CN114369261B - 一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法 - Google Patents

一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法 Download PDF

Info

Publication number
CN114369261B
CN114369261B CN202210070924.3A CN202210070924A CN114369261B CN 114369261 B CN114369261 B CN 114369261B CN 202210070924 A CN202210070924 A CN 202210070924A CN 114369261 B CN114369261 B CN 114369261B
Authority
CN
China
Prior art keywords
magnetic field
magnetic
hydrogel
ferrimagnetic
optical activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210070924.3A
Other languages
English (en)
Other versions
CN114369261A (zh
Inventor
高小青
孙超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering
Original Assignee
Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering filed Critical Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering
Priority to CN202210070924.3A priority Critical patent/CN114369261B/zh
Publication of CN114369261A publication Critical patent/CN114369261A/zh
Application granted granted Critical
Publication of CN114369261B publication Critical patent/CN114369261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法,涉及光学材料技术领域,所述磁性材料为亚铁磁性纳米材料,所述制备方法包括以下步骤:将亚铁磁性纳米材料分散并固化在水凝胶中,随后在外磁场中进行定向磁化,即得到通过局域磁场调控光学活性的磁性水凝胶。水凝胶中的亚铁磁性纳米粒子在平行磁场中进行磁化后,磁性水凝胶的磁偶极矩趋向于与外加磁场方向一致导致该材料的磁偶极矩得到增大。外加磁场消失后由于亚铁磁性材料的固有性质,其磁偶极矩仍然保持,从而该材料的光学活性得到增强。

Description

一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法
技术领域
本发明涉及光学材料技术领域,特别是涉及一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法。
背景技术
早在19世纪,巴斯德即发现当平面偏振光通过酒石酸溶液时,平面偏振光会发生偏转;而对于两种相对不同晶型的酒石酸来讲,通过其溶液的偏振光的偏转方向则呈相反方向,这种能使偏振光偏转的性能被称为旋光性,亦被称为光学活性。早在1845年,当法拉第研究电、磁与光学现象之间的相关联系时,即发现当一束平面偏振光通过置于磁场中的磁光介质时,平面偏振光的偏振面就会随着平行于光线方向的磁场发生旋转,这就是磁致旋光现象。平面偏振光在无磁场条件下偏转的原因是手性材料对偏振光吸收程度不同,而后者的原因则是由于磁光介质在磁场下能级发生塞曼分裂从而造成对偏振光吸收程度上的差异,此中吸收差异对所有材料均适用。法拉第磁光效应在科学研究、工业和医疗中均具有广泛应用,如激光技术中的磁光隔离器和电磁场强度测量,不对称合成化学物质的纯度控制,糖分测定,总核糖和核酸的测量等。
任何材料在磁场中均会被磁化,并显示出一定的磁化特性,根据材料在外磁场中表现出的磁性强弱可将材料磁性划分为铁磁性、亚铁磁性、反铁磁性、抗磁性和顺磁性。对于放置于外磁场的铁磁性和亚铁磁性水凝胶而言,其磁偶极矩会趋向于沿外加磁场方向进行排列从而增大整个材料的磁偶极矩。在撤去外加磁场后,铁磁性和亚铁磁性材料仍会保持其磁化状态,亦即其整体磁偶极矩仍与外加磁场方向平行。由Rosenfold光学活性强度公式可知,材料的光学活性由材料本身的电跃迁偶极矩和跃迁磁偶极矩所决定,当增大光学材料的磁偶极矩时材料相应的光学活性也会得到增强,因此可以通过电磁场对材料的光学活性进行调节。
发明内容
本发明提出一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法,通过将亚铁磁性纳米材料分散并固化在水凝胶中,然后在平行外磁场中进行定向磁化从而使该材料的磁偶极矩得到增大。当外加磁场消失后由于磁性材料固有特性,其磁偶极矩仍然保持且与外加磁场平行,其光学活性也不会消失或相应减小,从而构建出局域磁场进而得到高光学活性的磁性水凝胶。
为实现上述目的,本发明提供了如下方案:
一种通过局域磁场调控光学活性的磁性水凝胶,所述磁性材料为亚铁磁性纳米材料。
进一步地,所述亚铁磁性纳米材料为γ-Fe2O3
一种通过局域磁场调控光学活性的磁性水凝胶的制备方法,包括以下步骤:用亚铁磁性纳米颗粒(Nanoparticles,NPs)与水凝胶前驱体进行混合固化,随后在外磁场中进行定向磁化,得到可通过局域磁场调控光学活性的磁性水凝胶。
进一步地,所述γ-Fe2O3纳米颗粒的制备方法包括如下步骤:将L-缬氨酸与六水合氯化铁依次溶解于反应溶剂中,加入尿素后转移入100mL聚四氟乙烯内衬的水热釜中,随后在200℃下反应12h即制得磁性纳米粒子。在制备手亚铁磁性纳米材料过程中,使用溶剂热法,在混合溶剂(如丙三醇/水混合溶剂)制备具有单分散磁性纳米粒子。
进一步地,所述单体为丙烯酰胺(AA),交联剂为亚甲基双丙烯酰胺(NMBA),催化剂为四甲基乙二胺(TMED),引发剂为过硫酸钾(KPS)。
进一步地,所述制备水凝胶的各组分分别溶解到去离子水中,浓度分别为20wt.%AA、1vol.%TMED,1wt.%NMBA和5wt.%KPS。
进一步地,所述AA、NMBA、TMED、KPS和NPs(Fe含量约为4.2mg/mL)的溶液体积比为10:3:3:4:5,。
进一步地,所述定向磁化在室温进行,磁化时间为10min,使用磁场为平行电磁场,磁场强度为10-1000mT。
本发明通过局域磁场调控光学活性的磁性水凝胶具有可调控该磁性水凝胶光学强度的局域磁场。
本发明将亚铁磁性纳米颗粒分散在水凝胶中,然后将此水凝胶在磁场中进行磁化,从而使材料的磁偶极矩得到增大。该水凝胶进行磁化后,在水凝胶内部形成局域磁场,此局域磁场可对该材料的光学活性进行调节,并且随着磁场强度的变化该材料整体的光学活性也随着变化。当外加磁场消失后由于磁性材料本身的性质,其磁偶极矩仍然保持,从而在局部形成磁场进而构建出高光学活性的磁性水凝胶。
本发明公开了以下技术效果:
(1)本发明方法工艺简单,所需药品简单易得,并可实现快速制备;
(2)本发明可通过改变亚铁磁性纳米颗粒浓度来改变该磁性水凝胶光学强度,同时可使用外加磁场简单调控所需的光学强度;
(3)该水凝胶磁化后可作为局域磁场使用,在该水凝胶中添加其他功能纳米材料可形成其他种类新型光学材料。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中γ-Fe2O3的磁滞回线图;
图2为实施例1-5制备的磁性水凝胶的圆二色光谱图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
在室温下将2mmol氯化铁与2mmol L-缬氨酸共同溶解到40mL丙三醇/水混合溶剂(体积比为1:3),磁力搅拌至澄清;随后在上述混合溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次并重新分散至去离子水中;将合成的γ-Fe2O3纳米粒子(NPs)去离子水溶液与浓度为20wt.%的AA、浓度为1vol.%的TMED、浓度为1wt.%的NMBA和浓度为5wt.%KPS水溶液按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min即制备出磁性水凝胶。
本实施例制备的γ-Fe2O3的磁滞回线图见图1,由图1可以看出,该磁性水凝胶中结合的纳米粒子具有明显的铁磁或亚铁磁性材料的磁化特征,在外加磁场消除后具有较多的剩磁,可以构建出局域磁场。本实施例制备的磁性水凝胶磁偶极矩并非是定向排列的,而是随机排列的。
实施例2
在室温下将2mmol氯化铁与2mmol L-缬氨酸共同溶解到40mL丙三醇/水混合溶剂(体积比为1:3),磁力搅拌至澄清;随后在上述混合溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次并重新分散至去离子水中;将合成的γ-Fe2O3纳米粒子(NPs)去离子水溶液与浓度为20wt.%的AA、浓度为1vol.%的TMED、浓度为1wt.%的NMBA和浓度为5wt.%KPS水溶液按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min;将该石英比色皿放置于10mT平行磁场中磁化10min,即可制备局域磁场调控光学活性的磁性水凝胶。
本实施例制备的磁性水凝胶磁偶极矩定向排列。
实施例3
在室温下将2mmol氯化铁与2mmol L-缬氨酸共同溶解到40mL丙三醇/水混合溶剂(体积比为1:3),磁力搅拌至澄清;随后在上述混合溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次并重新分散至去离子水中;将合成的γ-Fe2O3纳米粒子(NPs)去离子水溶液与浓度为20wt.%的AA、浓度为1vol.%的TMED、浓度为1wt.%的NMBA和浓度为5wt.%KPS水溶液按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min;将该石英比色皿放置于50mT平行磁场中磁化10min,即可制备局域磁场调控光学活性的磁性水凝胶。
本实施例制备的磁性水凝胶磁偶极矩定向排列。
实施例4
在室温下将2mmol氯化铁与2mmol L-缬氨酸共同溶解到40mL丙三醇/水混合溶剂(体积比为1:3),磁力搅拌至澄清;随后在上述混合溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次并重新分散至去离子水中;将合成的γ-Fe2O3纳米粒子(NPs)去离子水溶液与浓度为20wt.%的AA、浓度为1vol.%的TMED、浓度为1wt.%的NMBA和浓度为5wt.%KPS水溶液按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min;将该石英比色皿放置于100mT平行磁场中磁化10min,即可制备局域磁场调控光学活性的磁性水凝胶。
本实施例制备的磁性水凝胶磁偶极矩定向排列。
实施例5
在室温下将2mmol氯化铁与2mmol L-缬氨酸共同溶解到40mL丙三醇/水混合溶剂(体积比为1:3),磁力搅拌至澄清;随后在上述混合溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次并重新分散至去离子水中;将合成的γ-Fe2O3纳米粒子(NPs)去离子水溶液与浓度为20wt.%的AA、浓度为1vol.%的TMED、浓度为1wt.%的NMBA和浓度为5wt.%KPS水溶液按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min;将该石英比色皿放置于500mT平行磁场中磁化10min,即可制备局域磁场调控光学活性的磁性水凝胶。
本实施例制备的磁性水凝胶磁偶极矩定向排列。
实施例1-5制备的磁性水凝胶的圆二色光谱图见图2,由图2可以看出随着磁化磁场强度的增大,该磁性水凝胶N→S方向的光学活性首先发生偏转,随后光学活性随磁化磁场强度的增大而增大;当磁性水凝胶达到磁化饱和后,其光学活性亦不再变化。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (2)

1.一种通过局域磁场调控光学活性的磁性水凝胶,其特征在于,所述通过局域磁场调控光学活性的磁性水凝胶的制备方法为:用配体修饰的亚铁磁性纳米材料,与水凝胶前驱体进行混合固化,随后在外磁场中进行定向磁化,得到通过局域磁场调控光学活性的磁性水凝胶;
所述用配体修饰的亚铁磁性纳米材料为亚铁磁性纳米颗粒γ-Fe2O3,其制备方法包括如下步骤:将L-缬氨酸与六水合氯化铁依次溶解于反应溶剂中,加入尿素后转移入100 mL聚四氟乙烯内衬的水热釜中,随后在200℃下反应12 h即制得亚铁磁性纳米颗粒γ-Fe2O3
所述水凝胶前驱体包括单体、交联剂、催化剂和引发剂;
所述单体为丙烯酰胺,交联剂为亚甲基双丙烯酰胺,催化剂为四甲基乙二胺,引发剂为过硫酸钾。
2.根据权利要求1所述的通过局域磁场调控光学活性的磁性水凝胶,其特征在于,所述定向磁化在室温进行,磁化时间为10 min,使用磁场为平行电磁场,平行磁场强度为10-1000mT。
CN202210070924.3A 2022-01-21 2022-01-21 一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法 Active CN114369261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210070924.3A CN114369261B (zh) 2022-01-21 2022-01-21 一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210070924.3A CN114369261B (zh) 2022-01-21 2022-01-21 一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN114369261A CN114369261A (zh) 2022-04-19
CN114369261B true CN114369261B (zh) 2024-07-02

Family

ID=81145426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210070924.3A Active CN114369261B (zh) 2022-01-21 2022-01-21 一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN114369261B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168598A2 (en) * 2018-01-15 2019-09-06 The Regents Of The University Of Michigan Chiromagnetic optical nanoparticles and light modulation using chiromagnetic optical nanoparticles under ambient conditions
CN113249114A (zh) * 2021-04-30 2021-08-13 盐城工学院 一种利用亚铁磁性复合颗粒磁化增强荧光材料发光性能的方法
CN113325611A (zh) * 2021-05-12 2021-08-31 西安交通大学 一种透光能力可通过剪切应变调控的柔性膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296074A (ja) * 1997-04-23 1998-11-10 Mikurosu Zuriini 磁性ポリマーゲル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168598A2 (en) * 2018-01-15 2019-09-06 The Regents Of The University Of Michigan Chiromagnetic optical nanoparticles and light modulation using chiromagnetic optical nanoparticles under ambient conditions
CN113249114A (zh) * 2021-04-30 2021-08-13 盐城工学院 一种利用亚铁磁性复合颗粒磁化增强荧光材料发光性能的方法
CN113325611A (zh) * 2021-05-12 2021-08-31 西安交通大学 一种透光能力可通过剪切应变调控的柔性膜及其制备方法

Also Published As

Publication number Publication date
CN114369261A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
EP2990382B1 (en) Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
Wang et al. Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods
Meng et al. Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation
Vereda et al. Oxidation of ferrous hydroxides with nitrate: A versatile method for the preparation of magnetic colloidal particles
CN102109584B (zh) 利用磁致变色测量磁场强度的试剂及其方法
Liu et al. Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity
Vega-Chacón et al. Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method
Xu et al. Preparation and characterization of polyacrylic acid coated magnetite nanoparticles functionalized with amino acids
Tancredi et al. Magnetophoretic mobility of iron oxide nanoparticles stabilized by small carboxylate ligands
Mansour et al. Structure, morphology, optical and magnetic studies of Fe3O4-doped CdS nanocomposite
CN114369261B (zh) 一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法
Ramalakshmi et al. Novel method of room temperature ionic liquid assisted Fe3O4 nanocubes and nanoflakes synthesis
Lysenko et al. Preparation and magneto-optical behavior of ferrofluids with anisometric particles
Li et al. Analysis of the factors affecting the magnetic characteristics of nano-Fe 3 O 4 particles
Tanaka et al. Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications
CN103130937A (zh) 一种pam包覆的四氧化三铁功能化纳米材料的制备方法
CN110655089B (zh) 一种光学性质可调的分散液及其制备方法
Liu et al. A facile fabrication of spherical and beanpod-like magnetic-fluorescent particles with targeting functionalities
CN106365205B (zh) 一种锰锌铁氧体纳米粉体的制备方法
Wang et al. Flower‐Like SiO2‐Coated Polymer/Fe3O4 Composite Microspheres of Super‐Paramagnetic Properties: Preparation via A Polymeric Microgel Template Method
Tong et al. Magnetic and luminescent properties of Fe 3 O 4@ Y 2 O 3: Eu 3+ nanocomposites
CN108109805B (zh) 一种由peg调控制得的羧酸型磁性纳米粒子及其应用
El-Sherif et al. Magnetic polymer composite particles via in situ inverse miniemulsion polymerization process
CN115449899A (zh) 一种磁响应光子晶体及其制备方法和观测方法
CN106380896B (zh) 一种涡旋磁纳米环溶胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant