CN114392759A - 一种z型光催化剂及其制备方法与应用 - Google Patents

一种z型光催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114392759A
CN114392759A CN202111604111.XA CN202111604111A CN114392759A CN 114392759 A CN114392759 A CN 114392759A CN 202111604111 A CN202111604111 A CN 202111604111A CN 114392759 A CN114392759 A CN 114392759A
Authority
CN
China
Prior art keywords
bivo
ito
type photocatalyst
photocatalyst
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111604111.XA
Other languages
English (en)
Other versions
CN114392759B (zh
Inventor
王朋
戴杜鹃
黄柏标
王泽岩
郑昭科
刘媛媛
程合锋
张倩倩
张晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202111604111.XA priority Critical patent/CN114392759B/zh
Publication of CN114392759A publication Critical patent/CN114392759A/zh
Application granted granted Critical
Publication of CN114392759B publication Critical patent/CN114392759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明属于新能源和光催化技术领域,本发明涉及一种Z型光催化剂g‑C3N4/ITO/Co‑BiVO4及其制备方法和应用,所述方法为以硝酸铋、偏钒酸铵、十二烷基苯磺酸钠以及硝酸钴作为前驱体,通过水热法合成Co‑BiVO4,通过煅烧尿素得到g‑C3N4。将上述Co‑BiVO4,g‑C3N4与ITO粉体共同分散在乙醇中,研磨蒸发溶剂,将得到的混合物进行煅烧得到。这种基于BiVO4的Z型光催化剂结合了产氢光催化剂g‑C3N4以及BiVO4本身的强氧化能力,ITO导电介质的引入使其具有更高的光生载流子分离效率,可以实现分解纯水产生氢气和氧气。

Description

一种Z型光催化剂及其制备方法与应用
技术领域
本发明属于光催化全分解水技术领域,具体涉及一种Z型光催化剂及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
基于颗粒的光催化分解水系统是将光催化剂粉末分散在水中,实现在光照射下产生氢气,具有设备简单,成本低廉的优点,是一种的潜在的可规模化太阳能制氢的方式。上述光催化分解水系统需要光催化剂具有宽吸光范围、长期稳定性、高电荷分离效率和强氧化还原能力。然而,单组分光催化剂通常很难同时满足所有要求。通过模拟自然光合作用过程设计的人工Z型光催化体系不仅可以有效分离光生电子空穴对,并且很大程度上保有两种光催化剂的强还原和强氧化能力,克服了单组分光催化剂的缺点并满足上述要求。钒酸铋具有带隙合适,无毒稳定等特点,被认为是优良的可见光光催化材料,但是由于弱还原能力和较差的光生电子空穴对分离效率,纯BiVO4在光催化分解水中的应用受到限制。
发明内容
针对上述现有技术中存在的问题,本发明旨在提出一种具有高效光生电子空穴对分离效率的基于BiVO4的Z型光催化剂及其制备方法与应用。本发明中的Z型光催化剂g-C3N4/ITO/Co-BiVO4由石墨相氮化碳(g-C3N4),钴离子掺杂钒酸铋(Co-BiVO4)以及氧化铟锡(ITO)导电粉末构成,通过混合研磨,以及在空气中煅烧的方法合成,具有高效的载流子分离效率和合适的能带位置。在只负载助催化剂的情况下,可用于分解纯水实现无牺牲试剂下同时释放氢气和氧气,具有制备方法简单,反应条件温和,成本低,可大规模制备以及无污染等优点。
为了实现以上技术效果,本申请提供以下技术方案:
本发明第一方面,提供一种Z型光催化剂的制备方法,所述方法为:以硝酸铋、偏钒酸铵、十二烷基苯磺酸钠以及硝酸钴作为前驱体,通过水热法合成Co掺杂的BiVO4(Co-BiVO4);通过煅烧尿素得到g-C3N4;将上述Co-BiVO4,g-C3N4与ITO粉体共同分散在乙醇中,研磨蒸发溶剂,将得到的混合物进行煅烧得到。
通过实验得到的光催化剂g-C3N4/ITO/Co-BiVO4,相比于单组份光催化剂Co-BiVO4和g-C3N4,具有在全光下分解纯水的性能。
通过添加导电介质ITO,可以促进产氢光催化剂g-C3N4与产氧光催化剂Co-BiVO4中的光生载流子流动,从而有利于光催化全分解水反应的进行。
在本发明的一些实施方式中,硝酸铋、偏钒酸铵、十二烷基苯磺酸钠、硝酸钴的摩尔比为5:5:0.72:0.01。
在本发明的一些实施方式中,水热反应温度为200℃、时间为2h。
在本发明的一些实施方式中,水热反应制备Co-BiVO4中Co2+掺杂量为0.1%-0.3%,更进一步为0.2%。掺杂量过多会导致光催化剂中产生过多缺陷位点,造成光生电子空穴对的复合,催化活性下降。
在本发明的一些实施方式中,尿素煅烧温度为500℃,煅烧时间为1.5h-2.5h,更进一步为2h。煅烧过程中前驱体转化成二维层状石墨相氮化碳(g-C3N4)。
在本发明的一些实施方式中,Co-BiVO4,g-C3N4与ITO粉体的质量比为2:2:0.5-1.5,更进一步为2:2:1。Co-BiVO4,g-C3N4与ITO粉体的质量对比可以得到ITO对最终产气量的影响,优化光催化性能。
在本发明的一些实施方式中,煅烧得到Z型光催化剂的温度为300℃。
第二方面,上述制备方法得到的Z型光催化剂g-C3N4/ITO/Co-BiVO4
第三方面,上述Z型光催化剂g-C3N4/ITO/Co-BiVO4在光催化方面的应用。
第四方面,上述Z型光催化剂g-C3N4/ITO/Co-BiVO4在全光照射下分解纯水产生氢气和氧气的应用。ITO作为电子导线起到了连接g-C3N4产氢光催化剂和Co-BiVO4产氧光催化剂的作用,促进光生载流子的分离与转移。在只负载助催化剂的情况下,可以加速催化剂表面产氢反应和产氧反应的发生,从而提高光催化性能。
在本发明的一些实施方式中,应用铂(Pt)作为产氢反应的助催化剂有利于Z型光催化剂g-C3N4/ITO/Co-BiVO4在光照下分解纯水产生氢气和氧气的应用。进一步,助催化剂Pt的负载量为1wt%。
本发明一个或多个技术方案具有以下有益效果:
本发明中的Z型光催化剂制备方法简单,通过在乙醇中超声分散,研磨,蒸发,并在马弗炉中空气煅烧的方法合成。
本发明中制备的g-C3N4/ITO/Co-BiVO4光催化剂具有良好的光生载流子分离和转移效率,受光照射,可以实现无牺牲剂下释放氢气(95.41μmol g-1h-1)和氧气(40.23μmol g-1h-1)。
本发明得到的光催化剂制备方法简单,对实际应用中有着巨大的指导意义,具有潜在的产业化价值。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为实验例1制备的g-C3N4/ITO/Co-BiVO4光催化剂和对比例1产物g-C3N4/Co-BiVO4,以及g-C3N4,Co-BiVO4,和ITO粉末的XRD图谱;
图2为实验例1制备的g-C3N4/ITO/Co-BiVO4光催化剂的扫描电镜(SEM)和透射电镜(TEM)照片,其中(a)为g-C3N4/ITO/Co-BiVO4光催化剂的SEM照片,(b)为g-C3N4/ITO/Co-BiVO4光催化剂的TEM照片;
图3为实验例1制备的g-C3N4/ITO/Co-BiVO4光催化剂和对比例1产物g-C3N4/Co-BiVO4,以及g-C3N4,Co-BiVO4,和ITO粉末的红外光谱(FT-IR)和X射线光电子能谱(XPS)分析,其中(a)为FT-IR图谱;(b)为XPS总谱;(c)为C1s XPS谱;(d)为N1s XPS谱;(e)为Bi 4fXPS谱;(f)为V 2p XPS谱;(g)为O1s XPS谱;(h)为In 3d XPS谱。
图4为实验例1制备的g-C3N4/ITO/Co-BiVO4光催化剂和对比例1产物g-C3N4/Co-BiVO4,以及g-C3N4和Co-BiVO4的光学测试。其中,(a)为g-C3N4,Co-BiVO4,g-C3N4/ITO/Co-BiVO4和g-C3N4/Co-BiVO4的漫反射光谱,(b)为g-C3N4和Co-BiVO4经过转化后的带隙(Eg),(c)为g-C3N4和Co-BiVO4的UPS光谱,(d)为g-C3N4和Co-BiVO4的能带位置排列示意图。
图5为实施例1产物的光催化分解水图;其中(a)为g-C3N4/ITO/Co-BiVO4在3h反应时间内随时间变化的产气量;(b)为g-C3N4/ITO/Co-BiVO4在不同波长的滤波片下,随波长变化的量子产率;(c)为g-C3N4/ITO/Co-BiVO4与不添加ITO粉末的g-C3N4/Co-BiVO4光催化剂以及g-C3N4和Co-BiVO4产气速率对比;(d)为6次循环光催化实验。
图6为实施例1产物g-C3N4/ITO/Co-BiVO4与对比例1产物g-C3N4/Co-BiVO4光催化剂的光电流,阻抗图,PL以及TRPL谱。其中,(a)为g-C3N4/ITO/Co-BiVO4与不添加ITO粉末的g-C3N4/Co-BiVO4光催化剂的光电流响应,(b)为g-C3N4/ITO/Co-BiVO4与g-C3N4/Co-BiVO4光催化剂的奈奎斯特图,(c)为g-C3N4/ITO/Co-BiVO4与g-C3N4/Co-BiVO4光催化剂的荧光发射光谱,(d)为g-C3N4/ITO/Co-BiVO4与g-C3N4/Co-BiVO4光催化剂的稳态荧光光谱。
图7为实验例1测试的g-C3N4/ITO/Co-BiVO4在受光照射下产生自由基时的光生电荷转移路径的示意图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中存在单一的BiVO4光催化剂中光生载流子分离效率低,催化活性差的问题,为了解决如上的技术问题,本申请提出了一种Co-BiVO4与ITO和g-C3N4复合的策略,具有良好的应用前景。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例与对比例详细说明本申请的技术方案。
以下实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例1
一种可用于光催化全分解水的Z型光催化剂及其制备方法,包括如下步骤:
(1)将硝酸铋(5mmol)溶解在硝酸溶液(20mL,4mol·L-1)中,加入Co(NO3)2·6H2O作为Co源,标记为溶液A;将偏钒酸铵(5mmol)溶解NaOH溶液(20mL,4mol·L-1)中,标记为溶液B。将十二烷基苯磺酸钠(0.72mmol)作为表面活性剂分别溶解在溶液A与溶液B中,继续搅拌30分钟。
(2)将溶液A与溶液B混合并将溶液pH调至~7,上述反应体系转移到100mL反应釜中,水热反应的温度和时间分别为200℃,2h。
(3)反应釜自然冷却后,使用去离子水和乙醇对黄色沉淀进行反复洗涤,烘干后得到Co掺杂的BiVO4光催化剂。
(4)将16g尿素置于马弗炉中,升温速率为5℃·min-1,500℃煅烧2h后得到g-C3N4光催化剂。
(5)将上述g-C3N4(30mg),Co-BiVO4(30mg)和购买的ITO粉末(15mg)加入无水乙醇(20mL),混合溶液超声20分钟后,在研钵中反复研磨,直至乙醇挥发。在300℃马弗炉中煅烧30分钟,得到g-C3N4/ITO/Co-BiVO4光催化剂,可进行光催化全解水反应。
对比例1
g-C3N4/Co-BiVO4的制备,与实施例1不同的是步骤(5)中不加入15mgITO粉末。
实验例1
将10mg样品分散到1mL甲醇中,其中含有5,5-二甲基-1-吡咯啉-氮氧化物(DMPO,50mM)作为超氧自由基捕集剂。照射一定时间后,混合物在BrukerA300光谱仪(微波功率为8mW)上进行检测。光谱仪设置为100kHz的调制频率和5G的调制幅度。
实验例2
对于光电化学测试,采用标准三电极系统进行光电化学测量,其中对电极为Pt片,工作电极为催化剂覆盖的FTO导电玻璃,参比电极为Ag/AgCl电极,0.5MNa2SO4(pH=6.8)溶液作为电解质。配有AM1.5的滤波片的300W氙灯用作光源。
光催化全解水测试
1.试验方法:
使用一种可以直接连接到真空系统的Pyrex反应池进行光催化水分解实验。在光反应之前,将30mg光催化剂分散到100毫升水中并置于反应器中。精确计算量的前驱体H2PtCl6·6H2O溶液加入溶液中(Pt的沉积量为1wt%)。在300W氙灯照射下,将反应体系照射30min,使Pt4+光还原为Pt作为产氢反应助催化剂。然后用石英盖盖住容器并连接真空泵使反应系统中保持高真空。反应器与循环冷却水相连,使反应保持在288K的温度下,避免因温度过高引起产量的变化。使用300W氙灯作为光源,系统连接到在线气相色谱仪(以Ar为载气的TCD检测器)。自动进样器每30分钟自动对气体进行一次采样,以确定气体产量。
2.试验结果:
实施例1产物g-C3N4,Co-BiVO4与g-C3N4/ITO/Co-BiVO4和对比例1产物g-C3N4/Co-BiVO4光催化剂的XRD图如图1所示,可以看出在复合材料中,g-C3N4/ITO/Co-BiVO4特征峰的形状和位置与Co-BiVO4和ITO纳米颗粒的XRD谱匹配良好。然而,g-C3N4的衍射峰在异质结中不太明显,这是由于复合材料中g-C3N4的衍射强度较低。
实验例1制备的g-C3N4/ITO/Co-BiVO4光催化剂的扫描电镜(SEM)和透射电镜(TEM)照片如图2所示。其中图2(a)为g-C3N4/ITO/Co-BiVO4光催化剂的SEM照片,图2(b)为g-C3N4/ITO/Co-BiVO4光催化剂的TEM照片;
实施例1产物g-C3N4,Co-BiVO4与g-C3N4/ITO/Co-BiVO4和对比例1产物g-C3N4/Co-BiVO4光催化剂的FT-IR图谱和XPS图谱如图3所示。进行红外测试和XPS表征进一步研究化学状态和样品组成。通常,电子浓度的降低导致电子屏蔽效应减弱,结合能会增加。而电子浓度的增加导致电子屏蔽效应增强,结合能会降低。因此,根据结合能的结果,Bi4f和N1s的结合能分别向高能和低能转移,这是由于Co-BiVO4和g-C3N4中电子浓度的减少和增加,说明结合后g-C3N4和Co-BiVO4之间存在强相互作用。
实验例1产物g-C3N4/ITO/Co-BiVO4光催化剂和对比例1产物g-C3N4/Co-BiVO4,以及g-C3N4和Co-BiVO4的光学测试如图4所示。通过对g-C3N4和Co-BiVO4的能带位置分析,可以看出g-C3N4和Co-BiVO4的能带符合Z型电荷排列方式。
实施例1产物的光催化分解水的活性如图5所示,在全光照射下并沉积助催化剂Pt后,g-C3N4/ITO/Co-BiVO4复合材料的H2和O2析出速率分别为95.41和40.23μmol g-1h-1,是g-C3N4/Co-BiVO4的4倍(图5(c)),并且分解水活性远远大于g-C3N4和Co-BiVO4。g-C3N4/ITO/Co-BiVO4全分解水的波长相关表观量子效率(AQE)如图5(b)所示,这与g-C3N4/ITO/Co-BiVO4的DRS一致,表明全分解水反应由入射光子驱动。稳定性可用于表征光催化剂的实际应用潜力,经过六个循环稳定性实验后(图5(d)),光催化剂的活性略有下降,表明光催化剂在水分解实验过程中是稳定的。
实验例1产物g-C3N4/ITO/Co-BiVO4光催化剂和对比例1产物g-C3N4/Co-BiVO4的光电流,阻抗,PL谱以及TRPL谱如图6所示。如图6(a)所示,g-C3N4/ITO/Co-BiVO4的光电流强度高于g-C3N4/Co-BiVO4,表明g-C3N4/ITO/Co-BiVO4中光生载流子的转移和反应更快。此外,与g-C3N4/Co-BiVO4相比,g-C3N4/ITO/Co-BiVO4具有更小的奈奎斯特圆弧半径(图6(b)),表明ITO在促进复合材料中的电子转移方面发挥了作用。如图6(c)所示,g-C3N4/ITO/Co-BiVO4的PL发射峰强度与g-C3N4/Co-BiVO4相比显着减弱,表明光生电子和空穴的复合率降低。在图6(d)中研究了时间分辨光致发光(TRPL)光谱,使用两指数函数拟合衰减曲线,g-C3N4/Co-BiVO4的τ为17.13ns,形成g-C3N4/ITO/Co-BiVO4异质结后,减少到4.84ns。平均PL寿命的衰减意味着在ITO存在下g-C3N4和Co-BiVO4之间更有效的载流子转移。
图7显示了电子自旋共振(ESR)测试,使用捕集剂5,5-二甲基-1-吡咯啉N-氧化物(DMPO),检测到自旋活性·O2-和·OH。如图7(a)所示,由于g-C3N4的氧化能力不足以将H2O转化为·OH,所以只观察到DMPO-·O2-信号。而Co-BiVO4不足以将O2还原为·O2-,因此仅检测到DMPO-·OH-信号(图7(b))。在g-C3N4/Co-BiVO4和g-C3N4/ITO/Co-BiVO4异质结中,DMPO-·OH和DMPO-·O2-物种都被检测到。所以g-C3N4/ITO/Co-BiVO4在受光照射下产生自由基时的光生电荷转移路径为Z型机制。光照后,Co-BiVO4的光生电子和g-C3N4的光生空穴在ITO纳米粒子上发生复合,而Co-BiVO4中积累的光生空穴将H2O氧化为·OH,在g-C3N4积累的光生电子将O2还原为·O2-(如图7(c)所示)。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种Z型光催化剂的制备方法,其特征在于,所述制备方法为:以硝酸铋、偏钒酸铵、十二烷基苯磺酸钠以及硝酸钴作为前驱体,通过水热法合成Co掺杂的BiVO4(Co-BiVO4);通过煅烧尿素得到g-C3N4;将上述Co-BiVO4,g-C3N4与ITO粉体共同分散在乙醇中,研磨蒸发溶剂,将得到的混合物进行煅烧得到所述Z型光催化剂。
2.根据权利要求1所述Z型光催化剂的制备方法,其特征在于,水热反应制备Co-BiVO4中Co2+掺杂量为0.1%-0.3%,优选为0.2%。
3.根据权利要求1所述Z型光催化剂的制备方法,其特征在于,硝酸铋、偏钒酸铵、十二烷基苯磺酸钠、硝酸钴的摩尔比为5:5:0.72:0.01。
4.根据权利要求1所述Z型光催化剂的制备方法,其特征在于,尿素煅烧温度为500℃,煅烧时间为1.5h-2.5h,优选为2h。
5.根据权利要求1所述Z型光催化剂的制备方法,其特征在于,Co-BiVO4,g-C3N4与ITO粉体的质量比为2:2:0.5-1.5,优选为2:2:1。
6.根据权利要求1所述Z型光催化剂的制备方法,其特征在于,混合物煅烧温度为300℃。
7.根据上述权利要求任一项所述Z型光催化剂的制备方法制备得到的Z型光催化剂。
8.根据权利要求7所述Z型光催化剂在光催化方面的应用。
9.根据权利要求8所述应用,其特征在于,所述应用具体为在全光照射下分解纯水产生氢气和氧气的应用。
10.根据权利要求9所述应用,其特征在于,应用铂(Pt)作为产氢反应的助催化剂;优选的,助催化剂Pt的负载量为1wt%。
CN202111604111.XA 2021-12-24 2021-12-24 一种z型光催化剂及其制备方法与应用 Active CN114392759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111604111.XA CN114392759B (zh) 2021-12-24 2021-12-24 一种z型光催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111604111.XA CN114392759B (zh) 2021-12-24 2021-12-24 一种z型光催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114392759A true CN114392759A (zh) 2022-04-26
CN114392759B CN114392759B (zh) 2023-02-03

Family

ID=81226084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111604111.XA Active CN114392759B (zh) 2021-12-24 2021-12-24 一种z型光催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114392759B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813037A (zh) * 2023-07-27 2023-09-29 湖南科美洁环保科技有限公司 一种电催化氧化处理垃圾渗滤液的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492871A (zh) * 2016-11-11 2017-03-15 湖南大学 磷杂化石墨相氮化碳纳米片负载钒酸铋复合光催化剂及其制备方法和应用
US20190381490A1 (en) * 2016-11-07 2019-12-19 Hangzhou Tong-King Enviro-Tech Co., Ltd Composite photocatalysts, method for making the same and application thereof
CN111250127A (zh) * 2018-12-03 2020-06-09 安徽晋煤中能化工股份有限公司 一种复合光催化剂DyVO4/g-C3N4B及其制备和应用
JP2020179346A (ja) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Zスキーム型光触媒系
CN112452348A (zh) * 2020-11-03 2021-03-09 扬州大学 一种钒酸铋掺杂石墨相氮化碳纳米片光催化剂的制备方法
CN112774715A (zh) * 2021-01-29 2021-05-11 中山大学 一种钒酸铋高结晶氮化碳异质结光催化剂及其制备方法与应用
CN113713823A (zh) * 2021-09-14 2021-11-30 蚌埠学院 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190381490A1 (en) * 2016-11-07 2019-12-19 Hangzhou Tong-King Enviro-Tech Co., Ltd Composite photocatalysts, method for making the same and application thereof
CN106492871A (zh) * 2016-11-11 2017-03-15 湖南大学 磷杂化石墨相氮化碳纳米片负载钒酸铋复合光催化剂及其制备方法和应用
CN111250127A (zh) * 2018-12-03 2020-06-09 安徽晋煤中能化工股份有限公司 一种复合光催化剂DyVO4/g-C3N4B及其制备和应用
JP2020179346A (ja) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Zスキーム型光触媒系
CN112452348A (zh) * 2020-11-03 2021-03-09 扬州大学 一种钒酸铋掺杂石墨相氮化碳纳米片光催化剂的制备方法
CN112774715A (zh) * 2021-01-29 2021-05-11 中山大学 一种钒酸铋高结晶氮化碳异质结光催化剂及其制备方法与应用
CN113713823A (zh) * 2021-09-14 2021-11-30 蚌埠学院 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813037A (zh) * 2023-07-27 2023-09-29 湖南科美洁环保科技有限公司 一种电催化氧化处理垃圾渗滤液的方法
CN116813037B (zh) * 2023-07-27 2024-09-24 湖南科美洁环保科技有限公司 一种电催化氧化处理垃圾渗滤液的方法

Also Published As

Publication number Publication date
CN114392759B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Tian et al. Hydrothermal synthesis of m-BiVO4/t-BiVO4 heterostructure for organic pollutants degradation: Insight into the photocatalytic mechanism of exposed facets from crystalline phase controlling
Luévano-Hipólito et al. Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation
Sun et al. A dye-like ligand-based metal–organic framework for efficient photocatalytic hydrogen production from aqueous solution
Lai et al. Photocatalytic toluene degradation over Bi-decorated TiO2: Promoted O2 supply to catalyst’s surface by metallic Bi
Wang et al. Cobalt lactate complex as a hole cocatalyst for significantly enhanced photocatalytic H 2 production activity over CdS nanorods
CN108579785B (zh) 高效可见光分解水产h2的硫掺杂氮化碳的制备方法
Ren et al. Ultrasmall Pt nanoclusters deposited on europium oxide: A newly active photocatalyst for visible-light-driven photocatalytic hydrogen evolution
CN109225222B (zh) 一种复合光催化剂及其应用
Li et al. Controllable synthesis, photocatalytic and electrocatalytic properties of CeO 2 nanocrystals
US20240024861A1 (en) Metal organic framework and use thereof for generating h2
CN104226340B (zh) 可见光纳米复合光催化剂AgCl-SnO2的制备方法
CN108611653A (zh) 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
Parida et al. Facile fabrication of hierarchical N-doped GaZn mixed oxides for water splitting reactions
CN114392759B (zh) 一种z型光催化剂及其制备方法与应用
CN114534783A (zh) 一种制备单原子Pt嵌入共价有机框架的光催化剂的方法及其应用
CN113663713A (zh) 改性g-C3N4/CdS的制备方法与光催化制氢的方法
JP6521316B2 (ja) 特徴的な吸収バンドを有する半導体光触媒及びその製造方法
Gao et al. Versatility of CoPcS in CoPcS/TiO 2 for MB degradation: photosensitization, charge separation and oxygen activation
Zhao et al. One-pot synthesis of Cu-modified HNb 3 O 8 nanobelts with enhanced photocatalytic hydrogen production
CN108855222B (zh) ZCS@Ni-MOF纳米复合材料及其制备和应用
CN115475631A (zh) 一种z型光催化剂及其制备方法和应用
CN113797940A (zh) 一种硒化钴石墨氮化碳复合材料及其制备方法和应用
CN112246256A (zh) 一种压电催化降解、合成氨催化剂及其制备方法与应用
CN111266101B (zh) 一种原位生成BiVO4/Bi2O3异质结的方法及其光催化应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant