CN114397621A - 一种基于卷积神经网络的水下目标波达方向估计的方法 - Google Patents

一种基于卷积神经网络的水下目标波达方向估计的方法 Download PDF

Info

Publication number
CN114397621A
CN114397621A CN202210029754.4A CN202210029754A CN114397621A CN 114397621 A CN114397621 A CN 114397621A CN 202210029754 A CN202210029754 A CN 202210029754A CN 114397621 A CN114397621 A CN 114397621A
Authority
CN
China
Prior art keywords
neural network
convolutional neural
cnn
function
arrival
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210029754.4A
Other languages
English (en)
Inventor
王彪
余春祥
朱雨男
张明亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202210029754.4A priority Critical patent/CN114397621A/zh
Publication of CN114397621A publication Critical patent/CN114397621A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/8027By vectorial composition of signals received by plural, differently-oriented transducers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于卷积神经网络的水下目标波达方向估计的方法,步骤如下:1、将生成的协方差矩阵数据划分为训练集和测试集并进行数据预处理;2、确定卷积神经网络的初始条件;3、输入训练集数据,通过卷积池化层形成全连接层;4、计算当前输出层正向传播预测值;计算CNN的代价函数,根据代价函数进行反向传播更新全连接层各层神经元参数;5、循环执行步骤3和4,当代价函数达到最小值时或到达预设迭代次数时CNN完成训练,得到训练完成的CNN模型;6、在完成的CNN模型中,得到CNN最终预测的角度估值,与真实角度值对比,计算准确率。本发明实现了在低信噪比情况下的快速准确的水下波达方向估计。

Description

一种基于卷积神经网络的水下目标波达方向估计的方法
技术领域
本发明涉及水声目标定位,特别是一种基于卷积神经网络的水下目标波达方向估计的方法。
背景技术
水下常见军事目标包括潜艇,水下无人潜航器等。在军事战斗过程中,水下目标定位关系着指挥人员的判断与决策,特别是在海军潜艇战与反潜战中,快速的目标定位能够提高对潜艇的反应速度与打击能力。
当前,常见水下定位方法分为光学法与声学法两大类。光学方法中,水下高频信号衰减剧烈,利用光波实现的水下目标定位仅适用于短距离定位,不满足海洋作战中中长途目标定位要求。声学方法中,国内外目前多数采用水下声阵列定位技术,实现目标波达方向角估计。但在传统算法中,往往对采集的阵列数据进行子空间分解,计算复杂,耗时长,难以满足快速定位的要求,同时在低信噪比环境下,子空间分解法效果不佳。
发明内容
发明目的:本发明的目的是提供一种基于卷积神经网络的水下目标波达方向估计的方法,从而实现在低信噪比情况下的快速准确的水下波达方向估计。
技术方案:本发明所述的一种基于卷积神经网络的水下目标波达方向估计的方法分为两大部分,其一为网络训练数据采集,其二为卷积神经网络设置训练生成。
数据采集以二维平面阵列数据为例:考虑在同一平面内,空间距离为半波长 d=λ/2的N个传感器组成的均匀线性阵列,传感器的编号分别为1至N。远场目标位于θ存在中心波长为λ的窄带信号s(t),于是N个传感器的输出所构成的接收数据向量可以表示为:
x(t)=As(t)+n(t) (1)
式(1)中s(t)一维信号向量,n(t)是N×1维噪声向量。A=a(θ)是N维阵列导向矩阵,由包含DOA信息的a(θ)构成,理想阵列导向矢量具体表示为:
Figure BDA0003465943700000021
式(2)中ej(2π/λ)d sin(θ)是相位差,d=λ/2传感器间距离,(·)T表示转置。信号和噪声具有如下性质:(I)噪声是零均值高斯噪声;(II)信号是平稳信号; (III)噪声与信号相互独立。通过采集J次快拍,接收数据矩阵表示如下:
X=AS+N (3)
式(3)中X=[x(1)x,(2)x,是N×J维数据矩阵, S=[s(1),s(2),...,s(J)]是1×J维信号矩阵,N=[n(1),n(2),...,n(J)]是 1×J维复高斯噪声矩阵,J是所收集的快拍总数。传感器阵列输出数据的协方差矩阵可以表示为:
Rx=E[XXH] (4)
式中(·)H和E[·]分别表示共轭转置和数学期望。DOA估计是从已知的接收数据X中获取来波角度信息,所以将Rx作为训练网络所需数据源。
卷积神经网络训练步骤如下:
S1、将生成的协方差矩阵数据划分为训练集和测试集并进行数据预处理;
S2、设定CNN系统各项超参数,初始化CNN卷积核、池化方式、全连接层神经元参数、分类函数等;
S3、输入训练集数据,通过卷积池化层形成全连接层;
S4、接收全连接层数据,计算当前输出层正向传播预测值。计算CNN的代价函数,根据代价函数进行反向传播更新全连接层各层神经元参数,其中代价函数采用交叉熵函数;
S5、循环执行S3和S4,使得CNN达到预估角度误差的要求,当代价函数达到最小值时或到达预设迭代次数时CNN完成训练,各项参数停止更新,得到训练完成的CNN模型;
S6、在完成的CNN模型中,得到CNN最终预测的角度估值,与真实角度值对比,计算准确率;
在S1中,需要准确角度序列θ,以及阵列对应生成的协方差数据Rx,在Rx中包含实部虚部两个部分。由于CNN通常只能处理实数域数据,考虑将Rx中实虚部分开,将虚部数据实值化,将实虚部变为两个通道并行输入。
在S2中卷积神经网络各项参数设定如下:设置学习率为0.01,隐含层激活函数采用ReLU激活函数,输出层激活函数采用Softmax激活函数,代价函数采用交叉熵损失函数,权值初始化方式为Glorot均匀分布,权重更新策略为Adam。
其中,激活函数ReLU表达式f(x)=max(0,x),相比于相比sigmod激活函数函数有克服梯度消失的问题,并加快了训练速度。Adam优化算法可以看作是将动量梯度算法(Momentum)与均方根算法(Root Mean Square Prop)相结合,可以快速收敛并正确学习,最大程度的优化了损失函数收敛过程。权值初始化方式选择Glorot均匀分布,即权值参数在
Figure BDA0003465943700000031
区间均匀分布,其中fan_in为权值张量的输入单元数,fan_out是权重张量的输出单元数。
在S3中不同于数学上的离散二维卷积计算,在卷积神经网络中,卷积核不用反转,计算公式为
Figure BDA0003465943700000032
式(5)中f(m,n)为输入矩阵的数据,g(m,n)为卷积核函数。池化方式选用区域最大采样。
在S4中,本发明主要研究为多角度分类问题,Softmax是处理多分类问题最长使用的函数,是逻辑回归模型在多分类问题上的推广,Softmax函数的公式如下:
Figure BDA0003465943700000041
式(6)中,yk是第k个神经元的输出,n表示网络的输出层神经元的数目。分子是输入信号ak的指数函数,分母是所有输入信号的指数函数之和。由于 softmax函数的输出是介于0-1之间的实数,且softmax函数输出值的总和为1.因此将softmax函数的输出可以解释为“概率”。一般神经网络将输出值最大的神经元所对应的类别作为识别结果。本发明将信号来波角度在区间[-90°,+90°]均匀分为181个类,因此,卷积神经网络输出层的神经元设定为181个。
预测角度值与真实角度值之间的误差采用交叉熵函数计算,其公式为:
Figure BDA0003465943700000042
式(7)中,y(i)表示真实角度值,a(i)表示预测角度值,n表示分类个数,即输出神经元个数。通过Adam优化算法约束代价函数收敛,使得各层间权值与偏置参数在反向传播过程中不断更新,预测角度值不断逼近真实角度值,达到预测真实来波方向的目的。
在S5中,多次仿真实验可知,计算迭代次数在五十次时,代价函数趋于稳定,所以本实验中卷积神经网络完成训练的迭代次数设为50,训练停止时,记录各层参数,保存卷积神经网络模型。
在S6中,得到最终的角度预测值并于真实值对比,计算预测准确率。
一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的一种基于卷积神经网络的水下目标波达方向估计的方法。
一种计算机设备,包括储存器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的一种基于卷积神经网络的水下目标波达方向估计的方法。
有益效果:与现有技术相比,本发明具有如下优点:1、本发明不需要对大量采集数据进行运算处理,在网络模型生成后,具有快速得到测向结果的优势;2、本发明在水下低信噪比环境情况下,依旧具有良好的测向效果。
附图说明
图1为步骤流程图;
图2为阵列系统模型图;
图3为卷积神经网络模型图;
图4为卷积神经网络测试结果图;
图5为积神经网络与多重子空间分类法在不同噪声环境下效果对比图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
如图1所示,在实际操作中,本发明所述的一种基于卷积神经网络的水下目标波达方向估计的方法具体有如下步骤:
S1、通过如图2的水下阵列系统,采集包含角度信息的相关阵列数据,准确角度序列θ,阵列采集数据对应生成的协方差数据Rx,在Rx中包含实部虚部两个部分。由于CNN通常只能处理实数域数据,考虑将Rx中实虚部分开,将虚部数据实值化,将实虚部变为两个通道并行输入。
S2、如图3中,设置学习率为0.01,隐含层激活函数采用ReLU激活函数,输出层激活函数采用Softmax激活函数,代价函数采用交叉熵损失函数,权值初始化方式为Glorot均匀分布,权重更新策略为Adam。其中,激活函数ReLU表达式f(x)=max(0,x),加快了训练速度。Adam优化算法可以看作是将动量梯度算法(Momentum)与均方根算法(Root Mean SquareProp)相结合,可以快速收敛并正确学习,最大程度的优化了损失函数收敛过程。
S3、输入训练集数据,通过卷积池化层形成全连接层,卷积计算公式为
Figure BDA0003465943700000061
式中f(m,n)为输入的数据为实虚部分开后的Rx,g(m,n)为卷积核函数。
S4、接收全连接层数据,计算当前输出层正向传播预测值。计算CNN的代价函数,根据代价函数进行反向传播更新全连接层各层神经元参数,本发明主要研究为多角度分类问题,Softmax是处理多分类问题最长使用的函数,是逻辑回归模型在多分类问题上的推广,Softmax函数的公式如下:
Figure BDA0003465943700000062
式中,yk是第k个神经元的输出,n表示网络的输出层神经元的数目。分子是输入信号ak的指数函数,分母是所有输入信号的指数函数之和。一般神经网络将输出值最大的神经元所对应的类别作为识别结果。本发明将信号来波角度在区间[-90°,+90°]均匀分为181个类,因此,卷积神经网络输出层的神经元设定为181 个。预测角度值与真实角度值之间的误差采用交叉熵函数计算,其公式为:
Figure BDA0003465943700000063
式中,y(i)表示真实角度值,a(i)表示预测角度值,n表示分类个数,即输出神经元个数。通过Adam优化算法约束代价函数收敛,使得各层间权值与偏置参数在反向传播过程中不断更新,预测角度值不断逼近真实角度值,达到预测真实来波方向的目的。
S5、循环执行S3和S4使得CNN达到预估角度误差的要求,当代价函数达到最小值时或到达预设迭代次数时CNN完成训练,各项参数停止更新,训练停止时,记录各层参数,保存卷积神经网络模型。
S6、通过完成训练的的CNN模型,得到最终预测的角度估值,与真实角度值对比,计算准确率。
如图4所示,水声环境设为信噪比为-5dB,阵列阵元数为10。由图3可以看出,随着训练次数的迭代增加,测试样本的准确率逐渐提升且趋于稳定。图3展现出卷积神经网络在DOA应用中的具有稳定的性能,网络模型具有收敛性。
如图5所示,图中对比了CNN与多重子空间分类法的在不同信噪比条件下的准确率,可以看出随着信噪比增加,CNN与MUSIC的准确率均有所增加。但 CNN准确率整体高于MUSIC方法,且在低信噪比条件下,CNN效果更佳良好,具有更好的性能。

Claims (7)

1.一种基于卷积神经网络的水下目标波达方向估计的方法,其特征在于,包括以下步骤:
(1)将生成的协方差矩阵数据划分为训练集和测试集并进行数据预处理;
(2)设定CNN系统各项超参数,初始化CNN卷积核、池化方式、全连接层神经元参数、分类函数;
(3)输入训练集数据,通过卷积池化层形成全连接层;
(4)接收全连接层数据,计算当前输出层正向传播预测值;计算CNN的代价函数,根据代价函数进行反向传播更新全连接层各层神经元参数,其中代价函数采用交叉熵函数;
(5)循环执行步骤(3)和(4),使得CNN达到预估角度误差的要求,当代价函数达到最小值时或到达预设迭代次数时CNN完成训练,各项参数停止更新,得到训练完成的CNN模型;
(6)在完成的CNN模型中,得到CNN最终预测的角度估值,与真实角度值对比,计算准确率。
2.根据权利要求1所述的一种基于卷积神经网络的水下目标波达方向估计的方法,其特征在于,所述步骤(2)中,卷积神经网络各项参数设定如下:设置学习率为0.01,隐含层激活函数采用ReLU激活函数,输出层激活函数采用Softmax激活函数,代价函数采用交叉熵损失函数,权值初始化方式为Glorot均匀分布,权重更新策略为Adam。
3.根据权利要求1所述的一种基于卷积神经网络的水下目标波达方向估计的方法,其特征在于,所述步骤(3)中,通过卷积池化层形成全连接层的计算公式为:
Figure FDA0003465943690000011
式中f(m,n)为输入矩阵的数据,g(m,n)为卷积核函数,池化方式选用区域最大采样。
4.根据权利要求1所述的一种基于卷积神经网络的水下目标波达方向估计的方法,其特征在于,所述步骤(4)中,分类函数采用Softmax函数,公式如下:
Figure FDA0003465943690000021
式中,yk是第k个神经元的输出,n表示网络的输出层神经元的数目;分子是输入信号ak的指数函数,分母是所有输入信号的指数函数之和;信号来波角度在区间[-90°,+90°]均匀分为181个类,卷积神经网络输出层的神经元设定为181个。
5.根据权利要求1所述的一种基于卷积神经网络的水下目标波达方向估计的方法,其特征在于,所述步骤(4)中,交叉熵函数的公式为:
Figure FDA0003465943690000022
式中,y(i)表示真实角度值,a(i)表示预测角度值,n表示分类个数,即输出神经元个数。
6.一种计算机存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1-5中任一项所述的一种基于卷积神经网络的水下目标波达方向估计的方法。
7.一种计算机设备,包括储存器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-5中任一项所述的一种基于卷积神经网络的水下目标波达方向估计的方法。
CN202210029754.4A 2022-01-12 2022-01-12 一种基于卷积神经网络的水下目标波达方向估计的方法 Pending CN114397621A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210029754.4A CN114397621A (zh) 2022-01-12 2022-01-12 一种基于卷积神经网络的水下目标波达方向估计的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210029754.4A CN114397621A (zh) 2022-01-12 2022-01-12 一种基于卷积神经网络的水下目标波达方向估计的方法

Publications (1)

Publication Number Publication Date
CN114397621A true CN114397621A (zh) 2022-04-26

Family

ID=81231134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210029754.4A Pending CN114397621A (zh) 2022-01-12 2022-01-12 一种基于卷积神经网络的水下目标波达方向估计的方法

Country Status (1)

Country Link
CN (1) CN114397621A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825854A (zh) * 2023-02-22 2023-03-21 西北工业大学青岛研究院 一种基于深度学习的水下目标方位估计方法、介质及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825854A (zh) * 2023-02-22 2023-03-21 西北工业大学青岛研究院 一种基于深度学习的水下目标方位估计方法、介质及系统

Similar Documents

Publication Publication Date Title
Papageorgiou et al. Deep networks for direction-of-arrival estimation in low SNR
Xiang et al. Improved de-multipath neural network models with self-paced feature-to-feature learning for DOA estimation in multipath environment
CN109061554B (zh) 一种基于空间离散网格动态更新的目标到达角度估计方法
CN111401565B (zh) 一种基于机器学习算法XGBoost的DOA估计方法
CN108802683B (zh) 一种基于稀疏贝叶斯学习的源定位方法
CN111123192B (zh) 一种基于圆形阵列和虚拟扩展的二维doa定位方法
CN103902826B (zh) 一种冲击噪声环境下的多移动目标跟踪方法
CN109375154B (zh) 一种冲击噪声环境下基于均匀圆阵的相干信号参数估计方法
CN110197112B (zh) 一种基于协方差修正的波束域Root-MUSIC方法
CN109212466B (zh) 一种基于量子蜻蜓演化机制的宽带测向方法
CN109239646B (zh) 一种冲击噪声环境下连续量子水蒸发的二维动态测向方法
CN112881972A (zh) 一种阵列模型误差下基于神经网络的波达方向估计方法
CN113111304B (zh) 强冲击噪声下基于量子射线机理的相干分布源测向方法
Chen et al. A DOA estimation algorithm based on eigenvalues ranking problem
CN114397621A (zh) 一种基于卷积神经网络的水下目标波达方向估计的方法
CN115236584A (zh) 基于深度学习的米波雷达低仰角估计方法
CN108614235B (zh) 一种多鸽群信息交互的单快拍测向方法
CN109358313B (zh) 一种基于量子带电系统搜索演化机制的宽带测向方法
CN109507634A (zh) 一种任意传感器阵列下的基于传感算子的盲远场信号波达方向估计方法
CN112363106B (zh) 基于量子粒子群的信号子空间波达方向检测方法及系统
Rajani et al. Direction of arrival estimation by using artificial neural networks
CN109683128A (zh) 冲击噪声环境下的单快拍测向方法
CN114200392A (zh) 基于声矢量均匀线阵的高亚音速飞行目标声信号估计方法
CN114636965B (zh) 一种基于神经网络的阵列增益和相位误差校准方法
CN115407270B (zh) 一种分布式阵列的声源定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination