上于常温常压条件下旋转5h,旋蒸至干,在80℃下干燥,再以5℃/min的速率升温至600℃,保持5h进行焙烧,得到催化剂。
利用颗粒强度仪测试催化剂的强度。对50个长度为3mm、直径为2mm的催化剂机械强度进行了测试,计算得到的平均机械强度为54.2N/粒。
在内径为8mm的石英玻璃管反应器中,装入0.21g催化剂。并且,催化剂上下均填充20~40目的石英砂。通入流速为40ml/min的氮气和4ml/min的氧气,以10℃/min的速率升温至600℃并保持30min,对催化剂进行活化。
将氮气和氧气切换成副产物反应气进行催化转化。其中,副产物反应气中包含CO15vol%、H2 5vol%,余量为甲烷。催化转化反应进行60min后,通过气相色谱法测定CO转化率、CH4转化率和H2转化率,测试结果见表1。
【实施例5】
称取50g由共沉淀法制备得到的Ce0.1Zr0.9O2,向其中加入3.81g田菁粉、6.03g拟薄水铝石和13.25g浓度为7.7wt%的硝酸,然后在挤条机中捏合20min,并通过Φ=2mm的孔板挤出成型,得到长条状湿成型体。湿成型体在空气中干燥后,以5℃/min的速率升温至600℃并保持5h进行焙烧,得到催化剂载体。
称取1.49g三水合硝酸铜,溶于30ml水中,向其中加入5.07g长度为3mm的催化剂载体,然后在旋转蒸发仪上于常温常压条件下旋转5h,旋蒸至干,在80℃下干燥,再以5℃/min的速率升温至600℃,保持5h进行焙烧,得到催化剂。
利用颗粒强度仪测试催化剂的强度。对50个长度为3mm、直径为2mm的催化剂机械强度进行了测试,计算得到的平均机械强度为40.2N/粒。
在内径为8mm的石英玻璃管反应器中,装入0.2g催化剂。并且,催化剂上下均填充20~40目的石英砂。通入流速为40ml/min的氮气和4ml/min的氧气,以10℃/min的速率升温至600℃并保持30min,对催化剂进行活化。
将氮气和氧气切换成副产物反应气进行催化转化。其中,副产物反应气中包含CO15vol%、H2 5vol%,余量为甲烷。催化转化反应进行60min后,通过气相色谱法测定CO转化率、CH4转化率和H2转化率,测试结果见表1。
【对比例1】
称取50g由共沉淀法制备得到的Ce0.1Zr0.9O2,向其中加入1.39g田菁粉、5.02g拟薄水铝石和17.01g浓度为2.5wt%的硝酸,然后在挤条机中捏合20min,并通过Φ=2mm的孔板挤出成型,得到长条状湿成型体。湿成型体在空气中干燥后,以5℃/min的速率升温至600℃并保持5h进行焙烧,得到催化剂载体。
称取1.49g三水合硝酸铜,溶于30ml水中,向其中加入5.12g长度为3mm的催化剂载体,然后在旋转蒸发仪上于常温常压条件下旋转5h,旋蒸至干,在80℃下干燥,再以5℃/min的速率升温至600℃,保持5h进行焙烧,得到催化剂。
利用颗粒强度仪测试催化剂的强度。对50个长度为3mm、直径为2mm的催化剂机械强度进行了测试,计算得到的平均机械强度为32.6N/粒。
在内径为8mm的石英玻璃管反应器中,装入0.21g催化剂。并且,催化剂上下均填充20~40目的石英砂。通入流速为40ml/min的氮气和4ml/min的氧气,以10℃/min的速率升温至600℃并保持30min,对催化剂进行活化。
将氮气和氧气切换成副产物反应气进行催化转化。其中,副产物反应气中包含CO15vol%、H2 5vol%,余量为甲烷。催化转化反应进行60min后,通过气相色谱法测定CO转化率、CH4转化率和H2转化率,测试结果见表1。
【对比例2】
称取50g由共沉淀法制备得到的Ce0.1Zr0.9O2,向其中加入4.25g田菁粉、11.21g拟薄水铝石和14.91g浓度为9.7wt%的硝酸,然后在挤条机中捏合20min,并通过Φ=2mm的孔板挤出成型,得到长条状湿成型体。湿成型体在空气中干燥后,以5℃/min的速率升温至600℃并保持5h进行焙烧,得到催化剂载体。
称取1.49g三水合硝酸铜,溶于30ml水中,向其中加入5.12g长度为3mm的催化剂载体,然后在旋转蒸发仪上于常温常压条件下旋转5h,旋蒸至干,在80℃下干燥,再以5℃/min的速率升温至600℃,保持5h进行焙烧,得到催化剂。
利用颗粒强度仪测试催化剂的强度。对50个长度为3mm、直径为2mm的催化剂机械强度进行了测试,计算得到的平均机械强度为57.2N/粒。
在内径为8mm的石英玻璃管反应器中,装入0.21g催化剂。并且,催化剂上下均填充20~40目的石英砂。通入流速为40ml/min的氮气和4ml/min的氧气,以10℃/min的速率升温至600℃并保持30min,对催化剂进行活化。
将氮气和氧气切换成副产物反应气进行催化转化。其中,副产物反应气中包含CO15vol%、H2 5vol%,余量为甲烷。催化转化反应进行60min后,通过气相色谱法测定CO转化率、CH4转化率和H2转化率,测试结果见表1。
表1催化剂性能测试结果
Figure BDA0002702424520000121
通过实施例和对比例能够看出,本发明制备得到的催化剂具有较高的机械强度,同时对于甲烷氧化偶联尾气中的一氧化碳和氢气均具有较高的转化率,且对其中甲烷的转化率又很低,使得尾气中未反应完全的甲烷能够作为原料气继续进行反应。
以上所述的仅是本发明的优选实例。应当指出对于本领域的普通技术人员来说,在本发明所提供的技术启示下,作为本领域的公知常识,还可以做出其它等同变型和改进,也应视为本发明的保护范围。

Claims (10)

1.一种催化剂载体,其特征在于,所述催化剂载体的制备原料包括:
CexZr1-xO2 100重量份;
助挤剂 0.5~8重量份,优选为2~6重量份;
粘合剂 10~25重量份,优选为12~20重量份;
胶溶剂 24~38重量份,优选为26~34重量份;
所述胶溶剂的质量浓度为2.9%~8%。
2.根据权利要求1所述的催化剂载体,其特征在于,所述催化剂载体的平均机械强度>40N/粒。
3.根据权利要求1或2所述的催化剂载体,其特征在于,所述CexZr1-xO2由水溶性铈盐和水溶性锆盐通过共沉淀法或溶胶-凝胶法或水热法制备得到;
优选地,所述水溶性铈盐选自硝酸铈、硝酸铈铵、硫酸铈和氯化铈中的至少一种;优选地,所述水溶性锆盐选自氧氯化锆、氯化锆、硫酸锆和硝酸锆中的至少一种;和/或,
优选地,CexZr1-xO2中x=0.1~0.7;更优选地,x=0.1~0.5。
4.根据权利要求1-3中任意一项所述的催化剂载体,其特征在于,所述助挤剂选自滑石粉、石墨、硬脂酸、硬脂酸盐、淀粉和田菁粉中的至少一种;和/或,
所述粘合剂选自水玻璃、硅溶胶和铝溶胶中的至少一种;优选地,所述粘合剂为铝溶胶,更优选为拟薄水铝石;和/或,
所述胶溶剂选自盐酸、硝酸、甲酸、乙酸、柠檬酸、丙二酸和三氯乙酸中的至少一种。
5.一种催化剂载体的制备方法,其特征在于,所述制备方法包括步骤:
步骤A、将CexZr1-xO2、助挤剂、粘合剂和胶溶剂,以及任选的水进行捏合,得到混合料;
步骤B、将所述混合料挤出成型,得到湿成型体;
步骤C、所述湿成型体干燥后进行焙烧,得到所述催化剂载体;
优选地,所述焙烧条件为:温度为400~700℃,时间为4~8h;和/或,
优选地,CexZr1-xO2、助挤剂、粘合剂、胶溶剂的重量配比为100:0.5~8:10~25:24~38;优选地,CexZr1-xO2、助挤剂、粘合剂、胶溶剂的重量配比为100:2~6:12~20:26~34;和/或,
CexZr1-xO2中x=0.1~0.7;更优选地,x=0.1~0.5。
6.一种根据权利要求5所述的制备方法得到的催化剂载体。
7.一种催化剂,其特征在于,所述催化剂包括权利要求1-4和权利要求6中任意一项所述的催化剂载体及活性组分;
优选地,所述活性组分选自VB族金属氧化物、VIB族金属氧化物、VIIB族金属氧化物、VIII族金属氧化物和IB族金属氧化物中的至少一种;
优选地,所述活性组分选自氧化铁、氧化铜、氧化锰、氧化钴、氧化镍和氧化铬中的至少一种;
更优选地,所述活性组分选自氧化铁、氧化锰和氧化铜中的至少一种;
更优选地,所述活性组分为氧化铜。
8.一种催化剂的制备方法,其特征在于,所述制备方法为:在权利要求1-4和权利要求6中任意一项所述的催化剂载体上负载含有活性元素的化合物并进行干燥和焙烧;
所述活性元素选自VB族金属、VIB族金属、VIIB族金属、VIII族金属和IB族金属中的至少一种;优选地,所述含有活性元素的化合物选自硝酸铜、氯化铜、醋酸铜和硫酸铜中的至少一种;和/或,
优选地,所述焙烧条件为:温度为400~700℃,时间为4~8h。
9.一种甲烷氧化偶联反应尾气的净化处理方法,包括:将尾气通过权利要求7所述的催化剂或由权利要求8所述的制备方法得到的催化剂;
优选地,所述甲烷氧化偶联反应尾气的组成为:甲烷、一氧化碳、氢气的体积比为12~18:2~5:1;更优选地,所述甲烷氧化偶联反应尾气的组成为:甲烷、一氧化碳、氢气的体积比为15~17:2~4:1;和/或,
优选地,所述净化处理方法的条件包括:空速为10~200L/h·g催化剂,温度为200~700℃;
更优选地,所述净化处理方法的条件包括:空速为13~150L/h·g催化剂,温度为350~600℃;和/或,
优选地,所述尾气中一氧化碳的转化率>90%,氢气的转化率>90%,甲烷的转化率<2%。
10.一种权利要求1-4和权利要求6中任意一项所述的催化剂载体、权利要求7所述的催化剂,或权利要求5所述的催化剂载体的制备方法、权利要求8所述的催化剂的制备方法在甲烷氧化偶联反应尾气处理中的应用,更优选为在去除甲烷氧化偶联反应尾气中的一氧化碳和氢气中的应用。
CN202011027018.2A 2020-09-25 2020-09-25 一种催化剂载体和催化剂及其制备方法和应用 Pending CN114425317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011027018.2A CN114425317A (zh) 2020-09-25 2020-09-25 一种催化剂载体和催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011027018.2A CN114425317A (zh) 2020-09-25 2020-09-25 一种催化剂载体和催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114425317A true CN114425317A (zh) 2022-05-03

Family

ID=81309874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011027018.2A Pending CN114425317A (zh) 2020-09-25 2020-09-25 一种催化剂载体和催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114425317A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1907567A (zh) * 2006-08-16 2007-02-07 天津化工研究设计院 一种多孔型复合金属氧化物催化载体的成型方法
CN102616801A (zh) * 2011-01-28 2012-08-01 中国石油化工股份有限公司 一种nu-85沸石改性方法及含改性沸石的芳烃异构化催化剂
CN106807431A (zh) * 2017-03-06 2017-06-09 唐山开滦化工科技有限公司 一种蛋壳型笑气分解催化剂制备方法
CN107115887A (zh) * 2017-06-19 2017-09-01 中国海洋石油总公司 一种用于裂解重芳烃的催化剂制备方法
CN107540511A (zh) * 2016-06-24 2018-01-05 中国石油化工股份有限公司 一种从甲烷氧化偶联制备乙烯废气中回收甲烷的方法
US10618042B1 (en) * 2017-05-31 2020-04-14 University Of South Florida Mixed metal oxide extrudate catalyst
CN111282563A (zh) * 2018-12-10 2020-06-16 中国石油化工股份有限公司 一种Mn-Ce-Zr催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1907567A (zh) * 2006-08-16 2007-02-07 天津化工研究设计院 一种多孔型复合金属氧化物催化载体的成型方法
CN102616801A (zh) * 2011-01-28 2012-08-01 中国石油化工股份有限公司 一种nu-85沸石改性方法及含改性沸石的芳烃异构化催化剂
CN107540511A (zh) * 2016-06-24 2018-01-05 中国石油化工股份有限公司 一种从甲烷氧化偶联制备乙烯废气中回收甲烷的方法
CN106807431A (zh) * 2017-03-06 2017-06-09 唐山开滦化工科技有限公司 一种蛋壳型笑气分解催化剂制备方法
US10618042B1 (en) * 2017-05-31 2020-04-14 University Of South Florida Mixed metal oxide extrudate catalyst
CN107115887A (zh) * 2017-06-19 2017-09-01 中国海洋石油总公司 一种用于裂解重芳烃的催化剂制备方法
CN111282563A (zh) * 2018-12-10 2020-06-16 中国石油化工股份有限公司 一种Mn-Ce-Zr催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卢小佳;周国栋;杨仁春;宋庆武;朱玲婷;: "多级孔(Mn、Fe、Cu)/Ce-Zr的制备及其催化氧化性能研究", 安徽工程大学学报, vol. 30, no. 04, pages 129 - 130 *

Similar Documents

Publication Publication Date Title
DeBoy et al. The oxidative coupling of methane over alkali, alkaline earth, and rare earth oxides
JP4339681B2 (ja) 不飽和オレフィンの選択的水素化のための選択的水素化触媒、及びその使用
US7902113B2 (en) Catalyst direct conversion of methane to ethane and ethylene
US5095161A (en) Process and catalyst for upgrading methane to higher carbon number hydrocarbons
CN1011232B (zh) 改性的醛加氢催化剂及方法
EP3212568A1 (en) Integration of syngas production from steam reforming and dry reforming
JPS62503101A (ja) メタンの転化のための方法と触媒
US9555398B2 (en) Methane synthesis catalyst preparation method and catalyst precursor
JPH0768171A (ja) 二酸化炭素還元反応触媒
US7314965B2 (en) Catalysts containing copper and zinc for the purification of ethylene
EP2607302B1 (en) A method for producing hydrogen from ethanol
JPH08229399A (ja) 助触媒を含む安定化酸化銅−酸化亜鉛触媒および製造方法
CN102958869A (zh) 使用含有钴和锰的催化剂从合成气制备烯烃的方法
CN114425317A (zh) 一种催化剂载体和催化剂及其制备方法和应用
CN114433218B (zh) 一种苯和合成气烷基化催化剂及其制备方法和应用
BRPI0707535A2 (pt) uso de reação quìmica para separar etileno de etano nos processos à base de etano para a produção de ácido acético
JPS5948140B2 (ja) 炭化水素の水蒸気改質用触媒
CN114425344A (zh) 一种催化剂及其制备方法和应用
CN114433217B (zh) 苯和合成气烷基化催化剂及其制备方法和应用
CN105523887B (zh) 酯高选择性制备醇的方法
JPH0371174B2 (zh)
TW201902818A (zh) 在銥及/或銠催化劑存在下將二氧化碳氫化的方法
CN115591556B (zh) 用于合成气一步法制甲醛的催化剂及其制备方法、合成气一步法制甲醛的方法
CN103569993A (zh) 一种生产纳米碳和氢气的催化剂和方法
CN1552518A (zh) 甲烷二氧化碳重整及甲烷部分氧化耦合催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination