CN114348974A - 一种MoSe2纳米颗粒的制备方法 - Google Patents

一种MoSe2纳米颗粒的制备方法 Download PDF

Info

Publication number
CN114348974A
CN114348974A CN202210050664.3A CN202210050664A CN114348974A CN 114348974 A CN114348974 A CN 114348974A CN 202210050664 A CN202210050664 A CN 202210050664A CN 114348974 A CN114348974 A CN 114348974A
Authority
CN
China
Prior art keywords
tube furnace
tube
quartz
furnace
mose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210050664.3A
Other languages
English (en)
Other versions
CN114348974B (zh
Inventor
冀璞光
韩双斌
康少明
刘影
郭志易
王志伟
闫钰夫
冯建航
王恭凯
王宇
殷福星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202210050664.3A priority Critical patent/CN114348974B/zh
Publication of CN114348974A publication Critical patent/CN114348974A/zh
Application granted granted Critical
Publication of CN114348974B publication Critical patent/CN114348974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明为一种MoSe2纳米颗粒的制备方法。该方法在等离子体增强化学气相沉积系统中,将含Mo(CO)6的石英舟放置第一管式炉的中心区域,将含Se的石英舟放置第二管式炉从入口处起10~50%的区域;利用反应物质在特定温度下具有固定蒸发速率的特点,将反应物质置于管式炉中产生稳定的蒸汽,通过真空装置使气态物质扩散到反应区,使等离子体增强化学气相沉积系统可在较低的真空度下进行化学反应。本发明反应过程中的真空度较低(1‑200Pa),等离子体在该真空环境下可稳定存在。稳定的等离子体能促进反应的进行,进而有效地降低合成温度,减小合成能耗,提高产率。

Description

一种MoSe2纳米颗粒的制备方法
技术领域:
本发明涉及纳米材料领域,特别是涉及MoSe2纳米颗粒的制备方法。
背景技术
近年来,二维过渡金属硫属化物(Transition Metal Dichalcogenides,TMCDs)由于具有种类丰富、稳定的电化学特性和高催化活性等特点,而受到研究人员的广泛关注。MoSe2作为二维过渡金属硫属化物中的一员,具有比表面积大、特殊的层结构等特点,常常被应用到储能、催化、润滑等材料的制作中。
目前,MoSe2纳米颗粒主要合成方式有水热法(Hydrothermal method,HM)、电化学方法(Electrochemical method,EM)、化学气相沉积方法(Chemical vapor deposition,CVD)等。其中,化学气相沉积方法合成的MoSe2纳米颗粒的粒度更均匀、片层结构更好。尽管如此,由于反应的温度较高,导致合成过程中存在反应物利用率低、合成能耗大等问题。
等离子体增强化学气相沉积技术(Plasma Enhanced Chemical VaporDeposition,PECVD)在CVD合成的基础上,利用等离子体较高的能量和化学活性,增加反应物的活性,实现反应物质的低温合成。由于等离子体需要在低真空下(<200Pa)才能稳定存在,PECVD反应腔内的气体含量要求较低,导致该技术的应用受到限制。目前,等离子体增强化学气相沉积技术主要应用于石墨烯、氮化镓等精密薄膜的微量合成工作中,如何将该技术有效地应用到MoSe2等纳米颗粒的合成工作成为人们的研究重点。
发明内容
本发明的目的在于针对现有等离子体增强化学气相沉积装置反应物质含量低的问题,提供一种MoSe2纳米颗粒的制备方法。该方法利用反应物质在特定温度下具有固定蒸发速率的特点,将反应物质置于管式炉中产生稳定的蒸汽,通过真空装置使气态物质扩散到反应区,使等离子体增强化学气相沉积系统可在较低的真空度下进行化学反应。本发明反应过程中的真空度较低(1-200Pa),等离子体在该真空环境下可稳定存在。稳定的等离子体能促进反应的进行,进而有效地降低合成温度,减小合成能耗,提高产率。
本发明的技术方案如下:
一种MoSe2纳米颗粒的制备方法,其特征为该方法包括以下步骤:
(1).将Mo(CO)6和Se粉置于两个石英舟内,摩尔比为Mo(CO)6:Se=1:2-10;
(2).在等离子体增强化学气相沉积系统中,将含Mo(CO)6的石英舟放置第一管式炉的中心区域,将含Se的石英舟放置第二管式炉入口处起10~50%的区域;
(3).在惰性气体的保护下,设定第一管式炉的温度为100-200℃,第二管式炉的温度为300-700℃;然后先开启第二管式炉,10-30min后开启第一管式炉,使两管式炉同时达到设定温度;
所述的第一管式炉、第二管式炉的升温速率为10-20℃/min;
(4)在两个管式炉达到指定温度的1-10min前,关闭惰性气体,开启并设定真空泵,将石英管内真空抽至1-200Pa之间;
(5)设定射频功率,启动等离子体装置和冷却装置,反应15-30min,Mo(CO)6和Se粉在第二管式炉反应后,进入冷却区遇冷沉积得到颗粒;
其中,射频功率为50-500W;冷却装置的温度20-30℃;
(6)收集石英管最右端冷却下来的颗粒;
(7)将(6)中收取的颗粒收集在石英管中,放入第三管式炉内,在还原气氛的条件下以10-20℃/min的速率升温到300-600℃,保温20-30min,得到纯净的MoSe2纳米颗粒;
所述步骤(2)的等离子体化学气相沉积系统包括等离子体发生设备、第一管式炉、第二管式炉、冷却装置、真空装置、石英管、气路系统;其中,离子体发生设备、第一管式炉、第二管式炉、冷却装置依次串联,石英管贯穿其中;石英管的末端还和真空装置相连;
所述步骤(3)中的惰性保护气体为氦气、氩气或氮气;
所述步骤(7)中的还原气氛为一氧化碳或氢气;
所述的含Se的石英舟的位置优选为当第二管式炉达到设定温度时,炉内实际温度为300℃的位置。
本发明的有益效果如下:
(1)本发明对原有的CVD合成装置进行实验室自主改装,增加了等离子体发生装置、真空装置,设备成本低。
(2)合成过程中利用等离子体较高的化学活性,为加热装置提供热外的能量,辅助反应的进行,降低反应能耗,提高产率;
(3)本发明利用等离子增强化学气相沉积系统制备的MoSe2纳米颗粒的最低合成温度可达300℃,较传统的CVD合成系统温度降低了300-600℃左右(传统CVD合成温度为600-900℃).
(4)本发明利用等离子增强化学气相沉积系统成功制备了不同形貌的MoSe2纳米颗粒。当合成温度550℃-700℃时,MoSe2纳米颗粒为球状结构,球状粒径在20nm左右,与CVD合成的MoSe2纳米颗粒(30nm)相比具有更小的粒径,比表面积更大,利于其电化学、催化、力学性能的提升。当合成300-450℃时MoSe2纳米颗粒为类蜂窝装的片状结构,纳米颗粒(002)面层间距更大,利于其在储能和催化等领域的应用;
附图说明
图1为本发明的制备装置简化图;
图2为实施例1的X射线电子衍射图(XRD);
图3为实施例1的扫描电子显微镜(SEM)图;
图4为实施例1的透射电子显微镜(TEM)图;
图5为实施例3的X射线电子衍射图(XRD);
图6为实施例3的扫描电子显微镜(SEM)图;
图7为实施例3的透射电子显微镜(TEM)图;
具体实施方法
下面结合实例附图及实例详细地介绍本发明。
本发明的制备装置为合肥科晶集团提供的OTF-1200X-50-4CLV-PE管式PECVD系统基础上的改进,该装置由等离子体发生设备、管式炉、冷却装置、真空装置、石英管等组成。为了实现本发明的制备,现对装置进行了一定的改进。改进后的装置系统如图1所示。由左到右分别分等离子体发生设备、管式炉Ⅰ、管式炉Ⅱ、冷却装置;石英管贯穿其中,且在最右端与真空装置连接。在原有OTF-1200X-50-4CLV-PE管式PECVD系统的基础上增加了一个管式炉Ⅰ,置于管式炉Ⅱ和等离子体发生装置的中间,用以给Mo(co)6提供稳定的蒸发速率。管式炉Ⅱ从左侧起10~50%的区域(该位置在工作时的温度为300℃)则为Se提供稳定的蒸发速率,反应气态物质在真空系统的作用下同时扩散到管式炉Ⅱ的中心区域,在等离子体的辅助下进行化学反应。
等离子体辅助化学反应的具体过程如下:首先,管式炉Ⅰ中的Mo(co)6蒸汽在等离子体发生装置的作用下产生等离子体(这里Mo(co)6*表示)。其次,Mo(co)6*在真空系统的作用下扩散到管式炉Ⅱ的区域,并受热分解为Mo*和CO*等离子体。再次,Mo*和CO*等离子体的部分能量传递给管式炉Ⅱ的中心偏左10-50%区域的Se蒸汽,使之产生Se*等离子体。最后,Mo*和Se*等离子体扩散到管式炉Ⅱ的中心区域合成MoSe2纳米颗粒,并扩散到冷却端沉积。由于反应Se过量,所以冷却端得到的为MoSe2和Se的混合物,之后要在第三管式炉内于氢气的气氛下除去过量的Se。
实施例1
所述的MoSe2纳米颗粒的制备包括以下几个步骤:
(1)称取1g(0.0038mol)Mo(co)6和1g(0.0127mol)Se分别置于两个石英舟中。
(2)将呈有Mo(co)6的石英舟放置管式炉Ⅰ的中心区域,将管式炉Ⅰ的温度设为120℃,与此同时将管式炉Ⅱ的温度设定为300℃,将呈有Se的石英舟置于管式炉Ⅱ的中心区域。
(3)石英管内通入20min的氩气,通气速率为10sccm;设定管式炉的升温速率为20℃/min,在氩气的保护下启动管式炉,启动管式炉Ⅰ。10min后启动管式炉Ⅱ。
(4)在管式炉Ⅰ和管式炉Ⅱ升到设定的温度后,关闭氩气,开启真空泵,设定抽气速率为2000sccm;当石英管内气压为1-2Pa时设定射频功率为200W,开启等离子体发生装置和冷却装置,Mo(co)6和Se在管式炉Ⅱ中反应30min。
(5)石英管最右侧冷却端收集到1.539g的MoSe2和Se的混合粉末(冷却装置温度20-30℃)。
(6)收集到的粉末置于石英舟内,置于另一管式炉中,在氢气的气氛下,570℃保温20min,出去收集粉末中的杂质,得到1.324g粉末,即纯的MoSe2纳米颗粒。
图2为步骤(6)得到的MoSe2纳米颗粒的XRD测试结果。该结果与标准卡片MoSe2-PDF#29-0914完全对应,证明制备出的MoSe2纳米颗粒为纯物质。
图3为步骤(6)得到的MoSe2纳米颗粒的SEM测试结果。该温度下制备的MoSe2为不规则、类蜂窝的片状结构,片长度约为300nm。
图4为步骤(6)得到的MoSe2纳米颗粒的TEM测试结果。TEM结果表明MoSe2由长条状的片层组成,片层厚度9.8nm左右,(002)面的层间距为0.77nm。
实施例2
(1)称取1g(0.0038mol)Mo(co)6和1g(0.0127mol)Se分别置于两个石英舟中。
(2)将呈有Mo(co)6的石英舟放置管式炉Ⅰ的中心区域,将管式炉Ⅰ的温度设为120℃,与此同时将管式炉Ⅱ的温度设定为500℃(管式炉中心温度)。将呈有Se的石英舟置于管式炉Ⅱ左侧起35%长度的位置(偏左)(经过测温系统测量,当管式炉Ⅱ达到设定温度为500℃时,该位置温度300℃)。
(3)石英管内通入20min的氩气,通气速率为10sccm;设定管式炉的升温速率为20℃/min,在氩气的保护下启动管式炉,启动管式炉Ⅰ。20min后启动管式炉Ⅱ;
(4)在管式炉Ⅰ和管式炉Ⅱ升到设定的温度后,关闭氩气,开启真空泵,设定抽气速率为2000sccm;当石英管内气压为1-2Pa时设定射频功率为200W,开启等离子体发生装置和冷却装置,Mo(co)6和Se在管式炉Ⅱ中反应30min。
(5)石英管最右侧冷却端收集到1.413gMoSe2和Se的混合粉末(冷却装置温度20-30℃)。
(6)收集到的粉末置于石英舟内,置于另一管式炉中,在氢气的气氛下,570℃保温20min,出去收集粉末中的杂质,得到1.252g的纯MoSe2纳米颗粒。
实施例3
(1)称取1g(0.0038mol)Mo(co)6和1g(0.0127mol)Se分别置于两个石英舟中。
(2)将呈有Mo(co)6的石英舟放置管式炉Ⅰ的中心区域,将管式炉Ⅰ的温度设为120℃,与此同时将管式炉Ⅱ的温度设定为700℃(管式炉中心温度)。将呈有Se的石英舟置于管式炉Ⅱ的从左侧起25%长度的位置(偏左)(经过测温系统测量,当管式炉Ⅱ达到设定温度为500℃时,该位置温度300℃)。
(3)石英管内通入20min的氩气,通气速率为10sccm;设定管式炉的升温速率为20℃/min,在氩气的保护下启动管式炉,启动管式炉Ⅰ。30min后启动管式炉Ⅱ。
(4)在管式炉Ⅰ和管式炉Ⅱ升到设定的温度后,关闭氩气,开启真空泵,设定抽气速率为2000sccm;当石英管内气压为1-2Pa时,设定射频功率为200W,开启等离子体发生装置和冷却装置,Mo(co)6和Se在管式炉Ⅱ中反应30min。
(5)石英管最右侧冷却端收集到1.321gMoSe2和Se的混合粉末(冷却装置温度20-30℃)。
(6)收集到的粉末置于石英舟内,置于另一管式炉中,在氢气的气氛下,570℃保温20min,出去收集粉末中的杂质,得到1.075g粉末。
图5为步骤(6)得到的MoSe2纳米颗粒的XRD测试结果。该结果与标准卡片MoSe2-PDF#29-0914完全对应,证明制备出的MoSe2纳米颗粒为纯物质。
图6为步骤(6)得到的MoSe2纳米颗粒的SEM测试结果。该温度下制备的MoSe2为不规则、团簇的球状结构,球体粒径为20nm左右。
图7为步骤(6)得到的MoSe2纳米颗粒的TEM测试结果。TEM结果表明MoSe2由洋葱状的片层构成,片层厚度6.2nm左右,(002)面的层间距为0.74nm。
以上所述仅是本发明的优选实施方式,本领域的技术人员可根据上述实验内容实现权利要求的所有内容。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
本发明未尽事宜为公知技术。

Claims (5)

1.一种MoSe2纳米颗粒的制备方法,其特征为该方法包括以下几个步骤:
(1).将Mo(CO)6和Se粉置于两个石英舟内,摩尔比为Mo(CO)6:Se=1:2-10;
(2).在等离子体增强化学气相沉积系统中,将含Mo(CO)6的石英舟放置第一管式炉的中心区域,将含Se的石英舟放置第二管式炉入口处起10~50%的区域;
(3).在惰性气体的保护下,设定第一管式炉的温度为100-200℃,第二管式炉的温度为300-700℃;然后先开启第二管式炉,10-30min后开启第一管式炉,使两管式炉同时达到设定温度;
所述的第一管式炉、第二管式炉的升温速率为10-20℃/min;
(4)在两个管式炉达到指定温度的1-10min前,关闭惰性气体,开启并设定真空泵,将石英管内真空抽至1-200Pa之间;
(5)设定射频功率,启动等离子体装置和冷却装置,反应15-30min,Mo(CO)6和Se粉在第二管式炉反应后,进入冷却区遇冷沉积得到颗粒;
其中,射频功率为50-500W;冷却装置的温度20-30℃;
(6)收集石英管最右端冷却下来的颗粒;
(7)将(6)中收取的颗粒收集在石英管中,放入第三管式炉内,在还原气氛的条件下以10-20℃/min的速率升温到300-600℃,保温20-30min,得到纯净的MoSe2纳米颗粒。
2.如权利要求1所述的MoSe2纳米颗粒的制备方法,其特征为所述步骤(2)的等离子体化学气相沉积系统包括等离子体发生装置、第一管式炉、第二管式炉、冷却装置、真空装置、石英管、气路系统;其中,等离子体发生装置、第一管式炉、第二管式炉、冷却装置依次串联,石英管贯穿其中;石英管的末端还和真空装置相连。
3.如权利要求1所述的MoSe2纳米颗粒的制备方法,其特征为所述步骤(3)中的惰性保护气体为氦气、氩气或氮气。
4.如权利要求1所述的MoSe2纳米颗粒的制备方法,其特征为所述步骤(7)中的还原气氛为一氧化碳或氢气。
5.如权利要求1所述的MoSe2纳米颗粒的制备方法,其特征为所述的含Se的石英舟的位置优选为当第二管式炉达到设定温度时,炉内实际温度为300℃的位置。
CN202210050664.3A 2022-01-17 2022-01-17 一种MoSe2纳米颗粒的制备方法 Active CN114348974B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210050664.3A CN114348974B (zh) 2022-01-17 2022-01-17 一种MoSe2纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210050664.3A CN114348974B (zh) 2022-01-17 2022-01-17 一种MoSe2纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN114348974A true CN114348974A (zh) 2022-04-15
CN114348974B CN114348974B (zh) 2023-05-23

Family

ID=81090718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210050664.3A Active CN114348974B (zh) 2022-01-17 2022-01-17 一种MoSe2纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN114348974B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512194A (zh) * 2019-08-21 2019-11-29 武汉工程大学 星型微波等离子体化学气相沉积装置及制备大面积二维材料的方法
CN113782665A (zh) * 2021-09-16 2021-12-10 河北工业大学 一种WSe2/MoS2复合热电材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512194A (zh) * 2019-08-21 2019-11-29 武汉工程大学 星型微波等离子体化学气相沉积装置及制备大面积二维材料的方法
CN113782665A (zh) * 2021-09-16 2021-12-10 河北工业大学 一种WSe2/MoS2复合热电材料的制备方法

Also Published As

Publication number Publication date
CN114348974B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
KR100917697B1 (ko) 질소를 함유하는 전이금속―탄소나노튜브 혼성촉매, 그의제조방법 및 이를 이용하여 수소를 생산하는 방법
Doğan et al. Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution
CN103183334A (zh) 一种尺寸可控石墨烯的制备方法
Zhang et al. Combustion synthesis of N-doped three-dimensional graphene networks using graphene oxide–nitrocellulose composites
CN101948105A (zh) 一种制备高纯度单壁碳纳米管垂直阵列的方法
CN112408364A (zh) 一种废弃热固性塑料催化热解制备碳纳米管的方法
Ouyang et al. Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: a platform for high-rate performance battery electrodes
WO2004060800A1 (ja) 単層カーボンナノチューブの製造方法および製造装置
Konar et al. A mini-review focusing on ambient-pressure chemical vapor deposition (AP-CVD) based synthesis of layered transition metal selenides for energy storage applications
CN106395768A (zh) 一种超薄氮化硼纳米片的合成方法
Wang et al. Structure and photoluminescence properties of carbon nanotip-vertical graphene nanohybrids
Zhao et al. Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film
Zhang et al. Fabrication of nanosized metallic copper by electrochemical milling process
Hou et al. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films
CN114348974A (zh) 一种MoSe2纳米颗粒的制备方法
Wang et al. Mechanism of self-reaction evolution of Fe@ Al2O3 catalyst for growing carbon nanotube array
CN111115617A (zh) 一种高纯中空碳纳米洋葱的规模化制备方法
KR101679693B1 (ko) 탄소나노튜브 제조방법 및 하이브리드 탄소나노튜브 복합체
CN114852994B (zh) 少层石墨炔及微纳石墨炔材料的同时可控合成方法
Holm et al. Modifying the composition of hydrogen-terminated silicon nanoparticles synthesized in a nonthermal rf plasma
JP7221557B2 (ja) グラフェン連続大量製造方法及びその製造方法で製造されたグラフェン
Dadsetan et al. Carbon film produced from microwave-driven methane pyrolysis
CN115072711B (zh) 石墨烯纳米带的制备方法
Ismagilov et al. Noncatalytic synthesis of carbon nanotubes by chemical vapor deposition
Shavelkina et al. Plasma Jet-Assisted Synthesis of Graphene Using a DC Plasma Torch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant